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Abstract. This paper adapts a graph-based analysis and visualisation
tool, search trajectory networks (STNs) to multi-objective combinato-
rial optimisation. We formally define multi-objective STNs and apply
them to study the dynamics of two state-of-the-art multi-objective evo-
lutionary algorithms: MOEA/D and NSGA2. In terms of benchmark,
we consider two- and three-objective ρmnk-landscapes for constructing
multi-objective multi-modal landscapes with objective correlation. We
find that STN metrics and visualisation offer valuable insights into both
problem structure and algorithm performance. Most previous visual tools
in multi-objective optimisation consider the objective space only. Instead,
our newly proposed tool asses algorithm behaviour in the decision and
objective spaces simultaneously.

Keywords: algorithm analysis, search trajectory networks, STNs, com-
binatorial optimisation, visualisation, multi-objective optimisation

1 Introduction

Understanding the behaviour of search and optimisation algorithms remains a
challenge to which visualisation techniques can contribute. The performance
of multi-objective optimisation algorithms is usually visualised in the objective
space, where the Pareto front (or an approximation of it) for two or three ob-
jectives is shown in a standard scatter plot; an idea that has been extended for
more than three objectives using dimensionality reduction [21]. Incorporating
the design space into the visualisation, however, can help to improve our under-
standing. Only a small number of approaches point in this direction, and most of
them are tailored to continuous optimisation, such as cost landscapes [7], gradi-
ent field heatmaps [11], and the plot of landscapes with optimal trade-offs [20]. In
the combinatorial domain, local optima networks [16, 19] have been adapted to
multi-objective optimisation [6,14]. These insightful visual approaches, however,
concentrate on the fitness landscape structure, rather than on the algorithms
dynamic behaviour.
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The goal of this article is to adapt search trajectory networks (STNs) to
multi-objective combinatorial optimisation. STNs were originally proposed for
single-objective optimisation [17,18] as a graph-based tool to visualise and anal-
yse the dynamics of any type of metaheuristic: evolutionary, swarm-based or
single-point, on both continuous and discrete search spaces. STNs were later
extended to multi-objective optimisation [12], but so far have been applied to
continuous benchmark problems only. The extension of STNs from single- to
multi-objective optimisation relies on the notion of decomposition [23], where
the multi-objective problem is transformed into multiple single-objective scalar
sub-problems. The idea is then to aggregate the STN of each these sub-problems
to construct the multi-objective STN. One limitation of the approach proposed
in [12] is that it considers a small number of decomposition vectors (5 to be
precise), which restricts the granularity and expressing power of the modelling
tool. In this paper, our contributions can be summarised as follows:

(1) We apply multi-objective STNs to combinatorial benchmarks, where both
the landscape ruggedness and the correlation among objectives can be tuned.

(2) We offer a more formal definition of multi-objective STNs.
(3) We improve the granularity and accuracy of the modelling tool by increasing

the number of decomposition vectors.
(4) We propose a 2D graph layout that conveys the design and objective spaces

simultaneously in a single plot — this applies to two-objective problems only.

The paper is organised as follows. Section 2 introduces the necessary background
on multi-objective optimisation. Section 3 formally defines the multi-objective
STNs, together with the related metrics and visualisation techniques. Section 4
gives the experimental setup. Section 5 presents the experimental results of our
analysis for both small and large multi-objective landscapes. At last, Section 6
concludes the paper and discusses further research.

2 Multi-objective Combinatorial Optimisation

This section provides definitions for multi-objective combinatorial optimisation,
and presents two well-established multi-objective evolutionary algorithms.

2.1 Definitions

We assume an m-dimensional objective function vector f : X 7→ Z is to be
maximised, such that every solution from the (discrete) solution space x ∈ X
maps to a vector in the objective space z ∈ Z, with z = f(x) and Z ⊆ IRm.
Given two objective vectors z, z′ ∈ Z, we say that z is dominated by z′ if zi 6 z′i
for all i ∈ {1, . . . ,m}, and there is a j ∈ {1, . . . ,m} such that zj < z′j . Similarly,
a solution x ∈ X is dominated by x′ ∈ X if f(x) is dominated by f(x′). An
objective vector z? ∈ Z is non-dominated if there is no z ∈ Z such that z? is
dominated by z. A solution x? ∈ X is Pareto optimal if f(x) is non-dominated.
The set of Pareto optimal solutions is the Pareto set (PS), and its mapping
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in the objective space is the Pareto front (PF). Evolutionary multi-objective
optimisation (EMO) algorithms aim at identifying a PS approximation that is
to be presented to the decision maker for further consideration [2, 4].

