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Abstract. Clustering in high dimension spaces is a difficult task; the
usual distance metrics may no longer be appropriate under the curse of
dimensionality. Indeed, the choice of the metric is crucial, and it is highly
dependent on the dataset characteristics. However a single metric could
be used to correctly perform clustering on multiple datasets of different
domains. We propose to do so, providing a framework for learning a
transferable metric. We show that we can learn a metric on a labelled
dataset, then apply it to cluster a different dataset, using an embedding
space that characterises a desired clustering in the generic sense. We
learn and test such metrics on several datasets of variable complexity
(synthetic, MNIST, SVHN, omniglot) and achieve results competitive
with the state-of-the-art while using only a small number of labelled
training datasets and shallow networks.

Keywords: Clustering · Transfer Learning · Metric Learning.

1 Introduction

Clustering is the unsupervised task of assigning a categorical value yi ∈ {1, . . . , k}
to each data point xi ∈ X, where no such example categories are given in the
training data; i.e., we should map X = {x1, . . . , xn} 7→ Y = {y1, . . . , yn} with
X the input matrix of n data points, each of dimension d; where yi = κ implies
that data point xi is assigned to the κ-th cluster.

Clustering methods complete this task by measuring similarity (the dis-
tance) between training pairs, using a similarity function s(xi, xj) ∈ R+. This
similarity function should typically reflect subjective criteria fixed by the user.
Basically, this means that the user decides what makes a good clustering. As
mentioned in [6], “since classes are a high-level abstraction, discovering them
automatically is challenging, and perhaps impossible since there are many crite-
ria that could be used to cluster data (e.g., we may equally well cluster objects
by colour, size, or shape). Knowledge about some classes is not only a realistic
assumption, but also indispensable to narrow down the meaning of clustering”.
Taking the example of MNIST [11], one usually groups the same numbers to-
gether because these numbers share the highest amount of features (e.g., mutual
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information based models do that). However one may want to group numbers
given their roundness. In this case, we may obtain two clusters, namely straight
shaped numbers (i.e., 1, 4,7) and round shaped numbers (i.e., all the others).
Both clustering solutions are relevant, since each clustering addresses a different
yet possible user subjective criteria (i.e., clustering semantics).

Finding an automated way to derive and incorporate user criteria in a clus-
tering task based on intended semantics can be very hard. Nowadays, the wide
availability of shared annotated datasets is a valuable asset and provides exam-
ples of possible user criteria. Hence, we argue that, given “similar” annotated
data, classification logic can be used to derive a user criteria that one can apply
to clustering similar non-annotated data. For example, we consider the situation
where a human is placed in front of two datasets, each one consisting of letters
of a certain alphabet she does not understand. The first dataset is annotated,
grouping the same letters together. Only by seeing the first dataset, the person
can understand the grouping logic used (grouping same geometrical shapes to-
gether) and replicate that logic to the second non annotated dataset and cluster
correctly its letters.

In this paper, we are interested in tackling the problem of clustering data
when the logic (i.e., user clustering criteria) is encoded into some available la-
belled datasets. This raises two main challenges, namely (1) find a solution that
works well on the classification task but (2) ensure transferability in its decision
mechanism so it is applicable to clustering data from a different domain.

We believe that addressing these challenges calls for the design of a scoring
function that should be as general as possible to ensure transferability but is
specific enough not to miss the user criteria. More specifically, the scoring func-
tion should be a comparing the logic used to produce a certain clustering to the
one used to produce clusterings of the already seen training datasets. Using the
concept of logic is useful as a logic is general enough to be used on any dataset
and specific enough as is it is the main common property shared by all training
dataset. Our goal is then to find a suitable metric that retrieves and encapsulate
the seen concept for scoring a clustering outcome.

Moreover, modern applications require solutions that are effective when
data is of high dimension (i.e., large d). While distance-based approaches are
broadly used for clustering (e.g., Euclidean distance), we argue that they are
not suitable for our problem since they would yield in data specific models in
addition to their poor performance in high dimensional spaces due to the curse
of dimensionality. To lower dimensionality, a solution is to perform instance-wise
embeddings xi 7→ zi, e.g., with an autoencoder. However this mechanism is still
domain specific.

