UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Optimized Network Coding With Real-Time Loss Prediction for Hybrid 5G Networks

Permalink
https://escholarship.org/uc/item/2p122139g

Authors

Srinivasan, Ramesh
Garcia-Luna-Aceves, J.J.

Publication Date
2022-10-01

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/2p12213q
https://escholarship.org
http://www.cdlib.org/

Optimized Network Coding with Real-Time Loss
Prediction for Hybrid 5G Networks

1[0000—0002—2680—7254]
1[0000—0001—9914—6031]

Ramesh Srinivasan
J. J. Garcia-Luna-Aceves

University of California, Santa Cruz, CA 95064, USA

Abstract. Two novel mechanisms are introduced to take advantage
of network coding in TCP (Transmission Control Protocol), namely:
TCP with Network-Coded Window Transformation (TCP-NWT) and
TCP-NWT augmented with dynamic loss prediction, called Predictive-
Network-Coding (TCP-PNC). TCP-NWT uses network coding to han-
dle packet losses without retransmissions. TCP-PNC predicts the ex-
pected loss-ratio on an ongoing basis during the course of a TCP-NWT
session, which in turn changes the number of network coded packets
that are transmitted. These mechanisms result in a more efficient use of
network-coded packet transmissions in TCP. Simulation results indicate
a throughput increase of more than 22% compared to TCP in scenarios
involving dynamic changes in loss ratios in the midst of a TCP session.

Keywords: TCP - Real-time - Network-Coding.

1 Introduction

Many of the current network-coding enhancements used in TCP use a prede-
termined loss-ratio for computing the amount of redundancy to be introduced
with additional network-coded packets, which is fixed for the duration of a TCP
session. This is a significant limitation, because of two key reasons. First, the
proliferation of different types of mobile end devices and ubiquitous wireless last-
mile access has resulted in dynamic transient fluctuations of packet-loss ratios
in the midst of an ongoing TCP session that need not reflect any real network
congestion. This renders the use of a predetermined loss-ratio throughout a TCP
session ineffective. Second, end user applications require continuous availability
of services, service providers need to attain the most efficient use of the avail-
able bandwidth over wired or wireless links, and more and more end users are
mobile. Some applications need real-time reliable data delivery with predictable
upper-bounds on data delivery. Hence, the static loss-ratio approach used in
prior enhancements of TCP based on network coding must be revisited to ac-
count for the fact that a given TCP session may have varying loss-ratios during
the course of its session. Section 2 provides a survey of related work that reveals
that prior TCP variants based on network coding have relied on a static loss-
ratio. The closest approach to our work is the Vegas Loss Predictor [10], which is
implemented at the Network Coding layer (between Layer 4 and Layer 3) [13] to



2 Ramesh Srinivasan J. J. Garcia-Luna-Aceves

know when the network experiences congestion; however, the RTT (round trip
time) values used do not factor in the additional time incurred due to potential
link-layer retransmissions in last-mile wireless-links, which we try to incorporate
in our work.

This paper introduces a new approach to detect the network health in a
network-coding enabled TCP session and then predicts the expected loss-ratio
and adapts to it by generating network-coded data to proactively compensate
for the expected data loss. The proposed approach is particularly attractive for
deployments of 5G networks and beyond, because it easily accommodates the
use of heterogeneous transmission media, mobile end-nodes and comes very close
to guaranteed data delivery in real-time with most optimal usage of network
resources.

Section 3 describes TCP with Network-Coded Window Transformation (TCP-
NWT) and Section 4 describes TCP-NWT with Predictive-Loss-Ratio, namely
Predictive Network Coding (TCP-PNC). TCP-NWT proactively addresses packet
losses without re-transmissions, while ensuring that all TCP session metrics are
suitably transformed and passed back to the original TCP stack. This is accom-
plished by transforming the original TCP sliding window into another sliding
window comprising of Network Coded data segments. TCP-PNC improves on
TCP-NWT by dynamically predicting the expected loss-ratio on an ongoing ba-
sis during the course of a TCP session. This ensures that the optimal amount of
network coded packets are transmitted.

