
DEEPFAKE CLI: Accelerated Deepfake
Detection using FPGAs

Omkar Bhilare?1,2, Rahul Singh?1,2, Vedant Paranjape?1,2, Sravan
Chittupalli?1,2, Shraddha Suratkar1,2, and Faruk Kazi1,2

1 Department of Electrical Engineering, V.J.T.I, Mumbai, India.
2 {oabhilare b19,rsingh b18, vvparanjape b18 schittupalli b18@el.vjti.ac.in,

sssuratkar@ce.vjti.ac.in, fskazi@el.vjti.ac.in

Abstract. Because of the availability of larger datasets and recent
improvements in the generative model, more realistic Deepfake videos
are being produced each day. People consume around one billion hours
of video on social media platforms every day, and that’s why it is very
important to stop the spread of fake videos as they can be damaging,
dangerous, and malicious. There has been a significant improvement in
the field of deepfake classification, but deepfake detection and inference
have remained a difficult task. To solve this problem in this paper, we
propose a novel DEEPFAKE C-L-I (Classification – Localization –
Inference) in which we have explored the idea of accelerating Quantized
Deepfake Detection Models using FPGAs due to their ability of
maximum parallelism and energy efficiency compared to generalized
GPUs. In this paper, we have used light MesoNet with EFF-YNet
structure and accelerated it on VCK5000 FPGA, powered by
state-of-the-art VC1902 Versal Architecture which uses AI, DSP, and
Adaptable Engines for acceleration. We have benchmarked our
inference speed with other state-of-the-art inference nodes, got 316.8
FPS on VCK5000 while maintaining 93% Accuracy.

Keywords: Generative Models · Deepfake Detection · Deepfake
Classification · Machine Learning · Quantized · FPGAs · MesoNet ·
EFF-YNet · VCK5000 · VC1902 · Versal Architecture · AI · DSP ·
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1 Introduction

Deepfake is artificially created media in which a frame is created synthetically
using someone else’s features like face, structure, lip movements ,etc. They are
usually created by leveraging a Generative Adversarial Network to create a
picture or video which looks realistic enough to deceive any person. While
Deepfakes were initially created to prank individuals, they started getting
attention due to their use in illegal activities like celebrity pornographic videos,
fake news, and bullying. Hence, detecting deepfakes has become a very
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important issue in recent years.
Upon going through relevant literature and existing methods of deepfake
classification, we observed that it is essentially an image classification problem,
but the catch here is that pathological differences between the real and fake
images are quite small, as a result existing CNN models need to be modified
and tuned to detect these minute differences.
MesoNet is a CNN architecture which is used to detect Face2Face and
Deepfakes manipulations accurately [1]. It is designed in such a way that it
uses cropped faces from videos and analyses mid-level features. The model
focuses on the right amount of details by using an architecture with small
number of layers. XceptionNet is a complex model originally designed for
working with 2D Images which uses depthwise separable convolutional layers
with residual connections [2], as a result it gives higher performance than
MesoNet [1]. However, this model takes a lot of time to train. EfficientNets
which are relatively a newer family of CNN models aimed at providing efficient
resource management by balancing model parameters like width, depth, and
resolution, outperform models which have a similar number of parameters [3].
Researchers have taken a step further and proposed classifying each pixel of
the image as real or fake. The U-Net architecture addresses this issue by
employing an encoder-decoder based network with skip connections [4]. To
improve classification accuracy, Eff-Ynet describes a novel architecture which
combines EfficientNet encoder with a classification and segmentation
branch [5]. It is designed to classify an image and also find regions where the
image is real and where it is fake. The job of segmentation helps train the
classifier, and at the same time it also produces useful segmentation masks.
The inference of neural networks is usually slow on general-purpose GPUs [6].
One way to accelerate the inference of these networks is to use soft cores
emulating on the FPGAs, which allows the user to utilize the task and data
level parallelism to reach the performance of ASIC implementations while
taking reduced design time [7]. It is also possible to make RNN or CNN specific
hardware architectures. In this paper, they have accelerated Deep Recurrent
Neural Network (DRNN) on a hardware accelerator running on XILINX
ZYNQ FPGA [8]. These ZYNQ boards are heterogeneous in nature, which
means it has a hardcore CPU besides FPGA. In one of the paper, researchers
have mapped BNNs (Binarized neural networks) onto an FPGA device while
FP32 networks are mapped to the CPU, this hybrid mapping increases overall
neural network efficiency while maintaining inference speed [9]. Researchers
have found these ZYNQ boards perform better than CPUs and GPUs [10].
One of the paper, transforms the model into FP81 format for speed up [11].
Upon evaluating this, we decided to go with INT82 in our implementation,
thus quantized our model to INT8 precision. This means that our model, which
was originally trained on FP323 precision, was converted to INT81 precision.