2.2 Multi-objective Evolutionary Algorithms

We consider two state-of-the-art EMO algorithms that are described below.

MOEA/D is a decomposition-based EMO algorithm that seek a high-quality
solution in multiple regions of the objective space by decomposing the orig-
inal (multi-objective) problem into a number of scalar (single-objective) sub-
problems [23]. Let µ be the population size. A set (λ1, . . . , λi, . . . , λµ) of uniformly-
distributed weighting coefficient vectors defines the scalar sub-problems, and a
population P = (x1, . . . , xi, . . . , xµ) is maintained such that each solution xi

maps to the sub-problem defined by λi. Different scalarising functions can be
used, and the weighted Chebyshev scalarising function [15] defined in the next
section is a well-established example. A neighbourhood B(i) is additionally de-
fined for each sub-problem i ∈ {1, . . . , µ}, by considering its T closest weighting
coefficient vectors. At each iteration, the population evolves with respect to a
given sub-problem. Two solutions are selected at random from B(i) and an off-
spring is produced by means of variation operators. Then, for each neighbouring
sub-problem j ∈ B(i), the offspring is used to replace the current solution xj

if there is an improvement in terms of the scalarising function. The algorithm
iterates over sub-problems until a stopping condition is satisfied.

NSGA2 is an elitist dominance-based EMO algorithm using Pareto dominance
for selection [5]. At a given iteration t, the current population Pt is merged
with its offspring Qt, and is divided into non-dominated fronts {F1, F2, . . . }
based on the non-dominated sorting procedure [9]. The front in which a given
solution belongs to gives its rank within the population. Crowding distance is
also calculated within each front. Selection is based on dominance ranking, and
crowding distance is used as a tie breaker. Survival selection consists in filling
the new population Pt+1 with solutions having the best (smallest) ranks. In case
a front Fi overfills the population size, the required number of solutions from Fi
are chosen based on their crowding distance. Parent selection for reproduction
consists of binary tournaments between randomly-chosen solutions, following the
lexicographic order induced by ranks first, and crowding distance next.

3 Search Trajectory Networks

In order to define a graph-based model, we need to specify its nodes and edges.
We start by giving these definitions for single-objective optimisation before de-
scribing how to construct the models for multiple objectives.
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3.1 Definitions

Nodes are unique candidate solutions to the optimisation problem at each
iteration, representing the status of the search process. In population-based al-
gorithms, the best solution from the population (measured by the objective
function) is typically chosen at each iteration as the representative solution. The
set of nodes is denoted by N .

A Search trajectory is given by a sequence of representative solutions (nodes)
in the order in which they are encountered during the search process.

Edges are directed and connect two consecutive nodes in the search trajectory.
Edges are weighted with the number of times a transition between two given
nodes occurred during the process of sampling and constructing the STN. The
set of edges is denoted by E.

Single-objective STN model. An STN is a directed graph STN = G(N,E)
with nodes N and edges E as defined above. For constructing a single-objective
STN, multiple runs of the algorithm under study are performed, and explored
solutions and their transitions are aggregated into a single graph model. Notice
that some solutions and transitions may appear multiple times during the sam-
pling process. However, the graph retains as nodes each unique solution, and as
edges each unique transitions among encountered solutions. Counters are main-
tained as attributes of the graph, indicating the frequency of occurrence of each
(unique) node and edge.

ubsubsectionDecomposition-based STN sub-model.In multi-objective optimi-
sation based on decomposition, the problem is decomposed into p scalar (single-
objective) sub-problems that target different regions of the Pareto front [23].
A set of uniformly-generated weight vectors Λ = (λ1, λ2, . . . , λp) represents the
scalar sub-problems defined by decomposition. For a given sub-problem λj ∈ Λ,
the well-established Chebyshev scalarising function [15], to be minimised, is de-
fined as follows:

g(x | λj) := max
i∈{1,...,m}

λji ·
∣∣z?i − fi(x)

∣∣ (1)

such that x ∈ X is a solution, λj ∈ IRm is a weighting coefficient vector and
z? ∈ IRm is a reference point. The reference point is set to the best-known value
for each objective.

