
 

Abstract — This article explores the concepts of online protocol 
synthesis using Reinforcement Learning (RL). The study is 
performed in the context of sensor and IoT networks with ultra-low-
complexity wireless transceivers. The paper introduces the use of RL 
and Multi Arm Bandit (MAB), a specific type of RL, for Medium 
Access Control (MAC) under different network and traffic 
conditions. It then introduces a novel learning-based protocol 
synthesis framework that addresses specific difficulties and 
limitations in medium access for both random access and time-
slotted networks. The mechanism does not rely on carrier-sensing, 
network time-synchronization, collision detection, and other low-
level complex operations, thus making it ideal for ultra-simple 
transceiver hardware used in resource-constrained sensor and IoT 
networks. Additionally, the ability of independent protocol learning 
by the nodes makes the system robust and adaptive to the changes in 
network and traffic conditions. It is shown that the nodes can be 
trained to learn to avoid collisions, and to achieve network 
throughputs that are comparable to ALOHA-based access protocols 
in sensor and IoT networks with simplest transceiver hardware. It is 
also shown that using RL, it is feasible to synthesize access protocols 
that can sustain network throughput at high traffic loads, which is 
not feasible in the ALOHA-based systems. The system’s ability to 
provide throughput fairness under network and traffic 
heterogeneities are also experimentally demonstrated. 
 

Index Terms — Reinforcement Learning, Multi-Armed Bandits, 
Sensor Network, IoT, Medium Access Control, Resource Constrained 
Networks. 

I. INTRODUCTION 

Traditionally, wireless network protocols are designed based 
on heuristics and past experience of human designers.  Most of 
the well-known wireless access protocols such as ALOHA, 
CSMA, and their derivatives including Bluetooth, Zigbee, and 
WiFi are products of such design processes [1, 2]. The choice of 
a network protocol is often steered by the availability of 
transceiver level hardware support for carrier sensing, collision 
detection, communication energy constraints, etc. In spite of their 
general success, these approaches do underperform under certain 
topology and traffic load heterogeneities, and specialized 
prioritization requirements. For instance, in case of the well-
known ALOHA and SLOTTED-ALOHA MAC logics, a surge 
in network traffic can lead to a complete throughput collapse 
caused by collision avalanches. Such phenomena are particularly 
harmful for IoT and Sensor networks in which energy and other 
resource wastage can be operationally detrimental. Such effects 
are aggravated for heterogeneous traffic and topological 
diversities. Furthermore, topologically disadvantageous nodes in 
an arbitrary mesh network may not receive a fair share of 
bandwidth due to its disproportionate collision experience. All 
these effects point to a need for alternative protocol design 
approaches beyond the existing empirical designs.  
   To that end, Reinforcement Learning (RL) has been applied in 
the literature [3-14] for protocol synthesis via online learning. A 

protocol constitutes inter-node transmission logic, which is 
modeled as a Multi-Agent Markov Decision Process (MA-MDP) 
problem. Such MA-MDPs are then solved using an online 
temporal difference solution approach, namely RL. The online 
learning ability of RL makes the nodes learn and adapt to the best 
transmission logic (i.e., protocol) on the fly without a priori 
training. Additionally, the multi-agent approach enables 
independent learning for the node, thus making the solutions 
more robust and adaptive.  
    Such learning can be explored in two broad areas of MAC 
logics, namely, random access and scheduled with time-slotting. 
While the first category including ALOHA, CSMA, and their 
higher order derivatives can be synthesized using traditional RL 
[15], for scheduled access such as TDMA would need a special 
class of RL without state abstraction, known as Multi-Armed 
Bandits (MAB).  
   The existing work in this area has the following limitations. 
First, most of the RL solutions are centralized [5, 6] in which a 
single learning entity maintains current network-level 
information and learns transmission policies for all the network 
nodes. This entails frequent node-to-learner information and 
learner-to-node policy transfers, requiring additional control 
plane bandwidth. Moreover, the learner requires to maintain a 
network-scale learning table which adds to its storage and 
computation expenses. These bandwidth, storage, and single 
point of computation overheads make centralized learning non-
scalable and vulnerable to single point of failure. The second 
major limitation is that network and traffic heterogeneities and 
traffic prioritization are neglected in the existing techniques [9]. 
This makes some of these approaches unsuitable in application-
specific networks with specialized network configurations and 
performance needs. Additionally, many of the existing RL 
solutions assume non-sensor and IoT friendly complex 
transceiver capabilities including carrier-sensing, collision 
detection in few cases, and network time-synchronization for the 
MAB-based transmission scheduling.  
   This paper attempts to avoid those limitations using a novel RL 
and MAB-based learning approach for synthesizing MAC logic. 
The key approach here is to leverage interactive individual 
learning, where each node learns transmission policies 
independently by observing the impacts of their RL/MAB 
transmission actions on collisions experienced by all other nodes 
in the neighborhood. This is done without carrier-sensing, 
collision detection, and time-synchronization, thus making it 
suitable for low-complexity and resource-constrained networks. 
Specifically, the developed framework caters to two broad 
classes of medium access schemes, viz, random access and 
scheduling-based. It makes the nodes learn independently in 
order to attain and maintain the maximum achievable throughput 
for random access, and to obtain a collision-free slot allocation 

