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Learning Permutation-Invariant Embeddings

for Description Logic Concepts

Caglar Demir and Axel-Cyrille Ngonga Ngomo

Data Science Research Group, Paderborn University

Abstract. Concept learning deals with learning description logic con-
cepts from a background knowledge and input examples. The goal is to
learn a concept that covers all positive examples, while not covering any
negative examples. This non-trivial task is often formulated as a search
problem within an infinite quasi-ordered concept space. Although state-
of-the-art models have been successfully applied to tackle this problem,
their large-scale applications have been severely hindered due to their
excessive exploration incurring impractical runtimes. Here, we propose
a remedy for this limitation. We reformulate the learning problem as a
multi-label classification problem and propose a neural embedding model
(NERO) that learns permutation-invariant embeddings for sets of ex-
amples tailored towards predicting F1 scores of pre-selected description
logic concepts. By ranking such concepts in descending order of predicted
scores, a possible goal concept can be detected within few retrieval op-
erations, i.e., no excessive exploration. Importantly, top-ranked concepts
can be used to start the search procedure of state-of-the-art symbolic
models in multiple advantageous regions of a concept space, rather than
starting it in the most general concept ⊤. Our experiments on 5 bench-
mark datasets with 770 learning problems firmly suggest that NERO
significantly (p-value < 1%) outperforms the state-of-the-art models in
terms of F1 score, the number of explored concepts, and the total run-
time. We provide an open-source implementation of our approach.1
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1 Introduction

Deep learning based models have been effectively applied to tackle various graph-
related problems, including question answering, link prediction [19,30]. Yet, their
predictions are not human-interpretable and confined within a fixed set vocabu-
lary terms [9,11]. In contrast, Description Logics (DLs) provide means to derive
human-interpretable inference in an infinite setting [1,16,27]. Deriving explana-
tions for DLs concepts has been long understood [5]. For instance, explanations
can be derived by using the subsumption hierarchy as a sequence of binary

1 https://github.com/dice-group/Nero
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classifiers in a fashion akin to following a path in decision tree [35,4]. Utiliz-
ing DLs is considered as a possible backbone for explainable Artificial Intelli-
gence (AI) [33]. Although DLs have become standard techniques to formalize
Knowledge Base (KB) [19,20,29], the highly incomplete nature of KBs and im-
practical runtimes of symbolic models have been a challenge for fulfilling its po-
tential. State-of-the-art Concept Learning (CL) models have been successfully
applied to learn DL concepts from a KB and input examples [24,27]. Yet, their
practical applications have been severely hindered by their impractical runtimes.
This limitation stems from the reliance of myopic heuristic function that often
incurs excessive exploration of concepts [16,22,35]. A DL concept is explored by
retrieving its individuals and calculating its quality w.r.t. input KB and exam-
ples (see Section 2). As the size of an input KB grows, excessive exploration
has been a computational bottleneck in practical applications. Here, we propose
a remedy for this limitation. We reformulate the learning problem as a multi-
label classification problem and propose NeRo–a neural permutation-invariant
embedding model. Given a set of positive examples E+ and a set of negative
examples E−, NeRo predicts F1 scores of pre-selected DL concepts as shown
in Figure 1.
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Fig. 1. Visualization of NeRo. Boxes and values denote the pre-selected unique DL
concepts and their predicted F1 scores, respectively.
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By ranking pre-selected DL concepts in descending order of predicted scores,
a goal concept can be found by only exploring few top-ranked concepts. Im-
portantly, top-ranked concepts can be used to initialize the standard search
procedure of state-of-the-art models, if a goal concept is not found. By this, a
state-of-the-art CL model is endowed with the capability of starting the search
in more advantageous states, instead of starting it in the most general concept ⊤.
Our experiments on 5 benchmark datasets with 770 learning problems indicate
that NeRo significantly (p-value < 1%) outperforms the state-of-the-art mod-
els in standard metrics such as F1 score, the number of explored concepts, and
the total runtime. Importantly, equipping NeRo with a state-of-the-art model
(CELOE) further improves F1 scores on benchmark datasets with a low run-
time cost. The results of Wilcoxon signed rank tests confirm that the superior
performance of NeRo is significant. We provide an open-source implementa-
tion of NeRo, including pre-trained models, evaluation scripts as well as a web
service.2