To achieve training on more general patterns, we think it is necessary to take
the dataset in its entirety. Therefore, instead of learning a metric that compares
pairs of data points in a dataset instance (like a similarity measure), a learned
metric is applied to sets of data points so comparison is done between sets. The
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metric can be intuitively understood as a distance between the logic underlying
a given clustering and the general logic that was used to produce clusterings in
training datasets.

For this, we propose a solution where we use a graph autoencoder [9] to
embed a set of data points into a vector of chosen dimension. Then, we use the
critic part of a Wasserstein GAN (WGAN) [1] to produce a continuous score
of the embedded clustering outcome. This critic represents the metric we seek.
Thus, our main contributions are:

– We provide a framework for joint metric learning and clustering tasks.

– We show that our proposed solution yields a learned metric that is trans-
ferable to datasets of different sizes and dimensions, and across different
domains (either vision or tabular) and tasks.

– We obtain results competitive to the state-of-the-art with only a small num-
ber of training datasets, relatively simple networks, and no prior knowledge
(only an upper bound of the cluster number that can be set to a high value).

– Our method is scalable to large datasets both in terms of number of points
or dimensions (e.g the SVHN dataset used in section 4) as it does not have
to compute pairwise distances and therefore does not heavily suffer when
the number of points or dimensions increase.

– We test the metric on datasets of varying complexity and perform on par
with the state-of-the-art while maintaining all the advantages cited above.

2 Related Work

Using auto-encoders before applying classic clustering algorithms resulted in a
significant increase of clustering performance, while still being limited by these
algorithms capacity. Deep Embedding Clustering (DEC) [19] gets rid of this
limitation at the cost of more complex objective functions. It uses an auto-
encoder along with a cluster assignment loss as a regularisation. The obtained
clusters are refined by minimising the KL-divergence between the distribution of
soft labels and an auxiliary target distribution. DEC became a baseline for deep
clustering algorithms. Most deep clustering algorithms are based on classical
center-based, divergence-based or hierarchical clustering formulations and hence
bear limitations like the need for an a priori number of clusters.

MPCKMeans [2] is more related to metric learning as they use constraints
for both metric learning and the clustering objective. However, their learned
metrics remain dataset specific and are not transferable.

Constrained Clustering Network (CCN) [8], learns a metric that is trans-
ferable across domains and tasks. Categorical information is reduced to pairwise
constraints using a similarity network. Along with the learned similarity func-
tion, the authors designed a loss function to regularise the clustering classifica-
tion. But, using similarity networks only captures local properties instance-wise
rather than global geometric properties of dataset clustering. Hence, the learned
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metric remains non fully transferable, and requires to adapt the loss to the do-
main to which the metric is transferred to.

In Deep Transfer Clustering (DTC) [6] and Autonovel [7], the authors tackle
the problem of discovering novel classes in an image collection given labelled ex-
amples of other classes. They extended DEC to a transfer learning setting while
estimating the number of classes in the unlabelled data. Autonovel uses self-
supervised learning to train the representation from scratch on the union of
labelled and unlabelled datasets then trains the data representation by optimiz-
ing a joint objective function on the labelled and unlabelled subsets of data. We
consider these two approaches as our state of the art baselines.

3 Our Framework

To restate our objective, we seek an evaluation metric

r : Rn×d × Nn → R
(X,y) 7→ r(X,y)

(1)

where X ∈ Rn×d is a dataset of n points in d dimensions and y ∈ Nn a partition
of X (i.e. a clustering of X). Metric r should provide a score for any labelled
dataset of any dimensionality; and in particular this score should be such that
r(X,y) is high when the hamming distance between the ground truth labels
y∗ and y is small (taking cluster label permutations into account). This would
mean that we could perform clustering on any given dataset, simply by solving
an optimisation problem even if such a dataset had not been seen before.