Hrishikesh Dutta, Amit Kumar Bhuyan, and Subir Biswas 
Michigan State University, East Lansing, USA  

duttahr1@msu.edu, bhuyanam@msu.edu, sbiswas@egr.msu.edu 

Reinforcement Learning for Protocol Synthesis in Resource-
Constrained Wireless Sensor and IoT Networks 



 

in scheduling-based approaches. Fig. 1 shows a generalized 
system architecture of the IoT network with the embedded 
learning components, where each IoT node acts as a learning 
agent.  With the long-term goal of developing a generalized 
learning framework for protocol synthesis, this paper specifically 
demonstrates the concept of protocol synthesis in resource-
constrained networks with low-complex transceivers not relying 
on aforementioned complex hardware requirements. 

Specific contributions of this work are as follows. First, an 
online learning-based framework is developed for minimizing 
packet collisions in resource-constrained networks with random 
access and scheduling-based Medium Access schemes. Second, 
a novel slot-defragmentation mechanism is proposed for 
handling the trade-off between learning convergence time and 
spectral usage efficiency in transmission scheduling in networks 
without time synchronization. Third, the developed framework is 
decentralized such that each node learns its own transmission 
schedule independently relying only on localized neighborhood 
information. Finally, the developed learning framework is 
functionally validated, and performance is evaluated under 
heterogeneous network and traffic conditions with extensive 
simulation experiments.  

II. RELATED WORKS 

Many Reinforcement Learning (RL) based approaches were 
proposed in the literature for wireless MAC protocol synthesis. 
The paper in [3] uses RL for wireless sensor network MAC to 
minimize energy expenditure while maximizing throughput. It 
works with slotted time and uses stateless Q-learning for nodes 
to find collision-free transmission slots. Q-learning-based 
protocols for resource allocation are also proposed in [5,10]. 

These mechanisms can learn and adapt with new and departing 
nodes while maximizing throughput. Using carrier-sensing, the 
nodes learn to transmit/wait [10] or to increase/decrease access 
contention window [5] to reduce collisions. The mechanism in 
[4] uses RL for solving a Partially Observable Markov Decision 
Process (POMDP) in order to minimize the interference amongst 
primary and secondary users in a cognitive network.  

Researchers have also used RL and its variants for slot 
scheduling in TDMA-based MAC systems. An RL-based MAC 
protocol is proposed in [7], which improves network throughput 
by reducing collisions in a time-synchronous slotted network. 
Using stateless Q-learning nodes learn to transmit in collision-
free slots. The mechanism in [8] allows nodes to learn radio 
schedules based on instantaneous packet traffic load in their 
immediate neighborhoods. The mechanism in [9] minimizes 
MAC layer energy expenditure via RL-based learning. Such 
learned low-energy protocols with sleep/active scheduling are 
claimed to be useful for high-density communication in wireless 
sensor networks. A learning-based slot allocation scheme is 
developed in [12] for optimizing energy and packet delay in large 
networks with high traffic loading. Another RL-based congestion 
control scheme for satellite IoT networks is proposed in [13], 
where the aim is to allocate channels efficiently in a TSCH 
network. The proposed mechanism relies on centralized 
arbitration at a satellite. The framework presented in [14] uses 
Multi-Armed Bandits (MAB) to learn an optimal back-off period 
in a contention-based time-slotted underwater network. The 
objective is to simultaneously minimize collisions and energy 
with the assistance of a centralized arbitration. Apart from the 
scalability issues of centralized RL approaches [16-18], the 
proposed policies require individual end nodes to download 

 
Fig. 1: System Level Architecture of an IoT Network with Embedded Learning Components 



 

learnt policies, thus requiring additional bandwidth/channel for 
such control information sharing. 

All these RL-based MAC frameworks rely on various 
combinations of underlying hardware features such as time-
slotting, time-synchronization, and carrier-sensing, which can 
often be infeasible for ultra-resource-constrained sensor and IoT 
nodes. In this paper, the main focus is to explore online learning 
using RL and its variants for networks without such complex and 
energy-expensive features. The paper first demonstrates the 
feasibility of these learning frameworks to maximize 
performance in networks using random access schemes without 
time-slotting ability. It is shown how the maximum network 
throughput can be achieved and maintained using RL with fair 
bandwidth share for the nodes. Next, it shows how a stateless 
variant of RL can be used for collision-free transmission slot 
scheduling without network time synchronization. This is done 
using a slot defragmentation operation embedded with MAB 
components to reduce bandwidth redundancy arising from slot 
allocation in the absence of network time synchronization.  To be 
noted, the framework proposed in this work is decentralized in 
the sense that all nodes learn the transmission schedule 
independently using localized network information.  