2 Background

Knowledge Base: A Knowledge Base (KB) is a pair K = (Tbox,Abox), where
Tbox is a set of terminological axioms describing relations between named con-
cepts NC [33]. A terminological axiom is in the form of A ⊑ B or A ≡ B s.t.
A,B ∈ NC . Abox is a set of assertions describing relationships among individuals
a, b ∈ NI via roles r ∈ NR as well as concept membership relationships between
NI and NC . Every assertion in Abox must in the form of A(x) and r(x, y), where
A ∈ NC , r ∈ NR, and x, y ∈ NI . An example is visualized in Figure 2.

F10M171 F10F172

F10M180 F10F179 F10M173 F10F174

F10F177 F10F175

TBox:

Brother ⊑Male

Brother ⊑ PersonWithASibling

Child ⊑ Person

Daughter ⊑ Child, Daughter ⊑ Female

Father ⊑ Male, Father ⊑ Parent

Female ⊑ Person

Grandchild ⊑ Child

Granddaughter ⊑ Female

Granddaughter ⊑ Grandchild

Grandfather⊑ Grandparent

Grandfather⊑ Male

Grandmother⊑Female

Grandmother⊑ Grandparent

Grandparent⊑Parent

Grandson⊑Grandchild,Grandson⊑Male

Male ⊑ Person

Mother ⊑ Person, Mother ⊑ Parent

Parent ⊑ Person

PersonWithASibling ⊑ Person

Sister ⊑ Female

Sister ⊑ PersonWithASibling

Son ⊑ Child, Son ⊑ Male

Fig. 2. A visualization of Family KB with Tbox and a subset of Abox. Colors denote
concept assertions, while (·) and branching from (·) denote role assertions, respectively.

2 https://github.com/dice-group/Nero
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Description Logics: Description Logics (DLs) are fragments of first-order
predicate logic using only unary and binary predicates. The unary predicates,
the binary predicates and constants are called concepts, roles and individuals,
respectively [1]. DL have become standard techniques to formalize background
knowledge for many application domains including Semantic Web [20,29]. Lever-
aging KBs defined over DLs has a potential of being a backbone for explainable
AI [33]. Here, we consider KBs in the DL ALC (Attributive Language with
Complements) [1] as in many other works (see Section 3). The model-theoretic
semantics of ALC are given in Table 1.

Table 1. ALC syntax and semantics. I stands for an interpretation, ∆I for its domain.

Construct Syntax Semantics

Atomic concept A AI ⊆ ∆I

Role r rI ⊆ ∆I ×∆I

Top concept ⊤ ∆I

Bottom concept ⊥ ∅
Conjunction C ⊓D CI ∩DI

Disjunction C ⊔D CI ∪DI

Negation ¬C ∆I \ CI

Existential restriction ∃ r.C {x | ∃ y.(x, y) ∈ rI and y ∈ CI}
Universal restriction ∀ r.C {x | ∀ y.(x, y) ∈ rI implies y ∈ CI}

Concept Learning: Let K over ALC, the set E+ ⊂ NI of positive examples,
and the set E− ⊂ NI of negative examples be given. The DL concept learning
problem is defined as follows

∀p ∈ E+, ∀n ∈ E−
(

K |= H(p)) ∧ (K 6|= H(n)
)

, (1)

where H ∈ C denotes an ALC concept and C denotes all valid ALC concepts under
the construction rules: C ::= A | ¬C | C⊓C | C⊔C | ∃r.C | ∀r.C |, where A ∈ NC and
r ∈ NR. K |= H(p) implies that an inference of the class membership H(p) is a
logical consequence of K. Checking whether a H fulfills Equation (1) is performed
by a retrieval function R : C → 2NI defined under Open World Assumption
(OWA) or Close World Assumption (CWA). This non-trivial learning problem
is often transformed into a search problem within a quasi-ordered ALC concept
space (S,�) [7,13,27,34]. Traversing in S is commonly conducted via a top-down
refinement operator defined as ρ : S → 2S with

∀A ∈ S : ρ(A) ⊆ {B ∈ S | B � A}. (2)

State-of-the-art CL models begin their search towards a H, after a search tree is
initialized with the most general DL concept (⊤) as a root node. This search tree



Learning Permutation-Invariant Embeddings for Description Logic Concepts 5

is iteratively built by selecting a node containing a quasi-ordered DL concept
with the highest heuristic value and adding its qualifying refinements as its
children into a search tree [27].