Section 5 describes the results of simulations conducted with TCP-NWT and
with other deployed TCP versions including TCP-Cubic and Section 6 outlines
and compares the results observed. Section 7 concludes the paper.

2 Related Work

The use of network coding (NC) in TCP has been an area of active research. A
comparative study of the actual approaches can be found in [8]. We only outline
some of the most salient aspects and issues with these approaches.

TCP/NC [13] uses a new interpretation of acknowledgments (ACK), the
sink acknowledges every linear combination of packets that reveals one unit
of new information, even if it does not reveal an original packet immediately.
This scheme has the property that packet losses are essentially masked from the
congestion control algorithm. Therefore, this algorithm reacts to packet drops in
a smooth manner, resulting in an effective approach for congestion control over
networks involving lossy links. However, packet losses due to congestion are also
masked in this approach and therefore effective flow-control is inhibited.

A redundancy adaptation scheme for network coding in TCP Vegas [10] uses
loss predictor to decide whether the network is congested based on rate esti-
mators [2], [7], [14]. The Vegas Loss Predictor is implemented at the Network
Coding layer, between the network and transport layers, to know when the net-
work experiences congestion and to adjust accordingly as in [2]. However, the
RTT values used do not factor in the additional time incurred due to potential



TCP-NWT and TCP-PNC 3

link-layer retransmissions in last-mile wireless-links. The effectiveness of NC has
been analyzed by multiple authors [13], [5], [1]. The results indicate that NC
does not provide big performance gains if it used below the transport layer in
conjunction with a standard TCP implementation, as messages need to be de-
layed in a buffer to be able to encode them. The RTT is increased at each hop,
and TCP interprets the RTT increases as a sign of congestion and reduces the
transmission rate, which prevents the effective use of the transmission medium.

In summary, TCP has been augmented with a modular NC sub-layer to fa-
cilitate quick and easy adoption. However, that has resulted in many of the core
intrinsic TCP session parameters and metrics like RTT and packet throughput
not being accurately captured to reflect the exact status of the network along
with introduction of additional delays. In this work, we ensure these metrics
are accurately captured and relayed back to the transport layer and also opti-
mal amount of network coded segments are generated with minimal additional
introduction of delays.

3 TCP-NWT

TCP-NWT is a TCP congestion window transformation protocol which trans-
forms the original TCP sliding congestion window with data segments into a new
TCP congestion window comprising of network coded data segments. On the re-
ceiver side, on detecting the receipt of a TCP-NWT network coded segment,
TCP-NWT window transformation protocol transforms the TCP-NWT receiver
window into the corresponding original TCP receiver window comprising of the
original TCP data segments generated by decoding the received group of coded
TCP segments. Additionally, we propose a novel mechanism for processing of
the acknowledgment packets so that the path metrics like RTT measurements
by the TCP-NWT network coded segments are accurately relayed back to the
original TCP. The design of TCP-NWT assumes a fixed loss-ratio and its speci-
fication consists of: (a) The TCP packet header augmentation needed to support
network coding, (b) the available choice of coefficients values supported by our
design and (c) the enumeration of the permitted group sizes.

We have taken an example to illustrate how TCP-NWT transformation works
on group size of 1, which provides sufficient insight and clarity as to how it would
work on larger group sizes. Encoding, decoding as well as processing of acknowl-
edgments including relaying of the observed network health through RTT back
to original TCP window are elaborated in great detail. A key consideration in our
approach has been to keep the computation overhead of generating the network
coded segments for transmission at the sender side as well as the subsequent de-
coding at the receiver side to bare minimal, as we are targeting mobile end-nodes
which have significant computing, memory and in many cases power constraints.