1 FP8 means 8-bit floating point representation
2 INT8 means 8-bit integer representation
3 FP32 means 32-bit floating point representation
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By reducing the precision, the number of bits required to store the model
parameters are reduced, which means it requires less amount of memory to
store and reduces the number of clock cycles to transfer data between memory
and the accelerator over the PCIe bus.
We propose U-YNet, a combined segmentation, and classification model which
consists of UNet Encoder and Decoder responsible for producing a
segmentation map to show the altered regions in the deepfake content and a
classification branch present at the end of the UNet Encoder branch
responsible for classifying if the media content is real or deepfake origin. The
segmentation map is a novel way to identify the regions of a face that have
been mangled to create the deepfake, giving an insight into the construction of
a deepfake and paving the way for creating models to reverse a deepfake as
well. This model runs on a Deep Learning Processing Unit(DPU)6 present in
the AMD-XILINX VCK 5000 Versal FPGA device. It consists of dedicated
processing units like hardware accelerated convolution engine which enables
convolution based model like UNet (and U-YNet) to run with higher inference
speeds, enabling real-time classification of deepfake content.

2 Motivation and Background

Improvement in generative models and abundance of datasets has led to
evolution of models that can generate realistic looking deepfake videos,
deceiving the human eye and machines as well (Fig. 1). There is a huge
potential to spread deepfaked videos by malicious actors for their gains, as
more than 100 million hours of video content is watched every day on social
media.

Fig. 1: Completely believable deepfakes can be generated with ease nowadays.

Looking at this with the perspective of computation, faster computation
speeds and easily available compute resources means that deepfake videos can
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be generated with ease. This makes fast and effective detection of these videos
very crucial to stop the malicious use of deepfake videos.
On March 16, 2022, a video claiming to show Ukraine President Volodymyr
Zelensky calling for the Ukrainian people to surrender to Russia was aired on
news channel Ukraine 24, and circulated on social media. Such events clearly
show how potent of a tool, deepfakes are for creating social chaos. Thus, there
is a need for faster detection of such deepfake videos so that they can be taken
down even before reaching the social media users. This paper aims to leverage
the massively parallel nature of FPGAs to efficiently run Deep Neural networks
that power the deepfake detection algorithms.

3 Implementation

Deepfake C-L-I (Classification – Localization – Inference) is a novel system
that we are proposing in this paper, which consists of an optimum combination
of software and hardware tools to accelerate deepfake detection on FPGAs.
The block diagram of Deepfake CLI is shown in Fig. 2. The software part of

Fig. 2: Flowchart of Deepfake CLI

the acceleration system consists of a deep learning model comprised of a UNet
Segmentation and a Classification Model. As for the hardware part, these
models are first quantized to INT8 for DPU Architecture supported by
VCK5000 to achieve maximum performance, then later on it is run on the
FPGA.
The implementation of Deepfake C-L-I is divided into two parts as software
and hardware as follows:
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3.1 Software Implementation

We implemented a multitask model called U-YNet, that can produce
classification (real or fake) and segmentation results on deepfake content. The
backbone which is the UNet Encoder takes a frame as the input and then the
encoded features are passed to the classification branch and the UNet decoder
simultaneously. The reason for doing this is that the combination of loss of
classification and segmentation tasks may help the classification branch to
learn from the segmentation branch features during training.

3.1.1 Dataset
Currently, there are many deepfake detection datasets available, which include
both real and manipulated videos and images. To name a few, we have
FaceForensics++ [12], UADFV, Google DFD, CelebDF [13] and the DFDC
dataset [14]. The source of videos for all datasets is different, and the fake
videos are generated from the real frames using various deepfake generation
models. DFDC is currently the largest available deepfakes dataset (Fig. 3) with

Fig. 3: Comparison of current deepfakes datasets [15]

the most number of videos and faces. So we trained the model using DFDC.
The dataset does not ship with the segmentation masks that we need for
training the segmentation branch of the U-YNet model. To create the mask, we
find the absolute difference between the real frame and the fake frame, which
encodes one for a manipulated pixel and a zero for the real one.
Data Leakage challenge: Initially, while training we were getting 99%
accuracy on the DFDC dataset, which meant that the model was overfitting.
After insinuating on this problem, we found that DFDC has 1:124 videos per
subject. So, while randomly splitting the dataset into testing, training, and
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validation datasets, the training dataset had examples of all the faces in the
dataset. So the model was basically learning the faces and not classifying the
deepfake features, giving high accuracy on the test dataset. This problem is
called data leakage.
Solution: We solved this by clustering similar faces together and then
segregating the dataset such that a face in the training dataset does not repeat
in the testing dataset. This prevented overfitting, and the model focused on
learning features rather than faces.