Heuristics: A heuristic function is the key to an efficient search in S towards
a H [26]. The number of explored concepts and runtimes are used as proxy for
the efficiency. Various heuristic functions have been investigated [26,35]. Most
heuristic functions of state-of-the-art models can be considered as myopic func-
tions favoring syntactically short and accurate concepts. Hence, they are prone
to stuck in a local optimum [35]. For instance, the heuristic function of CELOE
is defined as

φCELOE(A, B) = Q(B) + λ ·
[

Q(B)−Q(A)
]

− β · |B|, (3)

where A ∈ S, B ∈ ρ(A). β > λ ≥ 0 and Q(·) denotes a quality function (e.g. F1

score or accuracy). Through Q(·) and | · |, the search is steered based on solely A

and B towards more accurate and syntactically shorter concepts. F1(·) is defined
as

F1(A) =
| E+ ∩R(A) |

| E+ ∩R(A) | +0.5(| E− ∩R(A) | + | E+ \ R(A) |)
. (4)

As the size of KB grows, runtimes of performing retrieval operations R(·) in-
crease [3,4,25]. Consequently, traversing in S becomes a computational bot-
tleneck. Therefore, reducing the number of explored concepts plays an impor-
tant role to tackle to tackle CL on KBs. Although state-of-the-art models (e.g.
CELOE) apply redundancy elimination and expression simplification rules to
reduce the number of explored concepts, impractical long runtimes of state-of-
the-art models still prohibit large-scale applications [17]. Moreover, the selected
assumption underlying R() also plays a role to tackle CL on large KBs. Due
to the incomplete nature of KBs, OWA seems to be a more suitable assump-
tion [31]. Yet, Using OWA often makes membership queries computationally
more challenging [12,26]. Consequently, CWA is often adopted in many recent
works [16,22,34].

3 Related Work

A plethora of works have investigated learning DLs concepts from a KB and in-
put examples. We refer to [1,18,23] for an introduction. Most symbolic systems
differ in the usage of heuristic functions and the design of the refinement opera-
tors [2,7,12,14,26,27,21,34]. DL-Learner [24] is regarded as the most mature and
recent system for CL [32]. DL-Learner consists of several state-of-the-art models,
including ELTL, OCEL, and CELOE. ELTL is based on a refinement operator for
the DL EL and uses a heuristic function that favors syntactically short concepts.
CELOE builds on OCEL and ELTL and it applies a more sophisticated heuristic
function. CELOE is currently the best CL model available within DL-Learner
and often outperforms many state-of-the-art models including OCEL and ELTL
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in terms of the quality of learned expression, number explored concepts, and
runtimes [35,28]. The aforementioned approaches apply redundancy elimination
and expression simplification rules to reduce the number of explored concepts.
Although applying redundancy elimination and expression simplification rules
often reduce the number of explored concepts, these operations introduces more
computation and long runtimes still prohibit large-scale applications [17]. Most
recent works have focused on treating the impractical runtimes in CL. CLIP [22]
is a neural approach that serves as an addition to refinement-based approaches
and supports pruning the search space by predicting the length of a possible
goal state. EvoLearner [16] represents a concept as an abstract syntax tree cor-
responding an individual of an evolutionary algorithm. The initial population
of individuals is obtained via biased random walks originating from E+. West-
phal et al. [35] design a Simulated Annealing based meta-heuristic to balance
the exploration-exploitation trade-off during the search process. In this work, we
mainly evaluate NeRo against CELOE provided in DL-Learner for two reasons:
(1) DL-Learner is regarded as the most mature and recent system for CL [32]
and (2) most recently developed models are often evaluated w.r.t. the quality of
concepts as well as runtimes. Yet, not reporting the number of explored concepts
does not permit us to quantify whether a possible improvement through NeRo

may stem from our novel idea or our efficient implementation. Consequently, in
our experiments, we mainly compare NeRo against CELOE in terms of number
of explored concepts, quality of learned concepts as well as runtimes.

