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Abstract. We investigate the task of missing value estimation in graphs
as given by water distribution systems (WDS) based on sparse signals
as a representative machine learning challenge in the domain of criti-
cal infrastructure. The underlying graphs have a comparably low node
degree and high diameter, while information in the graph is globally
relevant, hence graph neural networks face the challenge of long term
dependencies. We propose a specific architecture based on message pass-
ing which displays excellent results for a number of benchmark tasks in
the WDS domain. Further, we investigate a multi-hop variation, which
requires considerably less resources and opens an avenue towards big
WDS graphs.
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1 Introduction

Transportation systems, energy grids, and water distribution systems (WDS)
constitute parts of our critical infrastructure that are vital to our society and
subject to special protective measures and regulations. As they are under increas-
ing strain in the face of limited resources and as they are vulnerable to attacks,
their efficient management and continuous monitoring is of great importance. As
an example, the average amount of non-revenue water amounts to 25% in the
EU [6], making the detection of leaks in WDS an important task. Advances in
sensor technology and increasing digitalisation hold the potential for intelligent
monitoring and adaptive control using AI technologies [BI25/13]. In addition to
more classical Al approaches, deep learning technologies are increasingly being
used to solve learning tasks in the context of critical infrastructures [4].

A common feature of WDS, energy networks and transport networks is that
the data has a temporal and spatial character: Data is generated in real time ac-
cording to an underlying graph, given by the power grid, the pipe network and
the transport routes, respectively. Measurements are available for some nodes
that correspond to local sensors, e.g. pressure sensors or smart meters. Based on
this partial information, the task is to derive corresponding quantities at every
node of the graph, to identify the system state or to derive optimal planning
and control strategies. In this paper, we target the learning challenges of the
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first feature, inferring relevant quantities at each location of the graph based on
few measurements. While classical deep learning models such as convolutional
networks or recurrent models can reliably handle Euclidean data, graphs consti-
tute non-Euclidean data that require techniques from geometric deep learning.
Based on initial approaches dating back more than a decade [28[11], a variety of
graph neural networks (GNNs) have recently been proposed that are able to di-
rectly process information such as present in critical infrastructure [2I3I[7/T4/29].
First applications demonstrate the suitability of GNNs for the latter [23/513].
Graphs from the domain of WDS or smart grids display specific characteris-
tics (s. Fig.B): as they are located in the plane, the node degree is small and the
network diameter is large. These characteristics display a challenge for GNNs,
as the problem of long-term dependencies and over-smoothing occurs [3227]. In
this contribution, we design a GNN architecture capable of dealing with these
specific graph structures: We show that our spatial GNN is able to effectively
integrate long-range node dependencies and we demonstrate the impact of a
suitable transfer function and residual connections. As the required resources
quickly become infeasible for big graphs, we also investigate the comparability
of a sparse multi-hop alternative. All methods are evaluated for pressure predic-
tion in WDS for a variety of benchmark networks, displaying promising results.

2 Related Work

The task of pressure estimation at all nodes in a WDS from pressure values
available at a few nodes has recently been dealt with [8]. The authors employed
spectral graph convolutional neural networks (GCNs) and performed extensive
experiments to demonstrate their approach. However, their methodology does
not fully benefit from the available structural information of the graph; we pro-
vide further details on this in Sec.dl We propose a spatial GCN based method-
ology that effectively utilizes the graph structure by using both node and edge
features and thus produces significantly better results (s. Sec. B).

A related task of state (pressure, flow) estimation in WDS based on demand
patterns and sparse pressure information has been addressed [31I]. The authors
used hydraulics in the optimization objective since the task was to model the
complex hydraulics used by the popular EPANET simulator [26] using GNNs.
They present promising results only on relatively small WDS, the ability to scale
to larger WDS is yet to be investigated. While their model solves the task of
state estimation in WDS, their approach requires demand patterns from every
consumer also during inference. In contrast, our proposed model relies on pres-
sure values computed by the EPANET solver (based on demand patterns) only
during the training process. During evaluation, our model estimates pressures
solely based on sparse pressure values obtained from a few sensors. Further, it
successfully estimates pressures even in case of noisy demands (s. Sec. Bl).