III. NETWORK AND TRAFFIC MODEL  
The network models considered in this paper are   generalized 

multi-point to point with arbitrary mesh topologies (Fig. 1) and 
traffic patterns. In order to understand and analyze the impacts of 
network information availability, both fully and partially 
connected topologies are considered. For fully connected, each 
node can possess complete network-wide information including 
congestion, throughput etc. For partially connected, a node can 
possess only localized information within its neighborhood.  

As for packet generation, constant packet rate and Poisson 
distributed packets have been used. The MAC layer traffic load 
model is created such that a packet generated from a node is sent 
to one of its uniformly randomly chosen 1-hop neighbors. This is 
done on a packet-by-packet basis.  

Networks without and with time slotting are investigated. In 
both cases, no network time synchronization is assumed. As 
described later in Section V, the network model includes the 
ability of piggybacking very low data-rate control information 
using parts of the data packets. Such control information is used 
for local information sharing needed by the RL learning.  

IV. REINFORCEMENT LEARNING AND MULTI-ARMED BANDIT 
Reinforcement Learning (RL) is a model-free approach used 

to solve a Markov Decision Process (MDP) [15]. One of the 
commonly used RL techniques is a value-based tabular update 
method known as Q-Learning. Each entry in the table 𝑄(𝑠, 𝑎) is 
a Q-value representing the importance of taking an action 𝑎 when 
the system is in state 𝑠. This table is updated by taking repeated 
actions stochastically with a bias towards the action with the 
highest 𝑄-value, which is updated based on the acquired reward. 
For a received reward, the Q-value for a state-action pair is 
updated using the Bellman’s temporal difference equation [15]. 
A special class of RL problems for non-associative settings are 
known as Multi-Armed Bandits (MAB), where there is no state 
abstraction and the agent’s goal is to determine the best set of 
actions that would maximize its expected reward [15]. 

   A variant of Q-table updates, used in multi-agent RL 
environments, known as Hysteretic Updates [15], is used in this 
work. Without knowing the actions taken by the rest of the 
agents, each agent learns to achieve a coherent joint behavior by 
observing the effects of its own actions on the system. The key 
challenge is that an agent’s cumulative reward not only depends 
on its own actions, but also those of the others. Even if an agent 
takes a good action, it may still receive a penalty because of other 
agents’ poor actions. Hysteretic Learning addresses this by 
assigning less importance to penalties as compared to the rewards 
by using two different learning rates. The higher learning rate is 
used if an agent’s action produces desired beneficial effects. 
Otherwise, the lower learning rate is used so that lesser 
importance is given to actions that are deemed suitable by the 
agent but did not produce beneficial results probably due to 
unfavorable actions taken by the other agents in the environment. 
This prevents the Q-values of good actions to go down, thus 
accelerating learning convergence. A detailed description of RL, 
MAB and Hysteretic Learning can be found in [15] and [19].  

V. REINFORCEMENT LEARNING FOR RANDOM ACCESS MAC 

A. Modeling Network Protocol Synthesis as MDP 
Each network node acts as an independent RL agent and the 

wireless network acts as the environment through which the 
agents interact via their actions. In what follows, it is shown as 
to how node transmission behavior can be modeled as a Markov 
Decision Process (MDP), and when the MDP is solved using RL, 
it can give rise to probabilistic transmission strategies that 
represent a MAC protocol. The details of different RL 
components are as follows.  

Actions: An RL agent’s (i.e., a node) actions are represented by 
transmission probabilities in the range [0, 1]. Meaning, the action 
defined by the probability p represents a packet transmission with 
that probability. The probabilities are discretized at equal 
intervals in order to keep the action space discrete. The interval 
size determines the action space size, and the resulting RL 
performance and convergence properties. In this work, the 
interval size of 0.05 is chosen empirically based on the 
performance and convergence speed tradeoffs. The learning 
error, represented as the difference between the throughput 
obtained via RL and that of a known benchmark, as described in 
the next subsection goes down, and convergence time goes up 
with increase in the size of the action space. The actions are 
selected following an 𝜖-greedy exploration policy, where the 
agents explore all the possible actions randomly with a 
probability 𝜖, and take the action based on the maximum Q-value 
with probability 1 − 𝜖.  
States: The state experienced by an agent/node is represented by 
the congestion level it encounters. A node estimates its state 
during a learning epoch from the number of packet collisions it 
experiences during the epoch. It is encoded as the collision 
probability computed as the ratio of number of collided to 
transmitted packets. As done for the action space, collision 
probabilities are also discretized into a fixed interval size (in 
range [0, 1]), which determines the state space size. There exists 
a tradeoff between learning performance and convergence time 
for different state space sizes. A state space size of 5 has been 



 

chosen empirically for all presented results in the this paper.  