4 Methodology

Motivation: The goal in the CL problem is to find a DL concept H ∈ C max-
imizing Equation (4). Here, we are interested in achieving this goal by learning
permutation-invariant embeddings tailored towards predicting F1 scores of pre-
selected concepts. Through exploring top-ranked concepts at first, we aim to find
a goal concept can only with few retrieval operations. If a goal state is not found
within top-ranked concepts, the search tree of a state-of-the-art CL model can
be initialized with top-ranked concepts and ⊤ concept along with corresponding
heuristic values. By this, the standard search procedure can be started in more
advantageous states, than the most general concept ⊤.

Approach: Equation (4) indicates that F1(·) is invariant to the order of indi-
viduals in E+, E−, and R(·). Previously, Zaheer et al. [36] have proven that all
functions being invariant to the order in inputs can be decomposed into

f(x) = φ
(

∑

x∈x

ψ(x)
)

, (5)

where x = {x1, . . . , xm} ∈ 2X and φ(·) and ψ(·) denote a set of input and two
parameterized continuous functions, respectively. A permutation-invariant neu-
ral network defined via Equation (5) still abides by the universal approximation



Learning Permutation-Invariant Embeddings for Description Logic Concepts 7

theorem [36]. We conjecture that such neural network can learn permutation-
invariant embeddings for sets of individuals (e.g. E+ and E−) tailored towards
predicting F1 scores of pre-selected concepts. Through accurately predicting F1

scores of pre-selected DL concepts, possible goal concepts from pre-selected con-
cepts can be detected without using F1(·) and R(·). With these considerations,
we define NeRo as follows

NeRo(E+, E−) =σ

(

φ
(

∑

x∈E+

ψ(x)
)

− φ
(

∑

x∈E−

ψ(x)
)

)

, (6)

where ψ(·) : NI → R
m and φ : R

m → [0, 1]|T | denote an embedding look-
up operation and an affine transformation, respectively. T represents the pre-
selected DL concepts. The result of the translation operation denoted with
z ∈ R

m is normalized via the logistic sigmoid function σ(z) = 1
1+exp(−z) . Hence,

NeRo : 2NI × 2NI 7→ [0, 1]|T | can be seen as a mapping from two sets of individ-
uals to |T | unit intervals. NeRo can be seen as a multi-task learning approach
that leverages the similarity between multi-tasks, where a task in our case cor-
responds to accurately predicting the F1 score of a pre-selected DL concept [8].

The importance of learning representations tailored towards related tasks has
been well investigated [15,8]. Motivated by this, we elucidate the process of se-
lecting DL concepts in Algorithm 1. We select such concepts that their canonical
interpretations do not fully overlap (see the 4.th line). As shown therein, NeRo

can be trained on knowledge base defined over any DLs provided that R(·) and
ρ(·) are given.

Algorithm 1 Constructing target DL concepts

Input: R(·), ρ(·), d, maxlength Output: T

1: T := {C | C ∈ ρ(⊤) ∧ |C| ≤ maxlength ∧ 0 < |R(C)|}
2: for each A ∈ T do

3: for each B ∈ T do

4: if R(A) 6= R(B) then
5: for each X ∈ {A ⊓ B, A ⊔ B} do

6: if |R(X)| > 0 ∧R(X) 6∈ {R(E) | E ∈ T } then

7: Add X to T .
8: end if

9: if |T | = d then

10: return T
11: end if

12: end for

13: end if

14: end for

15: end for

16: if |T | < d then

17: Go to the step (2).
18: end if
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Training Process: Let D = {(E+
i
, E−

i
,yi)}

N
i=1 represent a training dataset,

where a data point (E+, E−,y) is obtained in four consecutive steps: (i) Sample
C from T uniformly at random, (ii) Sample k individuals E+ ⊂ R(C) uniformly
at random, (iii) Sample k individuals E− ⊂ NI \ E+ uniformly at random,
and (iv) Compute F1 scores y via Equation (4) w.r.t. E+, E−, for T . For a
given (E+, E−,y) and predictions ŷ := NeRo(E+, E−), an incurred binary
cross entropy loss. Important to note that after training process, permutation-
invariant embeddings of any ALC DL concepts can be readily obtained omitting
the translation operation in NeRo, e.g. embeddings of a DL concept (e.g. Male⊓
∃hasSibling.Female) can be obtained via φ

(
∑

x∈R(Male⊓∃hasSibling.Female) ψ(x)
)

.
In our project page, we provided a 2D visualization of learned embeddings for
the Family KB.