GNNs were first introduced in the work [28] as an extension of recursive neu-
ral networks for tree structures [I0]. Since then, a number of GCN algorithms
have been developed, which can be classified in to spectral-based and spatial-
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based. The approach [2] introduced spectral GCNs based on spectral graph the-
ory, which was followed by further work [I4J3IT2ITR8I20]. The counterpart are
spatial GCNs which apply a local approximation of the spectral graph kernel
[91221724I32129]. These are also referred to as message passing neural networks.

Unlike convolutional neural networks (CNNs), spatial GCNs suffer from is-
sues like vanishing gradient, over-smoothing and over-fitting, when used to build
deeper models. Generalized aggregation functions, residual connections and nor-
malization layers can address these issues and improve performance on diverse
GCN tasks and large scale graph datasets [19] .

To enable high-level embeddings in feed-forward neural networks, self normal-
izing neural networks (SNNs) were introduced [15] based on a special activation
function called scaled exponential unit (SeLU). We combine residual connections
[19] with SNNs since residual connections help solve the over-smoothing problem
when we use multiple GCN layers, whereas self-normalizing property of SeLU
enables the required information propagation in case of sparse features.

3 Methodology

The main contribution of our work is a spatial GCN capable of efficiently dealing
with the specific graph characteristics as present in WDS. We address the estima-
tion of missing node features based on sparse measurements. As we detail below,
we employ multiple spatial GCN layers without suffering from typical problems
of vanishing gradient, over-smoothing and over-fitting. For this purpose, we com-
bine residual connections ([19]) with SeLU activation function ([15]). To decrease
model size, we leverage GCN layers with multiple hops realizing message passing
between more distant neighbors comparable to [2I]. Our model employs spatial
GCNs using both node and edge features. The complete architecture is depicted
in Fig. [l Formally, a graph is represented as G(V, X, E, F'), where:

— V ={v1,va,...,0n} is the set of nodes,

— E={ey |VveV;ueN(v)} is the set of edges,

— X € RN*D is the set of node features, where N = |V| and D is the number
of node features

— F € RM*K is the set of edge features, where M = |E| and K is the number
of edge features

Node and edge features are embedded by fully connected linear layers o and 3:

hl = a(z,) veVx, e X (1)

v

hl :B(feyu) evueE,feuu cF

Cvu

We denote intermediate model activations as h, for nodes and h.,, for edges.
Multiple GCN layers convolve the information from the neighboring nodes for
estimation of node features. Each GCN layer employs the three-step process of
message generation, message aggregation and node feature update. In the I*"
layer, the edge features are updated by

B, = b, 4 Y~ KO @)
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Fig. 1. Model architecture employing multiple GCN layers. Each GCN layer consists
of message generation, sum aggregation and a final MLP.

Adding the absolute difference between the current and neighbor nodes fea-
tures empirically improves the learning. Then, messages are generated as follows:

mélu)u = SeLU (hg) I iLEfU)u) u € N(v), (3)

where - || - denotes vector concatenation. After concatenation, we employ the
SeLU activation function ([I5]) to all messages, which is given by:

xifax>0
ar —aif r<=0

SeLU(z) = /\{ (4)

where A and « are hyperparameters as in [15]. SeLU’s self-normalizing nature
greatly improves learning in the light of highly sparse values at the beginning of
the training process. All messages from the neighbor nodes are sum-aggregated:

m{y = Y mf), (5)

ueN (v)

Similar to [19], we add residual connections to the aggregated messages and pass
these through a Multi-Layer Perceptron (MLP):

R+ = MLP (hgp + mg>) (6)
The overall message construction, aggregation and update is [19]:
RUHD = MLP [ B0 + Y SeLU (hg” I ﬁg{}u) (7)

wEN (v)

After employing multiple GCN layers, the resultant node embeddings are fed to
a final fully-connected linear layer to estimate all node features.

go=7(hy)  veEVjeY (8)
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Fig. 2. Model architecture employing multiple multi-hop GCN layers.

where Y is the estimated node features, L is the last GCN layer and -y is modeled
by the linear layer. We use the L1 loss as objective function:

S N
N 1 .
E(y, y) - m ; vz:; |yw - yw| (9)
with Y as ground truth, N as number of nodes and S as number of samples in
a mini-batch.