We augment the TCP header with a new Boolean field indicating if its a
header of an TCP-NWT segment. The group-number corresponding to this
coded segment as well as the RLC coeflicients used to generate this, namely
CE1, CE2 and so on, also need to be included in the header. Figure 1 illustrates



4 Ramesh Srinivasan J. J. Garcia-Luna-Aceves

the new proposed TCP-NWT packet header. The first 20 bytes of the TCP
header are always used in TCP-NWT. The options field is of variable size and
it starts from the 6th row and can go up to 40 bytes. We use the TCP Option
Kind number 25 [6], [11]. The newly introduced TCP options field entries to
support NWT are: (a) kind equal to 25 (8 bits); (b) length in bytes (8 bits);
(c) network_coded_:1 (8 bits); (d) group-size equal to 1, 2, 4 or 8 (8 bits); (e)
group_id: Grp Seq Num (32 bits); and (f) CEi equal to 1, 2, 4, 8, 16 /or 32
with ¢ = 1 to 32 (6 unique values can be represented by 3 bits, however we have
allocated 4 bits for each CE).

The group sizes permitted are 1 or 2 or 4 or 8. The permitted coefficients are
one of six values namely 1, 2, 4, 8, 16 or 32, which ensures that multiplication
with these coefficients is simply a bit-shifting operation and thus incurs minimal
computation overhead. The group size indicates the number of segments, from
the original non-coded data segments, which are combined (added) together after
being multiplied by one of the random linear coefficients listed below, to generate
the required number of coded segments. In the example below in Figure 2, a fixed
loss-ratio is assumed and the entire set of segments 4 in the initial group from
Original TCP sliding window are coded using random coeflicients to generate
5 coded segments for the 15% loss-ratio scenario. These are placed in the new
TCP-NWT window.

Table 1. Definitions

Abbreviations Definitions
RLC Random Linear Coefficients
Orig-Grp-size Number of segments in a group in Original TCP Window
grp-sz Number of segments in current group in Original TCP Window
group-id ID corresponding to an entire group used to generate coded segments
Grp Seq Num the group-id from where coded segment got generated
RLC grp packets Random Linear Coded Pkts of a group
Coded-Grp-size Number of coded segments generated from the group in Original TCP Window
WLR Worst Case Loss Ratio
D; Datagram; in Original TCP window
CD; Codedpatagram; in TCP-NWT window
CE1, CE2..CE16 Random Linear Coefficient (RLC)1, RLC2... RLC16
SRTT Smoothed Round Trip Time
RTTVAR Round Trip Time Variation
SRTTg.; Smoothed Round Trip Time for CDg; in TCP-NWT
RTTVARg.; Round Trip Time Variation for CDg 1 in TCP-NWT
SRTTg Smoothed Round Trip Time for Group 8 in original TCP window
RTTVARg Round Trip Time Variation for Group 8 in original TCP window
RTO Round Trip Timeout
R Initial Round Trip Time Measurement
R’ Next Round Trip Time Measurement




TCP-NWT and TCP-PNC

0 15 16 31
16 - bit source port number 16 - bit destination port number
32 - bit sequence number
32 - bit acknowledgement number
4 - bit reserved UJA|P|RIS |F ' 20 bytes
header (6 bits) RIC(s|S|Y ]I 16 - bit window size
length G|K|H|T|N|N
16 - bit TCP checksum 16 - bit urgent pointer
Kind : 25 length : 16 network coded : 1 group size
1/2/4/8/16
group id : Grp Seq Num
CE1l CE2 CE3 CE4 CES CE®6 CE7 CES8
CE9 CE10 | CE1L CE 12 CE13| CE14 CE15 CE 16

other options (if any)

NN\

data (if any)

CE : Coefficient

Fig. 1. TCP-NWT Packet header

Original TCP
Sliding Window

SND.UNA|

Dy

D,

D,

D

TCP - NWT TCP - NWT
WINDOW WINDOW

SND.NXT

SND.WND=8

Network
Coding
Group ID

Sequence Number

R o
W

15% LOSS RATIO (LR)
5x0.15=[0751=1

CDR 2 CDR,:
CDR A 5 PACKETS CDRk
gg:: TRANSMITTED CDg’

One of the 5 gets dropped
and 4 packets reach destination

Linear Transformations of the 4 Datagrams
D,, D,, D3, D,

CDs1 = KDy + Ki2D, + K13D5 + KiaDy

CDs, = KDy + K»D;, + K3D3 + Koy Dy

CDg3 = K31D; + K3D, + K33D; + K33 D

CDg4 = KyD; + KgoD, + KysD5y + KDy

Fig. 2. Network Coding

= [D;