3.1.2 Loss Function and Training
For the segmentation task we used Cross Entropy Loss and for the
classification task we used Binary Cross Entropy Loss (BCE).
Cross-entropy is used to measure the difference between two probability
distributions, and it is used for both classification and segmentation tasks. We
use the average of both losses as the final loss.
The model was trained using the final loss. Finally, Adam Optimiser was used
for converging the model. The model was trained for 40 epochs on the created
DFDC dataset on NVIDIA DGX-1.

3.2 Hardware Implementation

The hardware setup of Deepfake CLI consists of Dell R740 Server which is a
two socket machine with two Intel Xeon processor installed and paired with 32
GB DDR4 RAM running Ubuntu Server 20.04 LTS, kernel version 5.4.0. The
server was installed with VCK50004, an FPGA development card built on
XILINX 7 nm Versal ACAP5 Architecture which is ideal for acceleration of AI
models for cloud and edge application.

In the previous chapter, we have described the changes that had to be done
in the dataset to overcome the challenges. For efficient usage of FPGA resources,
it is crucial to train a hardware centric model with ideal weights for the model.
Since earlier the model was in FP32, and it is not optimal to run this on the
FPGA [11], we used the Vitis-AI toolchain to convert the FP32 model to INT8.
The entire vitis flow is show in Fig. 4a which consists of three steps which are
Quantization, Compilation, and Inference explained as follows:

3.2.1 Quantization
Neural nets after being trained on some dataset store all the weights and biases
in the FP32 format in the model. If this model is directly used for inference,
it will be compute and memory intensive and might not be able to serve the
real-time processing demands. Since detecting deepfake videos in real-time is

4 Read more: https://www.xilinx.com/products/boards-and-kits/vck5000.html
5 ACAP stands for Adaptive Compute Acceleration Platform. Read more:

https://www.xilinx.com/products/silicon-devices/acap/versal.html
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(a) Vitis Flow (b) Step 1: Quantization

Fig. 4: Vitis Flow & Step 1: Quantization

a crucial goal of this project, to get better inference speed we have quantized
our model to be more hardware-centric using Vitis AI Quantizer. This used the
Post Training Quantization method to quantize Deepfake CLI model suitable for
our real-time needs. Post Training model is less demanding in terms of runtime,
being done by running few inference cycles on a dataset known as the calibration
dataset. This calibration dataset can be from a training or testing set, and it has
to be around 100-1000 images. As shown in Fig. 4b, we were able to quantize
the Deepfake CLI model from FP32 format to INT8 with Quantize parameters
and Quantize activations modules.

3.2.2 Compilation
Once the model quantization step has been completed which generates a .xmodel
file, we are ready for the final steps to deploy our model onto VCK5000. We will
need to compile our model weights file by using the compiler provided by Vitis-
AI. Vitis-AI provides a compiler tool that acts as an interface for optimization
of deep neural networks for specific DPUs6. With a range of compiler option
present due to different DPUs6 available by Xilinx, it will transform the neural
network to the targeted platform DPU instruction set for efficient optimization.

Every DPU variant designed by Xilinx to be run on their FPGA board has
its own set of optimized instruction to ensure efficient execution of the neural
network on hardware. To adhere to this demand, we need to compile our
quantized model for the DPU variant it will run on. An overview of Vitis AI
compiler framework is described in Fig. 5a. After it has completed topology
parsing of the neural network obtained by quantization, the Vitis AI compiler
will construct a computational graph as Intermediate Representation. The
compiler will also be responsible for further optimization such as fusion of
computational nodes which provides higher performance and reduces memory

6 DPU stands for Deep Learning Processor Unit. Read more:
https://www.xilinx.com/products/intellectual-property/dpu.html
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(a) Step 2: Compilation (b) Step 3: Inference

Fig. 5: Hardware Implementation flow

footprint, using the existing parallelism to make sure the instructions are
scheduled efficiently.