Formally stated, our goal is: (1) to produce a metric r that grades the quality
of a clustering such that y∗ = arg maxy r(X,y); (2) Implement an optimisation
algorithm that finds y∗; (3) use (1) and (2) to perform a clustering on a new
unrelated and unlabelled dataset. We use a collection D = {Xl,y

∗
l }`l=1 of labelled

datasets as examples of correctly ‘clustered’ datasets, and learn r such that
E[r(X,y)] is high. In order to make r transferable between datasets, we embed
each dataset with its corresponding clustering (Xl,yl) into a vector zl ∈ Re.
More formally, the embedding function is of the form:

g : Rn×d ×Y → Re

(X,y) 7→ z
(2)

Therefore, the metric r is actually the composition of two functions g and
cθ (the scoring function from Re to R). Our training procedure is structured
around 3 blocs A, B and C detailed in next sections and depicted in figure 1 and
is summarised in the following main steps:
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Bloc A. step 1 Select a labelled dataset (X,y∗) ∼ D
Bloc A. step 2 Given a metric function r (output from bloc B step 2, or ini-

tialised randomly), we perform a clustering of dataset X: ŷ =
arg maxy r(X,y)

Bloc B. step 1 y∗ and ŷ are represented as graphs where each clique represents
a cluster.

Bloc B. step 2 Graph convolutional autoencoders perform feature extraction from
ŷ and y∗ and output embeddings ẑ and z∗

Bloc C. step 1 The metric r is modelled by a WGAN critic that outputs evalu-
ations of the clusterings: r(X,y∗) = cθ(z

∗) and r(X, ŷ) = cθ(ẑ)

Bloc C. step 2 Train the model using the error between r(X,y∗) and r(X, ŷ).

Fig. 1: Our framework’s 3 components: the clustering mechanism (A), the GAE (B)
and the WGAN (C). (A) takes an unlabelled dataset X as input and outputs a clus-
tering ŷ that maximises a metric r. ŷ is then turned into a graph G(X, ŷ) then into an
embedding vector ẑ using (B). Same goes for the correctly labelled dataset, which is
embedded as ẑ∗. Then, (C), which is the metric itself, evaluates ẑ and z∗ using cθ and
is trained to produce a new metric r which is then used for (A) in the next iteration.

3.1 Clustering mechanism

We seek the most suitable optimisation algorithm for clustering given r. Consid-
ering a neural network that performs the clustering, we need to find its weights
w such that the metric is maximised (see equation (3)). The type of algorithm
to use depends on the nature of the metric r to optimise on.

CEMr(X)
finds−−−→ w∗ = arg max

w
r(X,yw) (3)

Where yw is a clustering obtained with the weights w. The metric is assumed
to hold certain properties, discussed in 3.3:
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Algorithm 1 CEM Algorithm

Input: Dataset X ∈ Rn×d; score function r; µ ∈ Rd and σ ∈ Rd; elite percentage
to retain p; n samples of wi ∼ N (µ, diag(σ)); T number of iterations
for iteration = 1 to T do

Produce n samples of neural network weights wi ∼ N (µ, diag(σ))
Produce clusterings yi of X using each wi
Evaluate ri = r(X, yi)
Constitute the elite set of p% best wi
Fit a Gaussian distribution with diagonal covariance to the elite set and get a new
µt and σt

end for
return: µ, w∗

– Unique Maximum: A unique optimal clustering. r has a unique maximum.

– Continuity3: Any two clusterings y and y′ should be similar if r(y) and
r(y′) are close in R space. Hence, r has to satisfy a continuity constraint.

There is no guarantee that the best metric for the clustering task is differen-
tiable. Given the above assumptions, conditions are favourable for evolutionary
strategies (ES) to iteratively converge towards the optimal solution. Indeed, if
r is continuous and the series ((X,y1), . . . , (X,yp)) converges towards (X,y∗)
then (r(X,y1), . . . , r(X,yp)) converges towards r(X,y∗). We choose the Cross-
Entropy Method (CEM) [3], a popular ES algorithm for its simplicity, to optimise
the clustering neural network weights by solving Eq.(3) (algorithm 1).

3.2 Graph based dataset embedding

To capture global properties and be transferable across different datasets, we
argue that it is necessary to input all the points of a dataset at once. Hence,
instead of pairwise similarities between random pairs of points, we propose to get
a representation of the relation between a bunch of neighbouring points. Thus, we
represent each dataset by a graph structure G(X,y) where each node corresponds
to a point in X and where cliques represent clusters as shown in figure 1. This
representation takes the form of a feature matrix X and an adjacency matrix A.
Using X, and A, we embed the whole dataset into a vector z ∈ Re. To do so, we
use graph autoencoders (GAE). Our implementation is based on [9].

