
Auxiliary Network: Scalable and agile online learning for dynamic

system with inconsistently available inputs

Rohit Agarwal1, Arif Ahmed Sekh2, Krishna Agarwal2, and Dilip K. Prasad3

1Indian Institute of Technology (ISM),Dhanbad, India
2Department of Physics and Technology,UiT The Arctic University of Norway

3Department of Computer Science, UiT The Arctic University of Norway

Abstract

Streaming classification methods assume the number of input features is fixed and always received. But in
many real-world scenarios demand is some input features are reliable while others are unreliable or inconsistent.
In this paper, we propose a novel deep learning-based model called Auxiliary Network (Aux-Net), which is
scalable and agile. It employs a weighted ensemble of classifiers to give a final outcome. The Aux-Net model is
based on the hedging algorithm and online gradient descent. It employs a model of varying depth in an online
setting using single pass learning. Aux-Net is a foundational work towards scalable neural network model for a
dynamic complex environment requiring ad hoc or inconsistent input data. The efficacy of Aux-Net is shown on
public dataset.

1 Introduction

Machine learning architectures that support varying number of input features can be a game changer in many real
life applications which deal with learning in dynamic complex environments. Examples include imparting intelligence
to a node in ad hoc communication networks, a device in smart city environment, and an autonomous vehicle
in complex driving environment. To model such dynamic environment of inconsistent and scalable nature with
assumption some reliable data channels as base channels from on-board sensor array, which we refer to as base input
features and denote as {xB1 , . . . , xBb , . . . , xBB}. In addition, it may receive other information about the environment
through auxiliary sensor arrays or communication channels. We call the corresponding input features as auxiliary
input features, denote them by {xA1 , . . . , xAa , . . . , xAA}. Here, x denotes input features, B in superscript and subscript
denotes base feature and the number of base features respectively. Similarly, A in superscript and subscript denotes
auxiliary feature and the number of auxiliary features respectively. Due to the intermittent availability, only a
subset of auxiliary features arrive along with the base features at any time instance t as shown in Figure 1. This
problem can be approached in either minimalist or maximalist approach. In the minimalist approach, all uncertain
inputs are dropped and a single knowledge model is trained using only the base input features. This knowledge
model provides certain base accuracy, but does not utilize the additional information from auxiliary inputs. The
trade-off is the loss of opportunity for better performance. In the maximalist approach, an ensemble of 2A networks
can be formed to cater for all possible combinations of availability of auxiliary features. Therefore the network with
the smallest dimensionality caters to only the base features and the network with the largest dimensionality caters
to all the base and auxiliary features, where we refer to the number of inputs to a network as its dimensionality.
However, learning the knowledge model in such ensemble of networks is cumbersome, as explained next. Given At
inputs features at a time t, 2At subsets of these features can be formed and therefore the network corresponding
to each subset needs to be trained. This results into long training durations, further illustrated in supplementary.
Another trade-off is that huge number of networks need to be maintained throughout. An ideal solution would be
an agile and scalable network architecture that adapts itself to the availability of auxiliary inputs without needing
to maintain or train multiple networks.

In this paper, we present a new paradigm of learning in the presence of inconsistently available auxiliary inputs,
which we call auxiliary network (Aux-Net). The key-stone of Aux-net is the separation of learning corresponding
to the auxiliary inputs and the base inputs into separate modules parallel to each other (see Figure 2). The base
features are processed as a chunk in the base module while the auxiliary module contains one independent layer per
auxiliary input in parallel with the other layers. Therefore, the dimensionality of the active network can be varied

1

ar
X

iv
:2

00
8.

11
82

8v
1

 [
cs

.L
G

]
 2

6
A

ug
 2

02
0

Figure 1: Arrival of streaming data with all the
base features and inconsistently available auxiliary
features is demonstrated here.