Dy

D,
D,

Linear Transformation to
Extract Original Datagrams



6 Ramesh Srinivasan J. J. Garcia-Luna-Aceves
TCP-NWT Protocol Description

Each generated RLC segment has the following additional fields:

1. Orig-Grp-size: (< 16) permitted values in our design: 1 or 2 or 4 or 8.

2. List of RLC coefficents: the number of these coefficients is exactly equal to
the Orig-Grp-size, listed above.

3. Unique Group ID: Group Sequence number for each group (similar to the
sequence number for individual packets) and is common for all members of
a group. The random linear codes used for generating each of the new coded
packets are always a unique tuple of dimension Orig-Grp-size (max possible
is 8)

4. Coded-Grp-size = Orig-Grp-size/(1 - WLR)

Group size 1 Figure 3 depicts the scenario where a group contains just a
single TCP segment.

Original TCP
Sliding Window

Sequence Number TCP - NWT
Network WINDOW
Coding
Group ID

SN*UNA I > D1 32 I I ¢ CDsH

%s — b CDg»
ND.N; CDgq
CDg,4

Orig-Grp-size = 1

Fig. 3. Group Size 1

Sending Side When there is a single segment in the sliding window and there
are no other data/segments queuing in from higher layers for this TCP session,
then group size (Orig-Grp-size) is set to 1. Depending on the loss-ratio, the num-
ber of coded segments generated could range from 2 to possibly 4. In the above
example, the network coding group-id is 8 and the number of coded segments
generated has been chosen to 4.



TCP-NWT and TCP-PNC 7

group size

Kind : 25 length : 16 network coded : 1 i

groupid: 8

Fig. 4. Group Size 1: Coded Datagram 8.1's TCP Header

The relevant portions of the modified TCP header for network coded segment
using a coeflicient of 2 is depictedin Figure 5.

c f o a
[1]1]ofofa]af1]1] ~ ToJofoJoJ1JoJ1]0]

Z Ll L
1[1JoJo]1 ofoJoJoJ1]oJ1]oJo]<—o0

Fig. 5. Group Size 2: CE1-2 Coded Datagram 8.1’s Computation by bit shifting

As can be seen a simple left shift of all the contents by 1 bit results in
generation of the coded data. Similarly simple left shifts of all the contents by
2/3/4 bits results in generation of the corresponding coded data for coefficients
of 4/8/16.

Receiving Side Group Size 1 The figure 6 depicts the receive mechanism
when there is a single segment.

TCP - NWT TCP
RX - WINDOW RX - WINDOW

internet CDg;
CDs; = [ D,

Fig. 6. Group Size 1 RX

Receipt of any one coded segment suffices to recompute the original segment,
by a simple bit shift operation to the right according the value of the CE1. If



8 Ramesh Srinivasan J. J. Garcia-Luna-Aceves

CE1=2, right shift by 1 bit, if CE1=4, right shift by 2 bits, if CE1=8, right shift
by 3 bits and if CE1=16, right shift by 4 bits to generate original Segment D1.

Acknowledgement for Group Size 1 The receipt of an ACK for any one
coded segment in a group of size of one confirms receipt of the data for that
group. One of the contributions of this work is ensuring that the health of the
network is captured accurately and relayed back as-is to the higher layer by the
combined TCP stack. To compute the current RTO, a TCP sender maintains two
state variables, SRTT and RTTVAR. We compute the RTO at the end of receipt
of acknowledgement for each of the four coded segments transmitted using the
exact method outlined in RFC-2988 [9]. When the first RTT measurement R is
made, the host updates SRRT, SRRT and RTO as follows:
SRTT « R; RTTVAR «+ R/2
RTO « SRTT + max (G, K*RTTVAR); where K =4

For each subsequent RTT measurement R’ in a given NC group, the sender
updates RTTVAR and SRTT for TCP-NWT window, as follows till measure-
ments for all coded segments are completed.