In order to define the multi-objective STN, nodes are as described above,
and edges separately follow the trajectories of each weight vector λj ∈ Λ,
j ∈ {1, . . . , p}. In other words, for a given sub-problem, the STN follows the
trajectory of the solution with the best (lowest) Chebyshev scalar value for the
corresponding weight vector. The trajectories for all weight vectors are then ag-
gregated to construct a single graph model. Edges in the multi-objective STN
are labelled by the vector whose transition they represent. The number of weight
vectors p is a parameter of the modelling process. Section 5 reports the setting
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Table 1: Description of STN metrics.

metric description

nodes number of unique solutions visited
pareto number of solutions in the Pareto set
mean pareto in average incoming degree to Pareto nodes
pareto num path number of paths to Pareto nodes
pareto mean path average shortest path to Pareto nodes

considered in our experiments. We offer below a more formal definition of the
multi-objective STN model.

Multi-objective STN model (STNMO). Assuming we have p = |Λ| single-
objective sub-problems (weight vectors), the multi-objective STN model is ob-
tained by the graph union of the p single-objective STNs. More formally, let
STNv1 = G(Nv1, Ev1),STNv2 = G(Nv2, Ev2), . . . ,STNvp = G(Nvp, Evp) be the
single-objective STNs for the sub-problems represented by vectors (λ1, λ2, . . . , λp),
respectively. We construct STNMO as the graph union of the STNvj graphs, j ∈
{1, . . . , p}. Specifically, STNMO = G(Nv1∪Nv2∪ . . .∪Nvp, Ev1∪Ev2∪ . . .∪Evp).
The union graph contains the nodes and edges that are traversed for at least one
of the weight vectors. Node and edge attributes indicate which weight vector(s)
visited them.

3.2 Network Metrics

We introduce five network metrics to describe the behaviour of the algorithms.
These metrics, summarised in Table 1, were selected as they have been found
to relate to search performance in single-objective problems [18]. The number of
nodes expresses the algorithm exploratory power, the number of Pareto optimal
solutions indicates effectiveness, the mean incoming degree to Pareto nodes is
reflective of how many trajectories were successful, the number of paths as well
as the average shortest path to Pareto nodes are indicative of the algorithm
efficiency in reaching Pareto optimal solutions.

3.3 Network Visualisation

Visualising networks is a powerful and often beautiful way of appreciating their
structure, which can offer insights and even reflect features not easily captured
by network metrics. Node-edge diagrams are the most familiar form of network
visualisation, they assign nodes to points in the two-dimensional Euclidean space
and connect adjacent nodes by straight lines or curves. Nodes and edges can be
decorated with visual properties such as size, colour and shape to highlight
important features.
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Our proposed multi-objective STN visualisations (see Fig. 2 for an example
we will analyse later), use node colours and shapes to identify four relevant
types of nodes: (1) start of trajectories, (2) end of trajectories that do not reach
a Pareto optimal solution, (3) intermediate solutions in the trajectories, and
(4) solutions in the Pareto set. The size of nodes and the thickness of edges are
proportional to their sampling frequency.

A key aspect of network visualisation is the graph-layout, which accounts
for the positions of nodes in the 2D Euclidean space. Graphs are mathemat-
ical objects, they do not have a unique visual representation. Many graph-
layout algorithms have been proposed. Force-directed layout algorithms, such
as Fruchterman-Reignold [8], are based on physical analogies defining attracting
and repelling forces among edges. They strive to satisfy generally accepted aes-
thetic criteria such as an even distribution of nodes on the plane, minimising edge
crossings, and keeping a similar length of edges. We use force-directed layouts for
visualising the multi-objective STNs with two and three objectives (Figs. 2, 3,
7). For two objectives, we additionally introduced a layout that takes advantage
of the objective space. The idea is to use the two objective values as the nodes
x and y coordinates (Figs. 4, 5, and 8). These plots allow us to appreciate the
progression of the search trajectories in the design and objective spaces simul-
taneously. Our graph visualisations were produced using the igraph and ggraph
packages of the R programming language.

4 Experimental Setup

This section describes the experimental setup of our analysis, including the con-
sidered benchmark problems as well as the parameters used for the STNs and
for the algorithms.