Reward: Since learning is node-independent and the nodes do not 
possess network-wide information, the reward is decided based 
on a node’s localized information collected in-band using 
piggybacking over the MAC layer PDUs.  

Let 𝑠௜ be the current throughput of node 𝑖 and 𝑠௜→௝ be the 
portion of node 𝑖’s throughput for which 𝑗 (one-hop neighbor of 
𝑖) is the intended receiver. Node 𝑗  periodically piggybacks 𝑠௜→௝ 
in its outgoing MAC layer PDUs. Node 𝑖 then calculates its own 
throughput s௜ = ∑ 𝑠௜→௝∀ଵି୦୭୮ ୬ୣ୧୥୦ୠ୭୰ ௝ , which it periodically 
piggybacks along with its one-hop neighbors’ throughput 𝑠௝ in its 
outgoing PDUs. 

Now, given that a node 𝑖 knows its own throughput as well as 
its two-hop neighbors’ throughput (i.e., 𝑠௜ , 𝑠௝), it calculates its 
localized neighborhood throughput as 𝑆௜ = 𝑠௜ + ∑ 𝑠௝∀௝ . The 
packet transmissions from nodes that are within a 2-hop locality 
can lead to collisions at the receiver. Thus, throughput of a node 
is affected by its all 2-hop neighborhood transmission policies 
and hence, 2-hop neighborhood throughput is considered for 
reward formulation. Using this information, a reward function is 
formulated with the aim of maximizing network throughput 

while minimizing the deviation of throughputs of each individual 
node. Thus, an action is rewarded if both the throughput and 
fairness gradients as defined by ∆𝑆௜ = 𝑆௜(𝑡) − 𝑆௜(𝑡 − 1) and 
∆𝑓௜ = 𝑓௜(𝑡) − 𝑓௜(𝑡 − 1) respectively are positive. Here, 𝑓௜ is the 
fairness coefficient computed as: 

𝑓௜(𝑡) = − ෍ |𝑠௜(𝑡) − 𝑠௞(𝑡)|

∀௞ஷ௜

                                                 

𝑘𝜖 𝑜𝑛𝑒ℎ𝑜𝑝 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝑜𝑓 𝑖.  

Thus, a temporal gradient-based reward is formulated as 
follows.  

𝑅௜(𝑡) = ൜
+50, ∆𝑆௜ − 𝜖௦ > 0, ∆𝑓௜ − 𝜖௙ > 0  

−50,                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(1) 

Here, coefficients 𝜖௦ and 𝜖௙ are used so that the agents don’t get 
stuck in a near optimal solution. Experimentally chosen learning 
hyper-parameters are set to: Hysteretic Learning rates of 0.9 and 
0.1, and a discount factor of 0.95. Using this reward arrangement, 
each node independently learns a probabilistic transmission 
strategy such that the network wide throughput is maximized 
while attempting to maintain node-level fair bandwidth 
distribution. This behavior gives rise to the proposed RL-based 

 
Fig. 3: Performance of RRA-MAC for heterogeneous loading conditions  

 
Fig. 2: RRA-MAC in a 5-node partially-connected topology and the learning convergence behavior  



 

Random Access MAC (RRA-MAC) Protocol. Note that although 
each node independently learns transmission policies, their 
learning process is mutually affected by the collisions caused by 
their individual actions. A learning convergence in such situation 
is when all nodes are able to choose the correct transmissions 
probabilities for given collisions in its up to 2-hop neighborhood.  

B. Results and Analysis 

In this section we present the performance of RRA-MAC 
framework that uses RL to solve network protocol modeled as a 
Markov Decision Process (MDP). In Fig. 2, the performance of 
RRA-MAC is compared with the simplest known sensor/IoT 
random access, namely ALOHA, that does not rely on complex 
hardware features including carrier sensing and time-slotting. 
The figure shows performance for a 5-nodes partially-connected 
topology in which nodes 1, 2, 3 and 4 form a square and node 5 
is connected only to node 4. The first observation is that unlike 
for ALOHA, RRA-MAC is able to provide a fair bandwidth 
distribution for all five nodes. Since nodes 1, 3 and 5 are 
topologically disadvantageous in that they experience higher 
collision rates compared to nodes 2 and 4, with ALOHA those 
three nodes experience lower overall throughputs. Such unfair 
access performance aggravates as traffic loading increases. The 
RL-based RRA-MAC circumvents that by using a fairness-aware 
reward structure. This allows the proposed learning-based 
mechanism to handle topological heterogeneity in a fair manner.  