RTTVARg 1 (1-beta)*RTTVARg + beta® | SRTT - Rg.1’ |

SR,TTg,l — (1 - alpha) * SRTTS + alpha * R,g_l7

RTTVARg.2 < (1 - beta)*RTTVARg 1 +

beta * | SRTTg,l - Rg.g’ |

SRTTg o < (1 - alpha) * SRTTg 1 + alpha * Rgs’

RTTVARgg < (1 - beta) * RTTVARgQ + beta * | SRTT82 - R&g’ |

SRTTg_g «— (1 - alpha) * SRTT82 + alpha * Rg.g’

RTTVARg 4 + (1 - beta) * RTTVARg 3 + beta * | SRTTg 3 - Rg4’ |

SRTTg 4 < (1 - alpha) *SRTTg 3 + alpha * Rg.a’

RTTVARy < RTTVARg 4

SRTTy < SRTTg 4

The RTTVAR and SRRT corresponding to CDg 4 from TCP-NWT window
are then assigned to the updated RTTVAR and SRRT corresponding to com-
pletion of successful transmission of D1 and receipt of ACK. The computation
mechanism for other group sizes on both sending and receiving side are similar
to that for group size 1.

Algorithm — TCP-NWT We state the algorithm for encoding a group of
segments and the algorithm for decoding a group of segments below. Once the
receiver has received sufficient number of coded segments for a group, equal to
the size of the group, the decoding steps are initiated. We use the Gaussian-
elimination [4] procedure for solving a system of linear equations to decode and
arrive at the original data sent.



TCP-NWT and TCP-PNC 9

Algorithm 1 encode(group)

1: Determine the group (group_id) of the set of packets to be encoded.

2: Size of the group, grp_sz;

3: Initialize the group_seqnum for each individual packet within the group to
the group_id of this group.

4: Based on LR (Loss_Ratio), determine the number of encoded packets to be
generated: numEncoded

5: for i = 1; i < numEncoded; i ++ do

6:  Determine the unique set of NC Coefficients Tuples: CE[1], CE[2], ---,

CE[numEncoded]

/* (based on the group-id- and group_seq_num for each encoded packet to

be generated.) */

Clear RLC_PAC]iJ;

Compute the contents of the coded packet.

for j =1 ;j < grp_sz; j++ do

10: RLC_PAC]Ji] = RLC_PACJi] + CE[i][j] x PAC[j]

11:  end for

12:  Populate the packet hdr of RLC_PAC]i] with the the NC Coefficients used

to generate it;
13:  Upload RLC_PAC]Ji] the newly generated coded packet into new
TCP_NWT window.
14: end for

Algorithm 2 decode(group)

1: while TCP Session is still active do

2:  Wait for the receipt of a packet. if times out waiting, quit;
3:  Determine the group (group_id.) of the received segment.
4
5

Determine the group Size of the group, grp_sz;
Determine if there is already a sink created to gather all segments of this
group.

6: if not, create a new sink for this group and initialize grp_rcv_cnt, group
receive count to 1;

7:  Check if grp_sz for this group equals grp_rcv_cnt for this sink

8:  if yes pass the set of packets to the GaussianElimination function, which
will return the original segments of this group.

9: end while




10 Ramesh Srinivasan J. J. Garcia-Luna-Aceves

4 TCP-PNC

Based on the current dynamically estimated loss-ratio of the network at a given
point in time and using a new enhanced approach based off [15], the number
of network coded data packets (n) to be generated from an initial dataset (m)
of data packets is computed. We evaluate the dynamic loss ratio as indicated
below:

I(K) tm
< > —
K-M-2)| K=(M=1)|  =veemeveenns | (K-1) | K K+1 Ko | e
time
< >
I(K+1)

Fig. 7. Dynamic Loss-Ratio Prediction

Loss-Ratio for different range of the time periods "M” starting from 2 to
about 32 is computed in every measurement period tm . Let {57 (k) be the packet
loss ratio of the k-th measurement, which is calculated as the number of dropped
packets over the total number of packets arrived during the latest M periods
(see equation 1); where Ny(k) is the number of packets dropped in the k-th
measurement period, and N, (k) is the number of packets arrived in the k-th
measurement period.