4.1 Benchmark Problems

In terms of benchmark, we consider ρmnk-landscapes [22] for constructing multi-
objective multi-modal landscapes with objective correlation. They extend single-
objective nk-landscapes [10] and multi-objective nk-landscapes with independent
objectives [1]. Candidate solutions are binary strings of size n. The objective
function vector f = (f1, . . . , fi, . . . , fm) is defined as f : {0, 1}n 7→ [0, 1]m such
that each objective fi is to be maximised. The objective value fi(x) of a solu-
tion x = (x1, . . . , xj , . . . , xn) is an average value of the individual contributions
associated with each variable xj . Given objective fi, i ∈ {1, . . . ,m}, and vari-
able xj , j ∈ {1, . . . , n}, a component function fij : {0, 1}k+1 7→ [0, 1] assigns a
real-valued contribution for every combination of xj and its k variable interac-
tions {xj1 , . . . , xjk}. These fij-values are uniformly distributed in [0, 1]. Thus,
the individual contribution of a variable xj depends on its own value and on the
values of k < n variables other than xj .

The variable interactions, i.e. the k variables that influence the contribution
of xj , are set uniformly at random among the (n − 1) variables other than xj ,
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Table 2: Benchmark parameters for small and large ρmnk-landscapes.

description values

number of variables n = 16 (small), n = 128 (large)
number of interactions k ∈ {1, 4}
number of objectives m ∈ {2, 3}
objective correlation ρ ∈ {−0.4, 0.0, 0.4}

following the random model from [10]. By increasing the number of variable
interactions k, landscapes can be gradually tuned from smooth to rugged. In
ρmnk-landscapes, fij-values additionally follow a multivariate uniform distribu-
tion of dimension m, defined by an m×m positive-definite symmetric covariance
matrix (cpq) such that cpp = 1 and cpq = ρ for all p, q ∈ {1, . . . ,m} with p 6= q,
where ρ > −1

m−1 defines the correlation among the objectives; see [22] for details.
The positive (resp. negative) correlation ρ decreases (resp. increases) the degree
of conflict between the objective values.

Interestingly, ρmnk-landscapes exhibit different characteristics and degrees
of difficulty for EMO algorithms [3,13].The source code of the ρmnk-landscapes
generator is available at the following URL: http://mocobench.sf.net.

4.2 Parameter Setting

We generate 12 small and 12 large ρmnk-landscapes with the parameter settings
listed in Table 2. This allows us to investigate the differences between small and
large instances, two and three objectives, conflicting, independent or correlated
objectives, all this for relatively smooth to relatively rugged landscapes.

In terms of algorithms, we experiment with both MOEA/D and NSGA2
under the parameters from Table 3. Each algorithm is run independently 10 times
on each instance. Algorithm performance is given in terms of hypervolume [24].
More particularly, we measure the relative hypervolume deviation with respect
to the exact PF (for small instances) or best-known PF (for large instances).
Let hv be the hypervolume covered by the population, the relative hypervolume
deviation is (hv? − hv)/hv?, such that hv? is the best-known hypervolume. A
lower value is thus better. The hypervolume reference point is set to the origin.

Table 3: Algorithm parameters for MOEA/D and NSGA2.

description values

population size µ = 101 (m = 2), µ = 231 (m = 3)
neighbourhood size T = 10 (MOEA/D)
variation 1-point crossover, bit-flip mutation with rate 1/n
number of generations g = 20 (n = 16), g = 500 (n = 128)

http://mocobench.sf.net
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Fig. 1: Algorithm performance and STN metrics for small instances.

4.3 Reproducibility

For reproducibility purposes, relevant data and code are be available at:
https://github.com/gabro8a/STNs-MOCO

5 Results

This section reports and comments the STNs obtained for small instances, and
then for large instances. STN metrics are also discussed and related with algo-
rithm performance.

5.1 Small Instances

We start with results for small instances with n = 16. In this case, the STN
modelling used p = 101 decomposition vectors for instances with two objectives
and p = 231 vectors for instances with three objectives; i.e. the same setting as
the algorithms’ population size. This give us the maximum possible modelling
granularity (one vector per each individual member in the population), while
still producing interpretable images.