 The second notable observation is that unlike the ALOHA 
family of protocols, the learning-based access can sustain high 
throughput at high loading conditions. With ALOHA, excessive 
collisions bring sustainable throughput down beyond a critical 
loading point. With RRA-MAC, this is avoided by the RL agents 
via learning to reduce transmission probabilities (i.e., actions) in 
states that indicate increasing collisions in the neighborhood. 
This causes the RRA-MAC throughput to be sustained at higher 
loads, while maintaining node level throughput fairness.  

 Fig. 2 also shows the learning convergence behavior for both 
network-wide and individual throughputs for individual node 
load  𝑔௜ = 0.5, 1 ≤ 𝑖 ≤ 5. Here, 𝑔௜ is the application layer load 
(Erlangs) in node 𝑖. Post convergence, the nodes learn to take 
actions so that network throughput (𝑆) is maximized while 
maintaining fairness in available bandwidth distribution.  

   Performance of RRA-MAC in a 3-nodes fully-connected 
topology for heterogeneous traffic is shown in Fig. 3. With 

ALOHA access, there is a high variation of throughputs among 
the three nodes for heterogeneous load distribution. In contrast, 
with RRA-MAC, the differences in throughputs of individual 
nodes are significantly smaller. In each of the three plots in Fig. 
3, the loads from node-1 (𝑔ଵ) and node-2 (𝑔ଶ) are kept fixed at 
different values, and the node-level throughput variations are 
observed for varying load from node-3 (𝑔ଷ). These represent the 
scenarios: 𝑔ଵ ≤ 𝑔ො, 𝑔ଶ ≤ 𝑔ො, 𝑔ଵ ≤ 𝑔ො, 𝑔ଶ > 𝑔ො 𝑜𝑟  𝑔ଵ > 𝑔ො, 𝑔ଶ ≤ 𝑔ො, 
and 𝑔ଵ > 𝑔ො, 𝑔ଶ > 𝑔ො. It can be observed that with DRLI-MAC, 
the RL agents in nodes learn to adjust the transmit probability 
such that the available wireless bandwidth is fairly distributed. 
Also notable is the fact that the RRA-MAC logic can hold the 
maximum fair throughput for higher network loads, even under 
heterogeneous loading conditions.  

 
Fig. 4: Performance of RRA-MAC in fully-connected topology 

The ability of the proposed mechanism to maximize and 
sustain network throughput in a fair manner for fully-connected 
topologies is shown in Fig. 4. Throughput attained using RRA-
MAC increases, reaches a maximum and then sustains with 
increase in network load. Fig. 5 shows the ability of the RL-based 
protocol to adjust to dynamic network conditions. The ability to 
adapt to time-varying network traffic is shown for a 12-node 
partially connected topology in Fig. 5 (a). It can be observed that 
learning adjustment to a change in network load is faster as 
compared to the initial convergence. It is because, once a Q-table 
is learnt, the updated table maintains some information regarding 
which actions are better at a particular state representing a certain 

 
Fig. 5: Adjustment to dynamic network conditions by RRA-MAC  



 

collision probability. Hence, the learning agent already has 
certain level of intelligence regarding the best sets of possible 
actions which helps it to converge quicker as compared to the 
case of fresh random initialization of Q-values. This effect can 
be further investigated on a dynamic node failure/node addition 
scenario as shown in Figs. 5 (b) and (c). While for the node 
failure scenario, convergence is faster than that of fresh start due 
to the reasons explained above, convergence does not speed up 
as much for the node additions. This is because, on addition of a 
node, it has to start its learning from the scratch with random 
initialization of Q-table, thus delaying the convergence.  

Effects of Channel Unreliability: To understand the robustness 
of the learning-based RRA-MAC to channel errors, performance 
was analyzed for different packet error probabilities. For a 3-

nodes fully connected topology, throughput ratio (
ௌೃೃಲషಾಲ಴

ௌಲಽೀಹಲ
) and 

convergence time were observed to be 1.83, 1.86, 1.82 and 6.5, 
6.8 and 7.1 (× 10ଷ epochs) for packet error probability values of 
0%, 5% and 10% respectively. With increase in packet error 
probability, a greater number of packets gets dropped. This 
makes each node to require more learning epochs to get an 
estimate of the correct neighborhood throughput to compute 
rewards and to update the Q-table values. Although the 
convergence slows with more channel errors in general, the 
slowdown is acceptable for the practical range of packet error 
probabilities (0 − 10%). Similarly, the post-convergence 
throughput ratio remains in the same ballpark value for different 
values of packet error probabilities up to 10%. This indicates that 
the impacts of channel errors on RRA-MAC are no worse than 
those on the ALOHA protocol logic.  