(En)

(k) = 1 , =2,3,4,---,32 (1)
('S i -0)
i=0
In real scenario M can be any value > 0:
M =0, LR(k) = lo(k) (2)

lo(k) + 271 (k)

M =1, LR(k) = =5 5 (3)
_ ~lo(k) + 27 (k) 4 27215 (k)
M =2, LR(k) = 2T 152 (4)
20 % lo(k‘) + 2-1 x ll(k') + 272 x lg(k') + -
+277 x 1, (k)

LE(k) = 20 421422 4. 127



TCP-NWT and TCP-PNC 11

4.1 TCP-PNC Predictive Network Coding - Protocol Description

by Example

tm

3 2 3 2 3 7 3
Ly PP PPPrprrryrrtl
M [—~— ;Y_/W_/Hr_)w_)

4 4 4l 4 4 4

k—(m—2) |k—(m-1) k-1 k k+1 k+2

(k) ———>

<~ Iyk+1)—=

Fig. 8. An Example of Dynamic Loss-Ratio Prediction

We are taking an actual example in order to succinctly illustrate our proposed
mechanism for dynamically arriving at the predicted loss at the next upcoming
time interval. Value of M determines the number of time periods over which the
loss ratio is computed. We are proposing here of assigning a weight of 1 for loss
ratio lo(k), 271 for I1(k), 272 for I3(k) and so on, to ensure the data comprising
just the immediate past is given a higher importance compared to the data
corresponding to a slightly larger duration from the past. In the above example,
we have taken the actual data which indicates that in the k-th measurement, out
of 4 packets sent, 2 are successfully received and acknowledged. In the (k41)th
measurement, out of 4 packets sent, 3 are successfully received and acknowledged.

M=0; lo(k—1)= % — 075 LR(k—1)= % —075  (6)
M=0; lo(k) = % —05 (7)

M=1; L(k) = % - g — 0.625 ®)

LR(k) = =* lo(“jﬁg) Bk _ g 54 )

M=0; lo(k+1) = % —0.75 (10)



12 Ramesh Srinivasan J. J. Garcia-Luna-Aceves

342 5

=1; l)=—=-=0. 11

M i h(k+1) 11438 0.625 (11)
3+2+3 8

M =2, lg(k+1)—74+4+4—ﬁ—0.67 (12)

_ Lxlo(k+ 1)+ (1/2) 5 b (k + 1) + (1/4) * o(k + 1)

LE(k+1) 111/2+1/4

=0.70 (13)

Expected Dynamic Loss Ratio: Using LR(k — 1),LR(k), and LR(k + 1) we
try to predict the PLR Predicted loss Ratio at the next three time intervals
PLR(k+2), PLR(K+3), PLR(k+4) using following simple mechanisms. We do
a linear extrapolation of the Observed loss ratio values at (k) and (k+1) to
arrive at PLR(k+2). LR(K) is 0.54 and LR(K+1) is 0.70 and therefore initial
estimate for PLR(k+2) is 0.90. However since in our example we are sending 4
segments in a timeslot, the actual possible values for 1y(k + 2) are 0, 0.25, 0.5,
0.75 and 1. Since our initial estimate of 0.90 is between 0.75 and 1, we would
take the lower of the two namely 0.75 as the PLR(k+2). Similarly taking the
values of OLR(K+1) and PLR(k+2) and doing a similar linear extrapolation we
estimate PLR(K+3), which in our example turns out to be 0.75. Similarly taking
PLR(k+2) and PLR(K+3) we estimate PLR(k+4), which also turns out to be
0.75. Next we try to predict the Worst case loss-ratio by taking the minimum of
the observed loss ratio in the last two measurement periods and the predicted
loss ratio in the upcoming two measurement periods:

MIN(LR(k),LR(k + 1), PLR(k = 2)PLR(K = 3)PLR(k = 4)), namely
MIN(0.54, 0.70, 0.75, 0.75, 0.75), which is 0.54. This is closest to 0.5, which
would be the worst case loss-ratio in the above example. For a given session,
at every 2 secs interval the Observed Loss Ratio (OLR) is computed and saved
in a LossRatioTable for last hour (array size is 3600/2 = 1800). Using the past
saved values of the observed loss ratio — along with currently observed loss ratio
extrapolation of the gradient/trend and prediction of the PLR (Predicted Loss
Ratio) values for the next 3 time periods is done. Based on this trend, the
MIN (OLR(t0-4), OLR(t0-2), PLR(t0), PLR(t0+2), PLR(t0+4)) is chosen as the
WLR(t0) potential Worst-case Loss Ratio scenario to be addressed while deriving
the number of RLC (Random Linear Coded) TCP datagrams. Coded_Grp_size
= Orig_Grp-size/(WLR).