5 Experiments

We based our experimental setup on [6,26,7] and used learning problems pro-
vided therein. An overview of the datasets is provided in Table 2. To perform
extensive comparisons between models, additional learning problems are gener-
ated by randomly sampling E+ and E−. We ensured that none of the learning
problems used in our evaluation has been used in the unsupervised training
phase. In our experiments, we evaluated all models in ALC for Class Expression
Learning (CEL) on the same hardware.

Table 2. An overview of class expression learning benchmark datasets.

Dataset |NI | |NC | |NR|

Family 202 18 4
Carcinogenesis 22372 142 21
Mutagenesis 14145 86 11
Biopax 323 28 49
Lymphography 148 49 1

We evaluated models via the F1 score, the runtime and number of explored
concepts. The F1 score is used to measure the quality of the concepts found w.r.t.
positive and negative examples, while the runtime and the number of explored
concepts are to measure the efficiency. We measured the full computation time
including the time spent prepossessing time of the input data and tackling the
learning problem. Moreover, we used two standard stopping criteria for state-
of-the-art models. (i) We set the maximum runtime to 10 seconds although
models often reach good solutions within 1.5 seconds [27]. (ii) The models are
configured to terminate as soon as they found a goal concept. In our experiments,
we evaluate all models in ALC for CL on the same hardware. During training, we
set |T | = 1000, N = 50 and used Adam optimizer for NeRo. We only considered
top-100 ranked concepts to evaluate NeRo.
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6 Results

Results with Benchmark Learning Problems: Table 3 reports the concept
learning results with benchmark learning problems. Table 3 suggests that equip-
ping NeRo with the standard search procedure improves the state-of-the-art
performance in terms of F1 scores even further with a small cost of runtimes.
CELOE and ELTL require at least 14.7× more time than NeRo to find ac-
curate concepts on Family. This stems from the fact that NeRo explores on
average only 21 concepts, whereas CELOE explored 1429. On Mutagenesis and
Carcinogenesis, NeRo finds more accurate concepts, while exploring less, hence,
achieving better runtime performance. Runtime gains stem from the fact that
NeRo explores at least 2.3× fewer concepts.

Table 3. Results on benchmark learning problems. F1, T, and Exp. denote F1 score,
total runtime in seconds, and the number of explored concepts, respectively. NeRo

†

denotes equipping NeRo with CELOE. ELTL does not report the Exp.

Dataset NeRo† NeRo CELOE ELTL

F1 T Exp. F1 T Exp. F1 T Exp. F1 T
Family .987 .83 26 .984 .68 21 .980 4.65 1429 .964 4.12
Mutagenesis .714 17.30 200 .704 13.18 100 .704 23.05 516 .704 21.04
Carcinogenesis .725 32.23 200 .720 26.26 100 .714 37.18 230 .719 36.29

Important to note we did not use parallelism in NeRo and we reload pa-
rameters of NeRo for each single learning problem. To conduct more extensive
evaluation, we generated total 750 random learning problems on five benchmark
datasets. Since Lymphography and Biopax datasets do not contain any learning
problems, they are not included in Table 3.

Results with Random Learning Problems: Table 4 reports the concept
learning results with random learning problems. Table 4 suggests that CELOE
explores at least 3.19× more concepts than NeRo. Importantly, NeRo finds
on-par or more accurate concepts, while exploring less. Here, we load the pa-
rameters of NeRo only once per dataset and are used to tackle learning prob-
lems sequentially. This resulted in reducing the total computation time of NeRo

by 3− 6× on Family, Mutagenesis and Carcinogenesis benchmark datasets. Al-
though NeRo can tackle learning problems in parallel (e.g. through multipro-
cessing), we did not use any parallelism, since CELOE and ELTL do not abide
by parallelism [7]. Loading the learning problems in a standard mini-batch fash-
ion and using multi-GPUs may further improve the runtimes of NeRo. These
results suggest that NeRo can be more suitable than CELOE and ELTL on
applications requiring low latency.
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Table 4. Random learning problems with different sizes per benchmark dataset. Each
row reports the mean and standard deviations attained in 50 learning problems. |E|
denotes |E+|+ |E−|.