Network Metrics. Algorithm performance for the 12 small instances is re-
ported in Fig. 1 (top left), together with the five network metrics described in
Table 1. For this set of instances, NSGA2 consistently outperforms MOEA/D, as
indicated by the lower hypervolume relative deviation values. The higher STN

https://github.com/gabro8a/STNs-MOCO
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metric values obtained by NSGA2 for nodes, pareto and pareto num path clearly
support this trend. Another clear trend from the STN metrics is the decrease in
values when we go from conflicting (ρ = −0.4) to positively correlated objectives
(ρ = 0.4), which is observed for both values of k ∈ {1, 4} and m ∈ {2, 3}. Finally,
a salient observation from Fig. 1 is the large metric values observed for instances
with m = 3 and conflicting objectives (ρ = −0.4). The values of nodes, pareto,
pareto num path and pareto mean path are higher for k = 1 than for k = 4. This
is consistent with previous findings: although there are more local optima for
larger k values, the number of global optima (i.e. Pareto optimal solutions) has
the opposite trend and decreases with increasing k [22].

Network Visualisation with a Force-Directed Layout. Figs. 2 and 3 pro-
vide examples using a force-directed layout for m = 2 and m = 3 objectives,
respectively. They report the multi-objective STN obtained for MOEA/D (top)
and NSGA2 (bottom) for conflicting (left), independent (middle) and correlated
objectives (right). The network visualisations confirm the trends observed in the
metrics. Notably, the number of nodes in the networks consistently decreases
when moving from negatively correlated objectives (ρ = −0.4, left) to positively
correlated objectives (ρ = 0.4, right). We can also visually confirm the much
denser STNs obtained for m = 3 objectives, as reported in Fig. 3.

Network Visualisation with the Objective-Space Layout. Figs. 4 and 5
shows our proposed objective-space network layouts applied to the two studied
levels of ruggedness k ∈ {1, 4}, respectively. Notice that this layout is only
applicable for m = 2 objectives if we restrict ourselves to the 2D Euclidean space.
We argue that this layout may be more useful to the multi-objective optimisation
community (as compared to the force-directed layouts shown in Figs. 2 and 3)
as they resemble the familiar Pareto front scatter plots. However, they offer
additional insights, revealing not only the Pareto front when it is reached, but
also the search progress towards it, thus giving indication of unsuccessful runs
as well. Notice that in these plots, an additional graphical layer is shown in the
form of blue diamonds. They correspond to the exact Pareto front and are not
part of the STN nodes. They serve as a tool to appreciate if and when the STN
trajectories reach the Pareto front. The objective-space layout, therefore, might
be more suitable for appreciating the performance difference between algorithms.

With respect to NSGA2 outperforming MOEA/D (as indicated by the per-
formance metric in Fig. 1), this can only be clearly appreciated for k = 4 and
m = 2 (Fig. 5). Looking at the left plots for ρ = −0.4, we can confirm that
the MOEA/D STN (top plot) has a larger number end nodes (orange triangles)
that are also of larger size as those of the NSGA2 STN (bottom plot). Remember
that the size of nodes is proportional to their sampling frequency. Therefore, this
is a visual reflection that MOEA/D has a larger number of unsuccessful runs,
that is, trajectories ending into sub-optimal solutions. The NSGA2 STN (bottom
plot) reveals in this case a larger number of red nodes (Pareto solutions), which
are of larger size. Remember that the the super-imposed blue diamond scatter
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Fig. 2: STN visualisation with a force-directed layout for small instances with
k = 1 and m = 2 objectives.

Fig. 3: STN visualisation with a force-directed layout for small instances with
k = 4 and m = 3 objectives.
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Fig. 4: STN visualisation with the objective-space layout for small instances with
k = 1 and m = 2 objectives.

Fig. 5: STN visualisation with the objective-space layout for small instances with
k = 4 and m = 2 objectives.
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plot is used to visually locate the exact Pareto front. A careful inspection of the
MOEA/D STN (top plot in Fig.5) reveals one empty blue diamond, and some
diamonds that are only partially filled with red nodes (Pareto solutions found
by the trajectories).

5.2 Large Instances

We continue our discussion by analysing the results for large instances with
n = 128. The STN modelling used p = 51 decomposition vectors for instances
with two objectives and p = 66 vectors for instances with three objectives. In this
case, we used fewer weight vectors relative to the population size for efficiency
reasons, and for improving both the cosmetic rendering and interpretability of
the STN images. Notice that the larger the number of vectors, the larger the
number of nodes in the STN models. The number of vectors can be seen as a
parameter to adjust the model granularity.