 
Fig. 6. Asynchronous frames in a 3-nodes fully-connected network 

   To summarize, Reinforcement Learning for medium access in 
wireless network can make nodes learn transmission policies in 
a cooperative manner in order to maximize throughput and 
fairness. This is achieved in a resource constrained system in the 
absence of complex hardware support such as time-slotting, 
carrier-sensing, time-synchronization, and collision detection, 
thus making it suitable for low-complexity IoT and sensor nodes.  

VI. MULTI-ARMED BANDIT LEARNING FOR TIME-
ASYNCHRONOUS TDMA MAC 

In the presence of time slotting, MAC packet collisions can 
be largely avoided by TDMA-based packet transmission 
scheduling. This section presents a learning mechanism towards 
that goal, specifically when network time-synchronization is not 
available. High resolution and accurate time-synchronization 
over wireless can be expensive, especially in low-cost sensor and 

IoT nodes with limited processing and communication resources. 
Moreover, performance of TDMA MAC protocols that rely on 
network time-synchronization can be very sensitive to time-
synchronization drifts. This section shows how MAC layer 
packet scheduling can be learned in the absence of time-
synchronization using Multi-arm Bandit (MAB) techniques. 

Since time is not synchronized, the scope of a node’s TDMA 
frame is strictly local. It decides the start time of its own frame, 
and the end time is decided based on a predefined frame duration, 
which is denoted by 𝑇௙௥௔௠௘ . The node does not know about the 
start times of the other nodes’ frames. Within a frame, a node can 
schedule a packet transmission only in certain discrete time 
instances away from its frame start time. The intervals between 
those time instances are referred to as mini-slots, the duration of 
which is an integer submultiple of the fixed size packet duration, 
and is equal at all nodes.  

This arrangement of mini-slot-based asynchronous TDMA is 
shown for a 3-node fully connected network in Fig. 6. Frames of 
nodes 2 and 3 lag from that of 1 by 𝛿ଶ and 𝛿ଷ durations. Here, the 
frame size equals 7 mini-slots and a mini-slot is half of packet 
duration. A node can select any of these 7 mini-slots within its 
frame as the starting point of its packet transmission. The figure 
depicts a situation where for packet transmissions, nodes 1, 2 and 
3 select mini-slots 1, 5 and 2 respectively in their own frames and 
periodically transmit in those mini-slots in subsequent frames. 
Packets from nodes 1 and 3 collide because of their time-
overlapped transmissions (indicated by red), whereas packets 
from 2 are successfully transmitted.  

The transmission scheduling problem in this context boils 
down for each node to be able to choose a start-transmission 
mini-slot within its own frame, and that is without colliding with 
other nodes. Such collision-free mini-slots should be selected 
locally at each node in a fully independent manner without the 
help of any centralized allocation coordinators and network time-
synchronization. This is achieved by the framework comprising 
of two distinct components: MAB-learning-based slot (mini-slot) 
scheduling and slot-defragmentation operation to minimize any 
bandwidth redundancy resulting from the time-asynchronous 
scheduling by MAB. The entire flow is captured in Fig. 7.  

This slot allocation problem can be modeled as a multi-Agent 
MAB. Each node in this scenario acts as an independent ‘𝑓-
armed bandit’, where 𝑓 is the frame size in number of mini-slots. 
In other words, the action of an agent is to select a start-
transmission mini-slot in the frame. The MAB environment is the 
wireless network itself through which the bandits interact via the 
selection of the arms (i.e., start-transmission mini-slots). The 
reward is designed such that the bandit receives a reward of +1 
if the packet transmission in the selected mini-slot is successful. 
Else, a penalty of −1 is assigned.  

Using this MAB model, all nodes individually learn collision-
free transmission schedules in an independent manner. Fig 7 
(Stage 1) shows the learning convergence in a 3-node fully-
connected network for a constant data rate 𝜆 = 1 packet per 
frame per node, and the number of arms 𝑓 = 4 .  Packet 
transmission dynamics by all nodes are plotted in the figure with 
node 1’s frame as the frame of reference. Frames of nodes 2 and 
3 lag that of node 1 by 0.4 𝜏 and 0.75 𝜏 respectively, where 𝜏 
represents the packet duration. Note that while there are 



 

collisions initially, after learning convergence, the nodes learn to 
select collision-free start-transmission mini-slots. Such learning 
takes place without network time-synchronization.  

Since this framework requires each node to perform its own 
iterative search for a collision free start-transmission mini-slot 
independently, short-term collisions and scheduling deadlocks 
can occur. This can be mitigated by making frame size f larger 
than the absolute needed minimum fmin in the presence of time-
synchronization. This leads to certain amount of bandwidth 

redundancy and is represented by a factor 𝐾, defined as K=
௙

௙೘೔೙
.  