Multi-hop Variation Given the sparsity and size of a graph, our methodology
requires a comparably large number of GCN layers proportional to the size
of graph. This reduces scalability to larger graphs. To reduce the number of
parameters, we propose GCN layers with multiple hops as shown in Fig.
Specifically, message generation and aggregation are repeated in each GCN layer
before passing it to the MLP:

RO — O 4 37 SeLU (hg><p> I ;lgxp)), peP (10)
ueN (v)

with P as number of hops. The embedding for the next layer is:

B = MLP [ 0P 37 SeLU (B0 || RO (11)
uwEN (v)

This enables the model to gather information from neighbors that are multiple
hops away, requiring fewer GCN layers.

4 Experiments

The methodology can be applied to missing node feature estimation on any
graph. Here, we investigate WDS, which are modelled as graphs by represent-
ing junctions as nodes and pipes between junctions as edges. WDS are espe-
cially challenging because pressure sensors are installed at only few nodes due to
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Fig. 3. L-Town Water Distribution System ([30]) — nodes in red have sensors.

constraints (size of the system, cost, availability, practicality) [I7], resulting in
graphs with sparse feature information. Additionally, the node degree in WDS is
usually low (s. Tab.[]). These properties can be observed in the popular L-Town
WDS [30] shown in Fig.Bl Such characteristics require GNNs to model long-range
dependencies between nodes to properly integrate the available information.

To the best of our knowledge, the task of node feature estimation in WDS
using GNNs based on sparse features has only been dealt by [8]. These researchers
compared their model to a couple of non-GNN based baselines: The first baseline
refers to the mean of known node features as value for unknown node features, the
second baseline uses interpolated regularization [I]. The work [8] demonstrates
that the GNN model significantly outperforms both baselines. Therefore, in our
experiments, we compare our approach only to the GNN model, ChebNet, of [g].
We run two experiments on simulated data. First, we compare our approach to [§]
on three WDS datasets Anytown, C-Town, and Richmond. Second, we conduct
an in-depth evaluation on L-Town with extensive hyperparameter tuning.

Table 1. Major attributes of WDS.

WDS Anytown C-Town L-Town Richmond
Number of junctions 22 388 785 865
Number of pipes 41 429 909 79
Diameter 5 66 79 234
Degree (min, mean, max) (1, 3.60, 7) (1, 2.24, 4) (1, 2.32, 5) (1, 2.19, 4)
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Table 2. Model Hyperparameters and Parameters.

Model Anytown C-Town Richmond L-Town
No. of layers 4 4 4 4

ChebNet Degrees (K;) [39, 43, 45, 1] {[200, 200, 20, 1]|[240, 120, 20, 1]| [240, 120, 20, 1]

7 |No. of filters (F3) [14, 20, 27, 1] | [60, 60, 30, 1] | [120, 60, 30, 1] | [120, 60, 30, 1]

Parameters (million) 0.038 0.780 0.958 0.929
No. of GCN layers 5 33 60 45 10
No. of hops 1 2 3 1 5

m-GCN  |No. of MLP layers 2 2 2 2 2
Latent dimension 32 32 48 96 9
Parameters (million) 0.031 0.203 0.830 2.488 | 0.553

4.1 Datasets

We use a total of four WDS datasets for our experiments: Anytown, C-Town,
L-Town and Richmond (I30]). Major attributes of the WDS are listed in
Table[Il We use the dataset generation methodology of [8] for three of the WDS
(Anytown, C-Town, Richmond) and record 1000 consecutive time steps for each
of the three networks. For each network, we use three different sparsity levels
i.e. sensor ratios of 0.05, 0.1 and 0.2. We do not evaluate on sparsity levels of
0.4 and 0.8 as done in [8], which are more easy. We sample 5 different random
sensor configurations for each sparsity level and each WDS instead of 20.