Figure 2: Block diagram of the auxiliary network. The
green bold arrow represents the ground truth and the
circle with a + sign calculates a final prediction from the
weighted output of each classifier. All the modules are
the combination of one or more hidden layers where the
auxiliary module is scalable i.e. the number of layers keeps
changing with time and scalability needs of the application.

by simply freezing the portion corresponding to an unavailable auxiliary input. In this manner, the knowledge base
of Aux-Net corresponds to the maximalist approach, where as the active knowledge model of suitable dimensionality
can be invoked from it in an agile manner. Support for knowledge models of various dimensionalities makes our
approach scalable. At the same time, agility of our framework and stability during dynamic operation is attributed
to the special output weighing mechanism of the auxiliary block which dynamically spools the relative contribution
of the auxiliary data depending on the availability of the auxiliary features and their influence on the final outcome.

We construct the initial framework on the basis of online deep learning (ODL) method [1] and show our results
on Italy power demand dataset [2]. We observe robust, agile, and scalable performance of Aux-Net in situations
as challenging as half of inputs being available 50% of the time and when all except one inputs are intermittently
available. We show that in the most challenging scenarios, Aux-Net performs quite close to ODL (trained using only
the base features) even while supporting agility and in the more favorable scenarios, it performs better than ODL.

The outline of the paper is as follows. Related work is discussed in section 2. Aux-Net is presented in section 3
and diverse numerical experiments and its discussion are presented in section 4. The paper is concluded in section 5
and the broader impact of this work is presented in the last section.

2 Related Works

Many methods based on Bayesian theory [3], k-nearest neighbour [4], support vector machines [5], decision tree [6],
fuzzy logic [7, 8] are proposed for streaming classification task. A brief study of all these techniques can be found
in [9, 10]. Furthermore, some incremental learning approaches are also proposed [11, 12, 13, 14, 15]. Other deep
learning approaches for online learning include [16, 17, 1, 18]. A limitation of these techniques are that they assume
that the dimension of the incoming data is fixed. Hou et al. [19, 20] proposed machine learning approaches for
dynamic environments. However, they assumed that the dimensionality of the inputs is constant in batches and
therefore batch wise learning can be used. Hou et al. [19] further assume that there are multiple sets of features,
where one entire set is either available or unavailable in a given batch. Hou et al. [20] assumes that there is an
overlapping period between two batches when all the inputs from previous and next batches are available, which
allows in supporting soft transition across batches. These methods are indeed more scalable than approaches that
assume fixed input dimensionality. Nonetheless, they cannot handle as challenging situations as depicted in Figure 1
where no assumption is made on availability of auxiliary features in batches or sets. To the best of our knowledge,
our work is a foundational work for problems in which the inputs may be inconsistently unavailable at any time
instance. The only assumption of our work is that there is at least one base feature consistently available. Our
work has a more general premise and the premises of all the above mentioned works can be considered as subsets of
our premise. We note that our framework is inspired from the concept of hedge algorithm [21] and online gradient
descent (OGD) [22] used in deep neural network (DNN) as proposed in ODL [1], but ODL also assumes that all the
features are consistently available.

2

(a) Detailed architecture of Aux-Net is presented here. The gray colored
rectangular boxes represents a layer.

(b) The functional diagram of a layer in figure
3(a) is shown here.

Figure 3: The architecture of Auxiliary network (Aux-Net)

3 Auxiliary Network (Aux-Net)

3.1 Problem Setting

Let’s denote the streaming classification data by D = {(x1, y1), ..., (xt, yt), ..., (xT , yT)} where xt = {xBt , x
At
t } is the

input at time instance t. The base features are denoted by xBt = {xB1,t, ..., xBb,t, ..., xBB,t}, where B in superscript and

subscript denotes the base features and total number of base features respectively and xBb,t denotes the bth base

feature at time instance t. The auxiliary features at any time instance t is represented by xAt
t = {xAj,t}∀j∈At where

At ⊆ {1, ..., a, ...A} is the subset of auxiliary features received at time instance t. The A in superscript and subscript
denotes the auxiliary features and total number of auxiliary features respectively and xAa,t denotes the ath auxiliary

feature at time instance t. The input xt ∈ Rdt where dt is the dimension of xt varying with time t as shown in
Figure 1. The output yt ∈ RC is the class label associated with xt where C is the total number of classes. The
Aux-Net learns a mapping F : Rdt → RC. The prediction of the model is given by ŷt = F (xt). The model trains in
an online setting where at any time instance t, the input feature xt arrives, the model predicts an output ŷt, the
actual output yt is revealed and an update is made to the model based on the loss L(ŷt, yt) incurred. Exhaustive
list of all the notations is given in the supplementary.