 
Fig. 8: Convergence time variation with 𝐾 

This bandwidth redundancy factor plays a significant role in 
the MAB learning convergence speed. This can be observed from 
Fig. 8, which shows that for a 20-node mesh network, learning 
convergence speeds up with larger 𝐾. It is because with increase 
in 𝐾, the number of feasible solutions of the MAB problem 
increases and hence the probability of finding a collision-free 
transmission strategy increases. Also, the convergence speed is 
observed to be high with Hysteretic learning as compared with 
the classical MAB update rule [11, 16]. This is achieved by 

giving less importance to penalties than rewards in Hysteretic 
MAB as explained in Section IV.  

As observed in Fig 8, convergence of MAB learning speeds up 
with increased bandwidth redundancy factor 𝐾. However, 
increased 𝐾 leads to an increase in frame length which in turn 
increases bandwidth wastage. This redundancy can be mitigated 
by the following slot defragmentation mechanism after the MAB 
learning converges. 

Slot defragmentation is implemented by discretizing each 
mini-slot within a frame into ‘𝑠’ micro-slots. After MAB 
convergence, each node shifts its transmission by one micro-slot 
back in time till it experiences a collision. Upon experiencing a 
collision, the node undoes its previous shift action to find a new 
transmission micro-slot. In this way, the nodes estimate the 
unused space in the frame and try to reduce it in a coordinated 
manner. The logic for defragmented backshift executed by each 
node 𝑖 is given in Algorithm 1. 

This mechanism of  defragmentation for a 3-node fully-
connected network is shown in Fig. 4 (Stage 2). It shows how the 
frame structure (with respect to node 1) evolves over 5 iterations 
of the defragmentation process for bandwidth redundancy factor 
𝐾 = 1.33 and 7 micro-slots (𝑠 = 7). Node 1 does not shift its 
transmission since it is transmitting at the beginning of the frame. 
Nodes 2 and 3 backshift their transmissions by one micro-slot per 
iteration. In iteration 2, nodes 1 and 2 experience collision. Hence 
node 2 undoes its previous action by shifting by one-micro-slot 
forward in iteration 3. But node 1 does nothing in iteration 3 since 
it experienced a collision without any micro-slot shift in its 
previous frame. Similarly, nodes 2 and 3’s packets collide in 
iteration 4 because of backshift operation of node 3. Node 3 shifts 
forward its transmission by one micro-slot and knows that it has 
found its suitable transmission micro-slot. In this example, the 
new frame size as shown in the figure reduces by 21% because 
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of slot defragmentation. This bandwidth redundancy left after 
slot defragmentation is due to the time lag existing among the 
nodes resulting from the lack of network synchronization.  
1: Initialize: 𝜇௦௛௜௙௧೔

= 0, 𝑐௜ = 0     // 𝜇௦௛௜௙௧೔
: Number of micro-slot 

that node 𝑖 has shifted; 𝑐௜: Status of the micro-slot search (1, 𝑖𝑓 
𝑠𝑒𝑎𝑟𝑐ℎ 𝑖𝑠 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒, 𝑒𝑙𝑠𝑒, 0) 

2: If (! Tx in the beginning of frame), do: 
3:        Shift to previous micro-slot 
4:        𝜇௦௛௜௙௧೔

+ + 
5:        Check Collision 
6:        If (Collision ==TRUE):                                            
7:              Check action in the previous frame 𝑎(𝑡−1) 
8:              If (𝜇௜ (𝑡) > 𝜇௜(𝑡 − 1)): 
9:                        Shift to next micro-slot 
10:                        Check Collision 
11:                        If (Collision ==TRUE): 
12:                                 Shift to previous micro-slot 
13:                        End If 
14:               Else If (𝜇_𝑖 (𝑡)<𝜇_𝑖 (𝑡−1)): 
15:                         Shift to next micro-slot 
16:               End If 
17:               Set 𝑐௜ = 1 
18:               Piggyback 𝑐௜ , 𝜇௦௛௜௙௧೔  
19:               Check 𝑐௝ , ∀𝑗 ∈ 𝑜𝑛𝑒 − ℎ𝑜𝑝 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 
20:               If (𝑐௝ == 1 (∀𝑗∈𝑜𝑛𝑒−ℎ𝑜𝑝 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟)) 
21:                    Find new frame size: 
22:                    𝐹௦௛௥௨௡௞(𝑡) = max ቄ𝜇௦௛௜௙௧೔