For the popular L-Town network, we use only a single configuration of sensors
as designed by [30], which gives a sensor ratio of 0.0422. We use two different
sets of simulation settings; one with smooth toy demands and the other close to
actual noisy demand patterns. The simulations are carried out using EPANET
[26] provided by Python package wnir (JL6]). The samples are generated every 15
minutes, resulting in 96 samples every day. We use one month of data for training
(2880 samples) and evaluate on data of the next two months (5760 samples). The
training data is divided in train-validation-test splits with 60-20-20 ratio.

4.2 Training setup

The model parameters are summarized in Table[2l All models are implemented in
Pytorch using Adam optimizer. For the ChebNet baseline [§], we set the learning
rate of 3e-4 and weight decay of 6e-6. For our m-GCN models, we use learning
rate of le-5 and no weight decay. We now describe the training setup of the
ChebNet baseline and our m-GCN model for the two experiments, respectively.

For the first experiment the models are trained for 2000 epochs. We set an
early stopping criteria such that it stops after 250 epochs if the change in loss
is no larger than le-6. We configure ChebNet similar to [§]. Input is masked
as per the sensor ratio and the mask is concatenated with the pressure values.
Hence there are two node features. ChebNet can only use scalar edge fetaures,
i.e. edge weights. Out of the three types of edge weights used by [8] (binary,
weighted, logarithmically weighted), we use the binary weights since other types
did not increase performance. For our model (m-GCN), we did not perform an

! https://engineering.exeter.ac.uk /research /cws/resources/benchmarks /#a8
2 lhttps://www.batadal.net /data.html
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Table 3. Mean errors across nodes and samples across 5 different sensor configurations
for 3 different ratios of sensors.

WDS Anytown C-Town Richmond
Ratio |Error (x107%)|ChebNet| m-GCN | Diff |ChebNet| m-GCN | Diff |[ChebNet| m-GCN | Diff
All 54.19 53.15 |-1.04 | 12.88 9.77 |-3.11| 4.34 2.17 |-2.17
0.05 |[Sensor 7.06 3.77 |-3.28| 7.50 4.61 |-2.89| 347 1.81 |-1.66
Non-sensor 56.44 55.50 |-0.94| 13.16 10.04 |-3.12| 4.38 2.19 [-2.19
All 35.43 34.85 |-0.57| 8.16 547 1-2.69| 3.86 1.93 |-1.93
0.1  [Sensor 6.66 7.19 0.53 7.10 4.83 |-2.27| 3.45 2.02 |[-1.43
Non-sensor 38.3 37.62 |-0.68| 8.28 555 [-2.73| 3.90 1.92 |-1.98
All 14.98 13.51 |-1.47| 7.05 5.58 [-1.47| 3.24 1.59 |-1.65
0.2 [Sensor 5.40 3.06 |[-2.34| 6.46 546 |-1.00| 3.03 1.62 | -1.40
Non-sensor 17.11 15.83 |-1.28 | 7.20 5.61 |-1.59 | 3.29 1.59 |-1.71

extensive hyperparameter search since we achieved considerably better results
than ChebNet model of [8] with a set of intuitive hyperparameter values. We use
single hop configuration for Anytown and multi-hop architectures for C-Town
and Richmond WDS. We only use masked pressure values as input i.e. one node
feature. Further, we use two edge features namely pipe length and diameter.

For the second in-depth evaluation on L-Town, we dropped the second node
feature for ChebNet since this significantly improved the results. We use the
ChebNet model configuration used for Richmond WDS by the authors. We train
our m-GCN model with two configurations; one with the default single hop and
the second with multiple hops as listed in Table 21 For both m-GCN models, we
add a third edge feature namely pressure reducing valves (PRVs) mask. PRVs
are used at certain connections in a WDS to reduce pressure, hence these edges
should be modeled differently. We use a binary mask to pass this information to
the model that helps in improving the pressure estimation at neighboring nodes.
We train all three models for 5000 epochs without early stopping.