3.2 Architecture

Consider a DNN with S number of base layers, one middle layer, A number of auxiliary layers and E number of end
layers. The base layers, middle layer, auxiliary layers and end layers constitute the base module, middle module,
auxiliary module and end module respectively. The base, middle and end modules are stacked sequentially and
auxiliary module is placed in parallel to the base and middle module with a connection to the end module as shown
in the Figure 2. A softmax classifier is attached to each of the layer. The detailed architecture of the model is
presented in Figure 3. The output of the Aux-Net model is given as the weighted combination of all the classifiers
by the equation:

F (x) =
∑
Z∈U

Z∑
z=1

αZz f
Z
z (1)

where U = {S,M,E,A} denotes all the modules, and S,M,E,A in superscript and subscript denotes the module
name and the total number of layers in the module respectively. The notation fZz and αZz represents the output of
the classifier associated with the layer z of the module Z and weight of the classifier respectively.

The architecture of each layer is shown in Figure 3(b). Each layer is attached to a classifier f parameterized
by θ that gives an output as fZz = softmax(hZ

z θ
Z
z), where hZz is the hidden feature of the layer. Each layer is

parameterized by W and c that takes the hidden feature of the previous layers as an input, and generates its hidden

3

feature as hZz = σ(WZ
z h

Z
z−1 + cZz), where σ is the activation function and θ, W and c are learnt using OGD approach.

A hedge block is used to compute α based on the loss incurred by the classifier.
Now, we describe the inputs to the different layers. The first base layer receives the complete xBt as the input i.e.

hZ0 = xBt . The subsequent base layers receive the hidden feature of its previous layer as its input. The middle layer
receive the hidden feature of the last base layer as its input, i.e. hM0 = hSS . The ath auxiliary layer receives the
ath auxiliary feature as its input, i.e., hAa = xAa . All the end layers, except the first end layer receive its previous
layer features as the input. The first end layer is special in terms of the input since the input to it needs to
support agility arising from only a subset of auxiliary features being available at any time instance t. The input
hE0,t to the first end layer at time instance t is a vector derived by concatenating weighted hidden features h of the
middle and the auxiliary layers corresponding to the currently available auxiliary inputs. It is therefore given by
hE0,t =

[
γM1,th

M
1,t, {γAj,thAj,t}∀j∈At

]
, where γ is the importance of the layers connected to first end layer denoting the

fraction of the connected layer’s output passed as an input to the first end layer.

3.3 Parameters Learning

The learning of the model occurs in an online setting through the use of a loss function defined as:

L(F (x), y) =
∑
Z∈U

Z∑
z=1

αZz L(fZz (x), y) (2)

where L(fZz (x), y) is the loss of the classifier associated with layer z of the module Z. On the basis of the loss
incurred at each time step, the values of γ, θ,W, c, α are updated as described next.

Updating γ : The highlight of Aux-Net is the update of γ which allows for soft handling of the asynchronous
availability of auxiliary features. It depends only on its classifiers weights and are calculated as follows:

γPp,t =
αPp,t

αM1,t +
∑
j∈At

αAj,t
for C1:(P = M, p = 1) or (P = A, p ∈ At) (3)

Updating θ : The classifiers parameters θ is learned through OGD. The parameter θZz is associated with only
one classifier and does not depend on the other classifiers. Therefore, its update will only be with respect to the loss
of its own classifier. After every time instance t, θZz of classifier z of the module Z is updated as:

θZz,t+1 = θZz,t − ηαZz,t∆Z
θZz,t,z

for C2:(Z ∈ U ′, z ∈ {1, ..., Z}) or (Z = A, z ∈ At) (4)

where,∆R
θZz,t,r

=
∂L(fR

r (xt),yt)

∂θZz,t
, η is the learning rate of the parameters and U ′ = {S,M,E}.