3.2.3 Inference
Now that compilation of our model weights has been completed, we are ready
to use it for Inference. We use the Vitis AI Runtime Library(VART) available
in Python and C++. We pre-process the input image by resizing the image to
224×224, and then scale the values from 0-255 to 0-1. The images also have a
scaling operation applied to them to convert them to INT8 format as required by
the model. We then append the images to a list and pass it to the DPU running
on the VCK5000 loaded with our quantized model.
VCK5000 takes the images in batches of eight and gives us two outputs, the
segmented mask, and a classification label that tells us if the image or video is
a deepfake content or not. The segmented output is stored in a .npy format for
post-processing, so we could visualize the output in a Jupyter notebook.
The classification output is given at the end of the inference code, which tells us
how well the model performed on unseen data. A JSON file contains the label
for unseen data, we compare it with the model output and print the accuracy of
how well it performs. The inference process was explained in the Fig. 5b.

4 Results

4.1 Software Results

The Deepfake CLI model was evaluated on a testing dataset which had around
2,00,000 frames. These frames have faces that were never seen by the model
before. Our main task was classification, hence segmentation results are not
presented here. As we can see from the Table 1, we were able to increase the
accuracy of the model by almost 6% using a multitask learning model.
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Model Accuracy

U-YNet model 94.12%

U-YNet model without segmentation branch 88.27%

Table 1: Module Accuracy Comparison

Fig. 6: (Left to Right) Input Image, Ground Truth, Predicted Mask

4.2 Hardware Results

The Deepfake CLI model was first quantized, compiled and then inferenced on
the VCK5000 FPGA card. We have tested the model on the FPGA with various
deepfake videos and images. In the Fig. 6, the predicted mask by Deepfake CLI
model matches with the Ground Truth Mask for the given input image. Now for
the hardware results, as shown in Fig. 7 the segmentation output of VCK5000
also matches with the Ground Truth Mask. Deepfake CLI’s main aim was to

Fig. 7: (Left to Right) Input Image, Ground Truth, FPGA Output

increase the inference speed of the deepfake detection. Here are the results of the
classification branch, shown in the Table 2. We have obtained 316.80 FPS for the
classification model of deepfake detection on VCK5000. Because of quantization
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Parameter Value

Total Images 5001

Correct Predictions 4851

Wrong Predictions 350

Accuracy 93.001 %

FPS 316.80

Table 2: Classification Results

of the model to INT8, there was around 1% loss in accuracy, but we got better
inference speeds than other inference nodes.

4.3 Benchmarking Deepfake CLI with other nodes

We had created a dedicated hardware centric model and inferenced it on
VCK5000. We had compared the results of the segmentation model on different
state-of-the-art inference nodes available in the market.

Fig. 8: FPS vs Inference Nodes 78

7 All nodes were running INT8 Deepfake CLI Unet model, TensorRT SDK was used
to quantize INT8 model for Tesla T4 and V100 while for VCK5000 we have used
Vitis AI Flow.

8 In this benchmarking test, we have compared the inference speed of simpler Deepfake
CLI model which only consists of Unet model (segmentation branch). This was done
due to the TensorRT quantization limitation for Tesla T4 and V100 nodes. We have
also obtained the complete Y-UNet Inference speed for VCK5000, which was 316.80
FPS (Table 2). When both branches are included in Deepfake CLI, the layers in the
network gets approximately doubled and thus reduces inference speed by half.
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As shown in Fig. 8, we have obtained 775 FPS for the segmentation model of
deepfake detection on VCK5000. For the same model, we had got a much lower
FPS on other inference nodes, like Nvidia’s Tesla T4 and V100. This result
shows that with proper model preprocessing, quantization, and compilation for
FPGA architecture will give better inference speeds than its counterpart
GPUs.

5 Conclusion

Because of the rapid increase in computation speeds, deepfake detection will be
one of the concerns in the upcoming era. In this paper, we implemented a novel
architecture that combined segmentation and classification models, which were
trained on DGX A100 and inferred on VCK5000. We used a modified DFDC
dataset to reduce data leakage and solve the over fitting problem. The Deepfake
CLI software model was designed from a hardware-centric point of view, and
it was quantized and compiled for the VCK5000 AI inference versal card. We
were able to classify the deepfake images as well as videos on the Accelerated
FPGA fabric. We have obtained a 120% gain on the inference speed
on the VCK5000 FPGA fabric compared to state-of-the-art Tesla T4
inference node.

6 Future Work

The ever-increasing research in deepfake generation demands better and faster
techniques to decode and detect these deepfake images and videos in real-time.
The future goals of Deepfake C-L-I are as follows:

– Modeling and Training more generalized model for deepfake detection.
– Restoring the deepfaked region of the frame.
– Adding AWS FPGA support for easy access.
– Adding accelerators for pre and post-processing of images and videos for ML

model.
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