We obtain z ∈Mn,m which is dependent of the shape of the dataset (where
m is a user specified hyper-parameter). In order to make it independent from
the number of points in X , we turn the matrix z into a square symmetrical one
z ←− zT z ∈Mm,m. The final embedding corresponds to a flattened version of the
principal triangular bloc of zT z, which shape is e = (m+1

2 , 1). However, the scale

3 As a reminder, Let T and U be two topological spaces. A function f : T 7→ U
is continuous in the open set definition if for every t ∈ T and every open set u
containing f(t), there exists a neighbourhood v of t such that f(v) ⊂ u.
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of the output still depends on the number of points in the dataset. This could
cause an issue when transferring to datasets with a vastly different number of
data points. It should therefore require some regularisation; in order to simplify,
we decided to use datasets with approximately the same number of points.

3.3 A critic as a metric

With embedded vectors of the same shape, we compare the clusterings proposed
ẑ and the ground truth ones z using the metric r. r is a function mapping an
embedding vector z ∈ Re to R, we therefore parameterise it as:

rα(X,y) = rα(z) = α1φ1(z) + α2φ2(z) + ...+ αhφh(z) (4)

Where φj(z) ∈ R. As per [13], learning a viable metric is possible provided
both the following constraints: (1) maximising the difference between the quality
of the optimal decision and the quality of the second best; (2) minimising the
amplitude of the metric function as using small values encourages the metric
function to be simpler, similar to regularisation in supervised learning.

When maximising the metric difference between the two clusterings that
have the highest scores, we get a similarity score as in traditional metric learning
problems. The problem is formulated by equation (5) where S is a set of solutions
(i.e., clustering proposals) found using rα and y∗ is the true clustering, ymax is
the best solution found in S: ymax = arg maxy∈S rα(X,y).

min
α
rα(X,y∗)−max

α
min

y′∈S\ymax
rα(X,ymax)− rα(X,y′)

s.t y∗ = arg max
y∈Y

r(y)
(5)

To solve equation (5), we use a GAN approach where the clustering mech-
anism (i.e., CEM) plays the role of the generator while a critic (i.e., metric
learning model) plays the role of the discriminator. In a classic GAN, the dis-
criminator only has to discriminate between real and false samples, making it
use a cross entropy loss. With this kind of loss, and in our case, the discrimina-
tor quickly becomes too strong. Indeed, the score output by the discriminator
becomes quickly polarised around 0 and 1.

For this reason, we represent r as the critic of a WGAN [1]. This critic
scores the realness or fakeness of a given sample while respecting a smoothing
constraint. The critic measures the distance between data distribution of the
training dataset and the distribution observed in the generated samples. Since
WGAN assumes that the optimal clustering provided is unique, the metric so-
lution found by the critic satisfies equation (5) constraints. r reaching a unique
maximum while being continuous, the assumptions made in section 3.1 are cor-
rectly addressed. To train the WGAN, we use the loss L in equation (6) where ẑ
is the embedding vector of a proposed clustering and z is the embedding vector
of the desired clustering. Our framework is detailed in algorithm 2.

L(z∗, ẑ) = max
θ

Ez∗∼p[fθ(z
∗)]− Eẑ∼p(ẑ)[fθ(ẑ)] (6)
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Algorithm 2 Critic2Metric (C2M)

Input: b: batch size, epoch: number of epochs; p: percentage of elite weights to keep;
iteration: number of CEM iterations; population: number of weights to gener-
ate; µ ∈ Rd: CEM mean; σ ∈ Rd: CEM standard deviation, θ: critic’s weights

for n = 1 to epoch do
for k = 1 to b do

Sample (Xk,y
∗
k) ∼ D a correctly labelled dataset

Generate ground truth embeddings z(Xk,y
∗
k
) = GAE(G(Xk,y

∗
k))