5 Testing and Simulation

We evaluated the performance of TCP-WSC using discrete-event simulation.
The NS-2 simulator [12] was used. NS-2 [12] provides substantial support for
simulation of TCP, Routing, and Multicast Protocols over wired and wireless
(local and satellite) networks. The TCP implementation was modified to support
the new proposed protocols.



14

13

12

11

Throughput in Mbps

0.9

0.8

0.7

0.9

Throughput in Mbps

0.8

0.7

0.6

0.9

Throughput in Mbps

0.8

0.7

0.6

TCP-NWT and TCP-PNC

Network Coded TCP Flow BEST-START with no loss
Network Coded TCP Flow Slow-Start with no loss

0 1 2 3 4 5

Time in second

Fig. 9. TCP-NWT with No-Loss

Network Coded TCP Flow BEST-START with 20% loss.
Network Coded TCP Flow Slow-Start with 20% loss

0 1 2 3 4 5
Time in second

Fig. 10. TCP-NWT with 20%Loss

Network Coded TCP Flow BEST-START with 40% loss
Network Coded TCP Flow Slow-Start with 40% loss

0 1 2 3 4 5

Time in second

Fig. 11. TCP-NWT with 40%Loss

13

Numerous scenarios and options were tried out to truly validate the gains
and benefits of the proposed approach here.



14 Ramesh Srinivasan J. J. Garcia-Luna-Aceves

13

Network Coded TCP Flow BEST-START with 50% loss
Network Coded TCP Flow Slow-Start with 50% loss

12 e

b s - N
11 \

0.9

Throughput in Mbps

0.8

0.7

0.6

0 1 2 3 4 5 6
Time in second

Fig. 12. TCP-NWT with 50%Loss

As very succinctly evident in the results of the simulation, the performance
has been maintained at the same level despite varying levels of errors, all the
way from 20% loss in figure 10, 40% loss in figure 11 and finally even with
50% loss as seen in the figure 12. Comparing these with the loss-less scenario
in figure 9, clearly shows we can guarantee performance and throughput despite
level of errors/losses with one big CAVEAT to remember, namely: these errors
are ONLY due to wireless link-layer errors and NOT due to a true congestion
per-se in the network. The above results were with TCP-NWT Only, without
the predictive dynamic Loss-ratio incorporated.

The Simulation Scenario with TCP-PNC, which comprises TCP-NWT and
additionally incorporates the Predictive loss Ratio.

This section describes simulations from 4 scenarios — 2 each with

a. standard TCP ns-2 [12] new Reno
(i) Using a wireless topology with an almost lossless wireless link
(ii) Using the same wireless topology with a substantial lossy wireless link
at both the wireless end-nodes
b. standard TCP ns-2 [12] new Reno implementation modified with our pro-
posed enhancements for networks with wireless end-nodes.
(i) Using the same wireless topology with an almost lossless wireless link
(ii) Using the same wireless topology with a substantial lossy wireless link
(10% and subsequently 20%)

6 Results

There was an improvement in overall throughput observed with the new imple-
mentation — especially as transmission errors (link-layer losses) increase. Com-
parative results with TCP Cubic as well as TCP newReno [3] show that our
Predictive Network Coding TCP-PNC provides a significantly higher through-
put of about 22% . The results clearly demonstrate that dynamic adjustment of



TCP-NWT and TCP-PNC 15

13 T T
Cubic 10%
L2 NewReno 10% —— |
11 NC 10% 4
=
e 091 1
3 osf g
£ [
2 o7} — R
E 06 / 1
05+ |
ar |
0.3 1 | 1 1 |
0 1 b} 3 4 5 6