Network Metrics. Algorithm performance and network metrics for large in-
stances are reported in Fig. 6. For this set of instances, there is less difference in
performance between the two algorithms. Nevertheless, notable exceptions ap-
pear for m = 3 objectives and conflicting objectives (ρ = −0.4), where MOEA/D
reaches significantly better hypervolume values. This is supported by the higher
STN metric values obtained by MOEA/D for nodes, pareto and pareto num path
on the corresponding instances. Notice that for ρ = 0.4, m = 2, k = 4 in Fig. 6,
NSGA2 does not find Pareto optimal solutions, therefore, some of the metrics
cannot be computed, which explains the absence of the blue bar in this case.
We notice that the NSGA STNs contain much more nodes, which is to be con-
trasted by its number of pareto nodes that is often particularly low compared to
MOEA/D. This suggests that NSGA2 has a higher rate of discovery, but that it
gets more easily trapped into sub-optimal solutions.

Network Visualisation with a Force-Directed Layout. We report in Fig. 7
examples of multi-objective STNs using a force-directed layout, for m = 3 ob-
jectives and k = 4. We observe that the networks are much denser than for small
instances, although we used comparatively fewer decomposition vectors. This is
to be expected given the exponentially larger search space of large instances.
For conflicting objectives (ρ = −0.4, left), MOEA/D significantly outperforms
NSGA2. We observe that MOEA/D identifies significantly more Pareto optimal
solutions, which confirms the trend observed in the STN metrics. For uncor-
related objectives (ρ = 0.0, middle), the NSGA2 STN contains fewer Pareto
optimal solutions than for MOEA/D, but they are identified more frequently,
given the size of pareto nodes (in red). At last, for positively correlated objec-
tives (ρ = 0.4, right), both algorithms identify about the same number of Pareto
optimal solutions, but we still see that NSGA2 identifies them more frequently,
which supports the fact that NSGA2 is slightly better for this instance.
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Fig. 6: Algorithm performance and STN metrics for large instances.

Fig. 7: STN visualisation with a force-directed layout for large instances with
k = 4 and m = 3 objectives.

Network Visualisation with the Objective-Space Layout. Let us now
analyse the objective-space network layout for large instances with m = 2 ob-
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Fig. 8: STN visualisation with the objective-space layout for large instances with
k = 4 and m = 2 objectives.

jectives. The multi-objective STNs are reported in Fig. 8 for k = 4. The vi-
sualisations for k = 1 are not shown due to space constraints, but they show
similar trends. As anticipated by the analysis of STN metrics in Fig. 6, the
multi-objective STNs obtained by the two algorithms are similar for the large
two-objective instance, although solutions seem a bit more spread for NSGA2.
The number of pareto nodes tends to be proportionally higher as we gradually
shift from conflicting (ρ = −0.4) to positively correlated objectives (ρ = 0.4). A
notable difference is for NSGA2 and k = 4, where the STN contains no pareto
nodes for positively correlated objectives (ρ = 0.4). Furthermore, the position of
end nodes (orange triangles) suggests that the trajectories end up in sub-optimal
solutions farther away from the Pareto front for instances with k = 4, for which
there are more local optima. Going back to the comparison between MOEA/D
and NSGA2, the objective-space network layout of the STNs provide visual ev-
idence confirming that, although NSGA2 seems to explore more solutions, it is
attracted to lower quality solutions.

6 Conclusions

We argue that STNs are an accessible tool to analyse and visualise the behaviour
of evolutionary multi-objective optimisation algorithms. Constructing STN mod-
els does not require any specific sampling techniques. Instead, data is collected
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from a set of runs of the studied algorithms, and then aggregated and processed
to devise the models. Post-processing tools, however might be required to deal
with large models. STNs provide insights into problem structure as well as into
algorithm convergence behaviour and performance differences.

Future work could study additional multi-objective problems and algorithms,
including real-world problems and 4+ objectives. The challenge we foresee here
deals with the larger number of solutions attained by the trajectories. For this,
we could thoroughly investigate coarser models including varying the number
of decomposition vectors in the STN model, and of grouping multiple solutions
within a single node, as has been done for single-objective STN models [17,18].
A number of repositories contain code and data to start with STN modelling
and analysis for both single-objective4 (including a web-based tool5), and multi-
objective combinatorial6 and continuous 7 problems. We should provide unified
software tools to improve the usability of STN models.
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