Initialise clustering neural network weights {wj}populationj=1

for i = 1 to iteration do
for j = 1 to population do

Generate clusterings ŷ
wj

k

Convert ŷ
wj

k into a graph
z
(Xk,ŷ

wj
k

)
= GAE(G(Xk, ŷ

wj

k ))

Evaluate: r(Xk, ŷ
wj

k ) = cθ(z(Xk,ŷ
wj
k

)
)

end
Keep proportion p of best weights wp
w∗ ←− CEM(wp, µ, σ)

end

Generate clustering yw
∗

k

z(Xk,ŷ
w∗
k

) = GAE(G(Xk, ŷ
w∗
k ))

Train critic as in [1] using z(Xk,ŷ
w∗
k

) and z(Xk,y
∗
k
)

end

end

4 Experiments

Dataset family Synthetic data MNIST
Street view

house numbers
Omniglot

Dataset Blob Moon Circles
Aniso-
tropic

MNIST-digits
[11]

letters MNIST
[4]

fashion MNIST
[18]

SVHN
[12]

Omniglot
[10]

Snapshot

Feature
dimension

2 2 2 2 28× 28 28× 28 28× 28 32× 32 105× 105

Maximum number
of clusters

9
(custom)

9
(custom)

9
(custom)

9
(custom)

10 26 10 10 47

Size
200

(custom)
200

(custom)
200

(custom)
200

(custom)
60000 145600 60000 73257 32460

Table 1: Datasets description

For empirical evaluation, we parameterise our framework as follows: The
critic (block C in Fig 1) is a 5 layer network of sizes 256, 256, 512, 512, and 1
(output) neurons. All activation functions are LeakyRelu (α = 0.2) except last
layer (no activation). RMSprop optimizer with 0.01 initial learning rate and a
decay rate of 0.95. The CEM-trained neural network (bloc A in Fig 1) has 1
hidden layer of size 16 with Relu activation, and a final layer of size k = 50 (the
maximum number of clusters). The GAE (bloc B in Fig 1) has 2 hidden layers;
sized 32 and 16 for synthetic datasets, and 100 and 50 for real datasets.
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We choose datasets based on 3 main criteria: having a similar compatible
format; datasets should be large enough to allow diversity in subsampling config-
urations to guarantee against overfitting; datasets should be similar to the ones
used in our identified baseline literature. All used datasets are found in table 1.

For training, we construct n sample datasets and their ground truth clus-
tering, each containing 200 points drawn randomly from a set of 1500 points
belonging to the training dataset. Each one of these datasets, along with their
clustering is an input to our model. To test the learned metric, we construct 50
new sample datasets from datasets that are different from the training one (e.g.,
if we train the model on MNIST numbers, we will use datasets from MNIST let-
ters or fashion to test the metric). The test sample datasets contain 200 points
each for synthetic datasets and 1000 points each otherwise. The accuracies are
then averaged accross the 50 test sample datasets. To test the ability of the
model to learn using only a few samples, we train it using 5 (few shots) and 20
datasets (standard), each containing a random number of clusters. For few shots
trainings, we train the critic for 1 epoch and 10 epochs for standard trainings.

To evaluate the clustering, we use Normalised-Mutual Information (NMI)
[16] and clustering accuracy (ACC) [20]. NMI provides a normalised measure that
is invariant to label permutations while ACC measures the one-to-one matching
of labels. For clustering, we only need that the samples belonging to the same
cluster are attributed the same label, independently from the label itself. How-
ever, since we want to analyse the behaviour of the metric learned through our
framework, we are interested in seeing whether it is permutation invariant or
not. Hence, we need the two measures.

4.1 Results on 2D synthetic datasets

Analysis on synthetic datasets (see table 1) proves that our model behaves as
expected. We do not compare our results to any baseline since existing unsuper-
vised methods are well studied on them. We train our model using exclusively
samples from blobs datasets. We then test the learned metric on the 4 different
types of synthetic datasets (blobs, anisotropic, moons and circles). Results are
displayed in table 2. We observe that the model obtains the best score on blobs
since it is trained using this dataset. We can also notice that our model achieves
high scores for the other types of datasets not included in training.