5 Results

Comparison with spectral GCN-based approach First, we compare our model
with the work of [8] using their datasets and training settings. The results of the
experiments on Anytown, C-Town and Richmond WDS are shown in Table [3
Here, we evaluate on the basis of mean relative absolute error given by:

1 s i — il
Error = o v 12
ER P P 12
1=1 v=

Since Anytown is a much smaller WDS, sensor ratios translate to very few sen-
sors (0.05: 1 sensor, 0.1: 2 sensors, 0.2: 4 sensors). Hence, both models do not
accurately estimate the pressures in these cases. The number of available sen-
sors is comparatively bigger for both C-Town and Richmond WDS, even for the
smallest ratio, thus naturally increasing performance. As can be seen, m-GCN
outperforms ChebNet [§] by a considerable margin.
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Fig. 4. Mean relative absolute errors for all nodes on noisy data for L-Town WDS.
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Fig. 5. Estimation results of m-GCN and ChebNet compared to ground truth on L-
Town.

Detailed analysis on L-Town We present more in-depth analysis for the evalua-
tion results on L-Town. Mean relative absolute errors for ChebNet and single-hop
m-GCN models are plotted in Fig. [l Both models are trained on smooth data
and evaluated on noisy realistic data. As can be seen, error values for m-GCN
are much lower across all nodes compared to ChebNet. We plot time series of 4
days for a couple of nodes in Fig. Bl The first node (top plot) has an installed
sensor, hence the model gets the ground truth value as input and it has to only
reconstruct it. The second node (bottom plot) does not have an installed sensor
and the model gets zero-input. As depicted, m-GCN is able to successfully recon-
struct and estimate both nodes. The results from ChebNet suffer considerable
errors. There are areas in the L-Town WDS, where water levels are essentially
stagnant with some noise. As shown in Fig. [fl our m-GCN is able to model those
nodes correctly. In contrast, spectral convolutions do not take into account the
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Fig. 6. Estimation results of m-GCN and ChebNet compared to ground truth on nodes
from an area in L-Town with essentially stagnant pressure values.

graph structure and thus end up imposing the seasonality of nodes from other
areas of the graph to the nodes in this area.

Similar to our first experiment, we present mean relative absolute error values
for all, sensor and non-sensor nodes for L-Town in Table @ Our model produces
significantly better results compared to the ChebNet. Since our model is based
on neighborhood aggregation, the number of GCN layers required will continue
to increase with the increasing size of the graphs. In order to reduce the number
of layers and model parameters, we trained our model with only 10 GCN layers
with 5 hops each. As evident, we are able to reduce the parameters by almost
five times at the expense of some performance. Nevertheless, it is still signifi-
cantly better than the baseline ChebNet model. Our main motivation for this
is that the multi-hop approach makes the model more scalable to larger graphs.
Further, it is a step towards developing a generalized version of the model that
can work for different sensor configurations and/or different graph sizes without
hyperparameter tuning and re-training.

Table 4. Mean errors across nodes and samples on L-Town.

Error (x10~°
Model All | Seilsor ) | Non-sensor
Smooth Data
ChebNet 2.55 + 2.87 2.38 £+ 3.55 2.55 + 2.83
m-GCN (45 x 1) 0.39 + 0.37 0.43 + 0.52 0.39 + 0.36
m-GCN (10 x 5) 0.83 £ 0.68 0.74 + 0.59 0.83 £ 0.69
Noisy Data
ChebNet 2.92 + 3.35 2.78 + 4.02 2.93 + 3.32
m-GCN (45 x 1) 0.54 £+ 0.75 0.64 £+ 1.06 0.53 + 0.73
m-GCN (10 x 5) 0.90 + 0.82 0.81 + 0.74 0.90 + 0.83
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6 Conclusion

We have proposed a spatial GCN which is particularly suited for graph tasks on
graphs with small node degree and sparse node features, since it is able to model
long-term dependencies. We have demonstrated its suitability for node pressure
inference based on sparse measurement values as an important and represen-
tative task from the domain of WDS, displaying its behavior for a number of
benchmarks. Notably, the model generalizes not only across time windows, but
also from noise-less toy demand signals to realistic ones. In addition to a very
good performance overall, we also proposed first steps to target the challenge of
scalability to larger graphs by introducing multi-hop architectures with consider-
ably fewer parameters as compared to fully connected deep ones. In future work,
we will investigate the behavior for larger networks based on these first results.
Moreover, unlike simulation tools in the domain, the GNN has the potential to
generalize over different graphs structures including partially faulty ones. We
will evaluate this capability in future work.
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