Time in second

Fig. 13. Cubic vs New Reno vs TCP-PNC - 10% loss

1.4 T T

T T
NC TCP Flow with no loss
sl NC TCP Flow with 20%-loss

12

11

1k

Throughput in Mbps

0.9

0.8 - 4

0.7 1 1 1 1 1
0 1 2 3 4 5 6

Time in second

Fig. 14. TCP-PNC - Throughput Comparison with no loss vs 20% loss

T
Cubic 20%
ir NewReno 20% =
NC 20%

0.9 -
0.8 |- 1
0.7 - 4
0.6 - 1

0.5 - o — — B

Throughput in Mbps

04t g
03} \ 1
0.2 e —! S

Time in second

Fig. 15. Cubic vs New Reno vs TCP-PNC- 20% loss

amount of additional network coded segments being generated based on accu-
rate prediction of the loss-ratio results in a much more optimal effective usage
of the network resources as well as ensuring minimizing retransmission for lost
segments, thus significantly improving throughput.



16

7

Ramesh Srinivasan J. J. Garcia-Luna-Aceves

Conclusion and Future Work

The prediction of the loss ratio proposed in this paper constitutes a solution
based on rudimentary machine learning. This is a nascent area with the poten-
tial for much more innovations based on proactive response based on machine-
learning techniques, and there could be many more ways to predict the loss-ratio
more accurately. Saving past TCP sessions metrics and parameters is another
promising way to predict the current expected network behaviour for the same
destinations.

References

11.

12.
13.

14.

15.

. Alferaidi, K., Piechocki, R.: Tcp-mac cross layer integration for xor network coding.

In: Science and Information Conference. pp. 860-875. Springer (2018)

Brakmo, L.S., Peterson, L.L.: Tcp vegas: End to end congestion avoidance on a
global internet. IEEE Journal on selected Areas in communications 13(8), 1465—
1480 (1995)

Floyd, S., Henderson, T., Gurtov, A.: Rfc3782: The newreno modification to tcp’s
fast recovery algorithm (2004)

Gauss, C.F..: Gaussian elimination method solving matrix equations.
https://mathworld.wolfram.com/GaussianElimination.html (1850)

Huang, Y., Ghaderi, M., Towsley, D., Gong, W.: Tcp performance in coded wireless
mesh networks. In: 2008 5th Annual IEEE Communications Society Conference on
Sensor, Mesh and Ad Hoc Communications and Networks. pp. 179-187. IEEE
(2008)

. TANA: 5g network deployment scenarios. https://www.iana.org/assignments/tcp-

parameters/tcp-parameters.xhtml (2022)

Martignon, F., Fratta, L.: Loss differentiation schemes for tcp over wireless net-
works. In: International Workshop on Quality of Service in Multiservice IP Net-
works. pp. 586-599. Springer (2004)

Matsuda, T., Noguchi, T., Takine, T.: Survey of network coding and its applica-
tions. IEICE transactions on communications 94(3), 698-717 (2011)

Paxson, V., Allman, M.: Rfc 2988: Computing tcp’s retransmission timer (2000)

. Ruiz, H.M., Kieffer, M., Pesquet-Popescu, B.: Redundancy adaptation scheme for

network coding with tcp. In: 2012 International Symposium on Network Coding
(NetCod). pp. 49-54. IEEE (2012)

S. Bradner, V.P.: Rfc2780: Iana allocation guidelines for values in the internet
protocol and related headers (2000)

S. McCanne, S.F., Fall, K.: Network simulator. Public domain software (1995)
Sundararajan, J.K., Shah, D.; Médard, M., Mitzenmacher, M., Barros, J.: Network
coding meets tcp. In: IEEE INFOCOM 2009. pp. 280-288. IEEE (2009)

Tian, Y., Xu, K., Ansari, N.: Tcp in wireless environments: problems and solutions.
IEEE Communications Magazine 43(3), S27-S32 (2005)

Wang, C., Liu, J., Li, B., Sohraby, K., Hou, Y.T.: Lred: a robust and responsive
aqm algorithm using packet loss ratio measurement. IEEE Transactions on Parallel
and Distributed Systems 18(1), 29-43 (2006)