Types of datasets Standard training Few shots training

ACC NMI ACC NMI

Blobs 98.4% 0.980 97.3% 0.965
Anisotropic 97.9% 0.967 97.2% 0.945
Circles 91.7% 0.902 92.7% 0.900
Moons 92.1% 0.929 92.8% 0.938

Table 2: Average ACC and NMI on synthetic test datasets.
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Our model succeeds in clustering datasets presenting non linear boundaries
like circles while blobs datasets used in training are all linearly separable. Hence,
the model learns intrinsic properties of training dataset that are not portrayed in
the initial dataset structure, and thus that the metric appears to be transferable.

Critic’s ablation study. To test if the critic behaves as expected, i.e.,
grades the clustering proposals proportionally to their quality, we test it on
wrongly labelled datasets to see if the score decreases with the number of mis-
labelled points. We consider 50 datasets from each type of synthetic datasets,
create 50 different copies and mislabel a random number of points in each copy.
A typical result is displayed in figure 2 and shows that the critic effectively out-
puts an ordering metric as the score increases when the number of mislabelled
points decreases, reaching its maximum when there is no mislabelled point. This
shows that the metric satisfies the constraints stated in equation 5.

Fig. 2: Metric values (i.e., scores given by the critic) for several clusterings of a dataset.
Plots are from an anisotropic dataset (left) and a moons dataset (right). In a 2 cluster
case (right), the formula used to compute mislabelled points has been made sensitive
to label permutation to verify if permuted labels can fool the critic. The critic assigns
a high score either when all the labels match the given ground truth or when all the
labels are permuted (which again does not affect the correctness of the clustering)

An interesting behaviour is shown in figure 2. Recall that since we are in the
context of a clustering problem, we only need for the samples belonging to the
same cluster to get the same label, independently from the cluster label itself.
Thus, the formula used to compute mislabelled points has been made sensitive
to label permutation to verify if permuted labels can fool the critic. For instance,
in a 2 clusters case, one can switch the labels of all points in each cluster and still
get the maximum score. Switching all labels makes all the points wrongly labelled
compared to the given ground truth but nonetheless the clustering itself remains
true. This explains the rounded shape in figure 2 where the used datasets in the
right panel only consisted of 2 clusters. The critic assigns a high score either
when all the labels match the given ground truth or when all the labels are
permuted (which does not affect the correctness of the clustering).

4.2 Results on MNIST datasets

MNIST datasets give similar results both in terms of ACC and NMI on all test
datasets regardless of the used training dataset (see table 3). Hence, the model
effectively capture implicit features that are dataset independent. While stan-
dard training shows better results, the few shots training has close performance.
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Training Dataset Testing Dataset

Numbers Letters Fashion

ACC NMI ACC NMI ACC NMI

Numbers (standard) 72.3% 0.733 81.3% 0.861 65.2% 0.792
Numbers (few shots) 68.5% 0.801 79.0% 0.821 61.8% 0.672
Letters (standard) 75.9% 0.772 83.7% 0.854 67.5% 0.800
Letters (few shots) 69.8% 0.812 78.7% 0.806 60.9% 0.641
Fashion (standard) 70.6% 0.706 83.4% 0.858 72.5% 0.762
Fashion (few shots) 70.1% 0.690 82.1% 0.834 70.7% 0.697

Table 3: Mean clustering performance on MNIST dataset.

Training Dataset Testing Dataset

Numbers Letters Fashion

Best Top 3 Best Top 3 Best Top 3

Numbers (standard) 78.3% 92.5% 86.0% 97.5% 69.2% 87.2%
Numbers (few shots) 75.8% 82.1% 83.3% 92.0% 65.1% 83.9%
Letters (standard) 77.4% 89.2% 88.8% 96.4% 70.2% 86.7%
Letters (few shots) 73.1% 80.6% 85.1% 91.5% 61.0% 76.3%
Fashion (standard 70.1% 83.1% 85.0% 98.6% 76.9% 94.7%
Fashion (few shots) 67.9% 77.4% 83.5% 95.3% 70.2% 88.0%

Table 4: Critic based performance assessment: Best corresponds to the percentage of
times the critic gives the best score to the desired solution. Top 3 is when this solution
is among the 3 highest scores.