Dataset |E| NeRo CELOE ELTL

F1 T Exp. F1 T Exp. F1 T
Family 10 .913± .06 .16± .51 74± 43 .903± .06 11.61 ± 3.58 5581 ± 2375 .718± .01 4.45± 2.84

20 .807± .04 .16± .49 100± 00 .795± .05 13.28 ± 1.47 7586 ± 645 .678± .02 3.59± 1.27
30 .775± .03 .15± .41 100± 00 .760± .03 13.24 ± 1.42 7671 ± 575 .672± .01 3.46± 1.59

Lymphography 10 .968± .07 .12± .43 75± 41 .968± .07 6.63± 4.29 5546 ± 5169 .733± .09 3.07 ± .30
20 .828± .04 .13± .40 100± 00 .826± .05 13.01 ± 1.23 11910 ± 1813 .678± .02 3.08 ± .50
30 .780± .04 .13± .01 100± 00 .780± .04 13.02 ± 1.69 13138 ± 2601 .672± .01 3.09 ± .72

Biopax 10 .859± .08 .19± .71 86± 34 .806± .07 13.26 ± 1.94 4752 ± 2153 .685± .06 3.71 ± .10
20 .793± .05 .19± .52 100± 00 .746± .04 13.63 ± .10 4151 ± 748 .668± .06 3.72 ± .10
30 .749± .03 .18± .52 100± 00 .718± .02 13.91 ± .44 3843 ± 963 .668± .06 3.90 ± .22

Mutagenesis 10 777± .05 3.47± 1.61 100± 00 .753± .06 20.27 ± 1.39 546± 613 .670± .02 10.29 ± .40
20 .746± .05 3.09± 1.75 100± 00 .712± .02 20.38 ± 1.30 430± 28 .667± .00 10.73 ± 1.10
30 .721± .03 2.89± 1.60 100± 00 .700± .02 20.39 ± 1.06 429± 38 .667± .00 11.74 ± .97

Carcinogenesis 10 .768± .06 5.39± 2.98 98± 14 .764± .06 29.90 ± 1.02 401± 125 .673± .05 19.99 ± .67
20 .722± .03 5.40± 1.87 100± 00 .713± .02 30.30 ± .19 318± 152 .667± .00 20.00 ± 1.11
30 .704± .05 4.70± 2.78 100± 00 .697± .02 29.99 ± .58 319± 43 .667± .00 20.38 ± .85

Table 5. Performance comparison with different number of explored concepts. Each
row reports the mean and standard deviations attained in 50 learning problems.

Dataset |E| NeRo-1 NeRo-10 NeRo-1000

F1 T F1 T F1 T
Family 10 .906 ± .07 .08± .06 .910 ± .05 .09± .06 .916± .06 .81± .50

20 .793 ± .05 .08± .05 .806 ± .04 .09± .05 .807± .04 1.17 ± .50
30 .742 ± .05 .08± .05 .773 ± .03 .09± .05 .775± .03 1.15 ± .50

Lymphography 10 .882 ± .07 .08± .06 .905 ± .05 .08± .06 .916± .06 .77± .50
20 .793 ± .05 .07± .05 .827 ± .04 .08± .05 .828± .04 1.03 ± .50
30 .738 ± .05 .07± .06 .777 ± .04 .08± .05 .780± .03 1.00 ± .60

Biopax 10 .853 ± .08 .09± .06 .856 ± .05 .97± .59 .868± .08 1.31 ± .80
20 .779 ± .05 .09± .06 .791 ± .04 .10± .62 .793± .04 1.35 ± .60
30 .708 ± .07 .09± .06 .742 ± .04 .10± .63 .749± .03 1.39 ± .60

Mutagenesis 10 .733 ± .07 .32± 2.03 .785 ± .06 .57± 1.81 .803± .06 36.98 ± 5.81
20 .689 ± .08 .31± 1.99 .734 ± .05 .52± 1.82 .751± .04 34.29 ± 5.91
30 .673 ± .08 .31± 2.03 .712 ± .04 .49± 1.77 .728± .03 32.88 ± 6.13

Carcinogenesis 10 .717 ± .09 .41± 2.53 .740 ± .09 .89± 2.89 .783± .02 56.941 ± 9.55
20 .680 ± .06 .40± 2.49 .707 ± .05 .82± 2.45 .731± .02 57.205 ± 5.08
30 .610 ± .11 .41± 2.83 .671 ± .06 .77± 2.66 .716± .02 52.872 ± 7.58
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Results with Limited Exploration: Table 5 reports concept learning results
with limited exploration on five benchmark datasets. Table 5 suggests that
NeRo-10 often outperforms CELOE and ELTL (see Table 4) in all metrics even
when exploring solely 10 top-ranked concepts.