(𝑡), 𝜇௦௛௜௙௧ೕ
(𝑡)ቅ 

23:                    If (𝐹௦௛௥௨௡௞  (𝑡) == 𝐹௦௛௥௨௡௞  (𝑡 − 1)): 
24:                           𝐹𝑟𝑎𝑚𝑒 𝑆𝑖𝑧𝑒 ←   𝐹𝑟𝑎𝑚𝑒 𝑆𝑖𝑧𝑒 − 𝐹௦௛௥௨௡  
25:                        𝜇 (𝑡) =  𝜇 (𝑡 − 1) − 𝐹௦௛௥௨௡  
26:                        Ignore all collisions 
27:                     End If 
28:        Else: 
29:                  Do Nothing 
30:                  Set 𝑐௜ = 1 
31:                  Piggyback 𝑐௜ , 𝜇௦௛௜௙௧೔  
32:                  Check the value of 𝑐௝, ∀𝑗∈𝑜𝑛𝑒−ℎ𝑜𝑝 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟  
33:                  If 𝑐௝ == 1 (∀𝑗∈𝑜𝑛𝑒−ℎ𝑜𝑝 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟) 
34:                        Find new frame size: 
35:                        𝐹௦௛௥௨௡ (𝑡) = max ቄ𝜇௦௛௜௙௧೔

(𝑡), 𝜇௦௛௜௙௧ೕ
(𝑡)ቅ,  

36:                           𝐹𝑟𝑎𝑚𝑒 𝑆𝑖𝑧𝑒 ←   𝐹𝑟𝑎𝑚𝑒 𝑆𝑖𝑧𝑒 − 𝐹௦௛௥௨௡௞ 
37:                        𝜇 (𝑡) =  𝜇 (𝑡 − 1) − 𝐹௦௛௥௨  
38:                   End If 
39:        End If 

Algorithm. 1. Defragmented Backshift 

Once a node finds a stable micro-slot, it piggybacks over data 
packets the information about the number of micro-slots it has 
shifted (𝜇_𝑠ℎ𝑖𝑓𝑡) to find its final stable position. Thus, a node 𝑖 
knows that its one-hop neighbors have found stable micro-slots. 
It then computes the new frame size by subtracting the maximum 
of the 𝜇_𝑠ℎ𝑖𝑓𝑡 values (i.e., received from its neighbors) from its 
current frame size.  

Upon performing slot defragmentation in a 9-node fully-
connected topology with the bandwidth redundancy factor K set 
at 1.67, the bandwidth redundancy goes down from 67% to 
3.3%. The bandwidth redundancy of 3.3% at the end of 
defragmentation is caused primarily by the temporal lags across 
the frame start times. Similarly, for a partially connected 
topology shown in Fig. 9, for 𝐾 = 2, bandwidth redundancy after 
defragmentation reduced from 100% to 7.11%.  

 
Fig. 9: Convergence time variation with 𝐾 for fully connected networks 

Fig. 9 depicts the additive time for stage-1 MAB convergence 
and stage-2 defragmentation convergence. Larger K values speed 
up MAB convergence while slowing down the defragmentation 
process. The latter is because with a larger frame length, the 
number of iterations that a node has to backshift its transmission 
micro-slot to find a suitable micro-slot increases. Thus, the 
search space to find the suitable transmit micro-slot increases 
with 𝐾. As can be seen in Fig. 10, the total convergence duration 
(MAB and slot defragmentation) initially goes down with 
increase in K, reaches a minimum, and then goes up again. This 
is because for small 𝐾, MAB convergence time is significantly 
higher than defragmentation convergence and hence the total 
convergence is largely affected by the MAB learning 
convergence. However, for larger 𝐾 values, defragmentation 
convergence time overpowers MAB convergence time, and thus, 
total convergence time increases with 𝐾. These results indicate 
that an optimum value of 𝐾 exists that gives the minimum total 
convergence time of the proposed learning framework. 

VII. SUMMARY AND CONCLUSIONS  

The concept of network protocol synthesis using RL and MAB 
is explored in this article. Here, Reinforcement Learning (RL) 
and Multi-Armed Bandits (MAB)-based approaches for wireless 
network protocol synthesis are summarized and a comprehensive 
distributed RL and MAB-based framework is presented that can 
synthesize MAC protocols for both random access and time-
slotted systems which can overcome the drawbacks of the 
existing approaches. One notable feature of the framework is that 
it does not rely on complex hardware features such as collision 
detection, time synchronization, and carrier sensing, thus making 
it suitable for ultra-resource constrained sensor and IoT nodes. 
The learning-based framework allows nodes to learn in an 
independent manner to maximize network throughput and to 
maintain fair bandwidth distribution, even in heterogeneous 
network topologies and loading conditions. It is also shown how 
the developed mechanism makes the IoT nodes learn 
transmission scheduling policies to avoid collisions in a time-
slotted system without network time-synchronization. Future 
work on this topic includes exploring other access performance 
parameters of the protocol, such as, end-to-end delay, energy 
efficiency etc. and generalizing the framework for protocol 
synthesis in networks with or without any resource-constraints.   
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