Table 4 shows the percentage of times the critic attributes the best score to
the desired solution. It shows that ES algorithm choice has a significant impact
on the overall performance. Even with a metric that attributes the best score to
the desired clustering, the CEM may be stuck in a local optimum and fails to
reconstruct back the desired clustering. Hence, a better optimisation can enhance
the performance shown in table 3 closer to the one presented in table 4.

4.3 Comparative study

We compare our approach with baseline methods from the literature (table 5).
For some methods, we followed the procedure in [8] and used their backbone
neural network as a pairwise similarity metric. Table 5a reports results when
training on SVHN and testing on MNIST numbers. We obtain close ACC values
to CCN and ATDA [14]. These methods uses Omniglot as an auxiliary dataset
to learn a pairwise similarity function, which is not required for our model. Our
model only uses a small fraction of SVHN, has shallow networks and does not
require any adaptation to its loss function to achieve comparable results. Finally,
other cited methods require the number of clusters as an a priori indication.
We achieve comparable results without needing this information. When the loss
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adaptation through Omniglot is discarded (denoted source-only in table 5a), or if
the number of clusters is not given, their accuracy falls and our model surpasses
them by a margin.

Method ACC

Loss Adaptation Source Only

DANN [5] 73.9% 54.9%
LTR [15] 78.8% 54.9%
ATDA [14] 86.2% 70.1%
CCN [8] 89.1% 52%
Ours (standard) − 84.3%
Ours (few shots) − 81.4%

(a) Unsupervised cross-task transfer from SVHN
to MNIST digits.

Method ACC NMI

k-means 18.9% 0.464
CSP [17] 65.4% 0.812
MPCK-means [2] 53.9% 0.816
CCN [8] 78.18% 0.874
DTC [6] 87.0% 0.945
Autonovel [7] 85.4% −
Ours (standard) 83.4% 0.891

(b) Unsupervised cross-task transfer from
Omniglottrain to Omniglottest (k = 100 for all).

Table 5: Comparative clustering performance

Table 5b reports results when training on Omniglottrain and testing on
Omniglottest. Values are averaged across 20 alphabets which have 20 to 47 letters.
We set the maximum number of clusters k = 100. When the number of clusters
is unknown, we get an ACC score relatively close to DTC and Autonovel. Com-
pared to these two approaches, our method bears several significant advantages:

– Deep Networks: DTC and Autonovel used Resnets as a backbone which are
very deep networks while we only used shallow networks (2 layers maximum)

– Pairwise similarity: in Autonovel the authors used a pairwise similarity
statistic between datasets instances which we aimed to avoid due to its sig-
nificant computational bottleneck. Moreover, this metric is recalculated after
each training epoch, which adds more complexity.

– Vision tasks: While DTC can only handle vision tasks, we present a more
general framework which includes vision but also tabular datasets.

– Number of classes: DTC and Autonovel used the labelled dataset as a
probe dataset, and estimates the number of classes iteratively, and when
the labelled clusters are correctly recovered, they used the ACC metric to
keep the best clustering. This approach is effective, but requires access to the
labelled dataset at inference time to estimate the number of classes. This is a
shortcoming (memory or privacy limitations). Our approach does not require
the labelled dataset once the metric is learned. Our metric automatically
estimates the number of clusters required to any new unlabelled dataset.

5 Conclusion

We presented a framework for cross domain/task clustering by learning a trans-
ferable metric. This framework consisted of ES methods, and GAE alongside a
critic. Our model extracts dataset-independent features from labelled datasets
that characterise a given clustering, performs the clustering and grades its qual-
ity. We showed successful results using only small datasets and relatively shallow
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architectures. Moreover, there is more room for improvement. Indeed, since our
framework is composed of 3 different blocs (CEM, GAE, critic), overall efficiency
can be enhanced by independently improving each bloc (i.e replacing CEM).

In future work, we will study the criteria that determine why some auxiliary
datasets are more resourceful than others given a target dataset. In our case, this
means to study for instance why using the MNIST letters dataset as training
allowed a better performance on Fashion MNIST than when using MNIST num-
bers. This would allow to deliver a minimum performance guarantee at inference
time by creating a transferability measure between datasets.
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