Significance Testing: To validate the significance of our results, we performed
Wilcoxon signed-rank tests (one and two-sided) on F1 scores, runtimes and the
number of explored concepts. Our null hypothesis was that the performances of
NeRo and CELOE come from the same distribution. We were able to reject the
null hypothesis with a p-value < 1% across all the datasets, hence, the superior
performance of NeRo is statistically significant.

6.1 Discussion

Our results uphold our hypothesis: F1 scores of DL concepts can be accurately
predicted by means of learning permutation-invariant embeddings for sets of
individuals. Through considering top-ranked DL concepts at first, the need of
excessive number of retrieval operations to find a goal concept can be mitigated.
Throughout our experiments, NeRo consistently outperforms state-of-the-art
models w.r.t. the F1 score, the number of explored concepts and the total com-
putational time. Importantly, starting the standard search procedure on these
top-ranked concepts further improves the results. Hence, NeRo can be applied
within state-of-the-art models to decrease their runtimes. However, it is impor-
tant to note that Lehmann et al. [26] have previously proved the completeness
of CELOE in the CL problem, i.e., for a given learning problem, CELOE finds
a goal expression if it exists provided that there are no upper-bounds on the
time and memory requirements. Although these requirements are simply not
practical, equipping NeRo with the search procedure of CELOE is necessary to
achieve the completeness in CL.

7 Conclusion

We introduced a permutation-invariant neural embedding model (NeRo) to effi-
ciently tackle the description logic concept learning problem. For given learning
problem, NeRo accurately predicts F1 scores of pre-selected description logic
concepts in a multi-label classification fashion. Through ranking concepts in de-
scending order of predicted F1 scores, a goal concept can be learned within few
retrieval operations. Our experiments showed that NeRo outperforms state-
of the art models in 770 concept learning problems on 5 benchmark datasets
w.r.t. the quality of predictions, number of explored concepts and the total com-
putational time. Equipping NeRo with the standard search procedure further
improves the F1 scores across learning problems and benchmark datasets.

We believe that incorporating neural models in concept learning problems
is worth pursuing further. In future, we will work on using NeRo on more
expressive description logics and integrating embeddings for concepts in non-
myopic heuristics [10].
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16. Heindorf, S., Blübaum, L., Düsterhus, N., Werner, T., Golani Nandkumar, V.,
Demir, C., Ngonga Ngomo, A.C.: Evolearner: Learning description logics with evo-
lutionary algorithms. In: WWW. ACM (2022)

17. Hitzler, P., Bianchi, F., Ebrahimi, M., Sarker, M.K.: Neural-symbolic integration
and the semantic web. Semantic Web 11(1), 3–11 (2020)

18. Hitzler, P., Krotzsch, M., Rudolph, S.: Foundations of semantic web technologies
(2009)

19. Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C., Melo, G.d., Gutierrez, C.,
Kirrane, S., Gayo, J.E.L., Navigli, R., Neumaier, S., et al.: Knowledge graphs.
ACM Computing Surveys (CSUR) 54(4), 1–37 (2021)

20. Horrocks, I., Patel-Schneider, P.F., Van Harmelen, F.: From shiq and rdf to owl:
The making of a web ontology language. Journal of web semantics 1(1), 7–26 (2003)

21. Iannone, L., Palmisano, I., Fanizzi, N.: An algorithm based on counterfactuals for
concept learning in the semantic web. Applied Intelligence 26(2), 139–159 (2007)

22. Kouagou, N., Heindorf, S., Demir, C., Ngomo, A.C.N.: Learning concept lengths
accelerates concept learning in alc. In: Nineteenth Extended Semantic Web Con-
ference - Research Track. Springer (2022)
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