Learning W and c : The weights (W) and bias (c) of a layer are learned by back propagation on the final loss
similar to OGD. But, since each layer is associated with a classifier unlike the traditional DNN where only last layer
gives a prediction, the gradient descent is different. Here, the parameters of a layer depends on the loss of all its
successive layers that directly or indirectly influence it. The following equation shows the weight update rule and
the same is applicable for bias too.

WA
a,t+1 = WA

a,t − η
[
αAa,t∆

A
WA

a,t,a
+

E∑
e=1

αEe,t∆
E
WA

a,t,e

]
WZ
z,t+1 = WZ

z,t − η
[Z∑
j=z

αZj,t∆
Z
WZ

z,t,j
+
∑
Q=set

Q∑
q=1

αQq,t∆
Q

WZ
z,t,q

] (5)

where set = {M,E}, {E}, φ if Z ∈ {S}, {M}, {E} respectively, and z ∈ {1, ..., Z}.
Learning α : We learn the value of α through hedge algorithm. Initially, the value of α is uniformly distributed

i.e., αZz = 1/L, where L is the total number of layers, L = S +M +A+ E. The loss incurred by the classifier z of
module Z at time instance t is L(fZz (xt), yt) and its weight is αZz,t. The weights of the classifier are updated on the
basis of its loss as:

αZz,t+1 = αZz,tβ
L(fZ

z (xt),yt) for C2, (6)

where β ∈ (0, 1) is the discount rate parameter. There may come a situation where αZz → 0. To avoid that since we
don’t want to neglect any layer, a smoothing parameter λ is introduced where λ ∈ (0, 1). It ensures a minimum
weight for each classifier by using the equation αZz,t+1 = max(αZ

z,t+1, λ/L). The value of all α is then normalized

such that
∑
Z=U ′

Z∑
z=1

αZz,t+1 +
∑
j∈At

αAj,t+1 = 1.

4

3.4 Algorithm

The Aux-Net is a test-then-train approach and since the number of auxiliary features are changing, the trained
model learned at time step t can’t be used as it is for training or testing at time step t+ 1. We define a knowledge
base K which is updated after each time instance t. We represent all the parameters of the knowledge base by ′ .
The knowledge base K at any time instance t is given by

Kt = {W ′t , c′t, θ′t, α′t}, where Gt = {GSt , GMt , GAt , GEt } if G ∈ {W ′, c′, θ′, α′} (7)

Figure 4: Block diagram of Aux-Net algorithm.

Before training or testing, the model needs to incor-
porate the incoming dynamic auxiliary features. We
define a model Mt given by equation 8, that handles the
asynchronous availability of auxiliary features (At) by
introducing the variable γ. The model Mt predicts an
output ŷt, given xt and updates its parameter giving M∗t
based on the loss incurred. Before moving to the next
instance, we update the final parameters of Kt based on
M∗t , giving knowledge base Kt+1. The block diagram
of the algorithm is shown in Figure 4 and algorithm is
given in Algorithm 1.

Creating Model (Mt): Based on the auxiliary fea-
tures At received at time step t and knowledge base Kt,
the model Mt is created before prediction and training.
The auxiliary layers corresponding to At are kept active and all the other auxiliary layers are freeze. Freezing
of layers means all the parameters associated with this layer will not be trained. In other terms, freezing means
removing the layer from the model. Since, some of the auxiliary layers are removed, the value α of the model
changes and a parameter γ is introduced. The model Mt is given by:

Mt = M(Wt, ct, θt, αt, γt) (8)

where Gt = {G′St , G′Mt , {G′Aj,t}∀j∈At
, G′Et } if G = {W, c, θ}, αt = {αZz,t}∀ C2 where αZz,t = α′Zz,t/

[∑
Z=U ′

Z∑
z=1

α′Zz,t +∑
j∈At

α′Aj,t

]
, and γt = {γPp,t}∀ C1, γPp,t = α′Pp,t/

[
α′M1,t +

∑
j∈At

α′Aj,t

]
.

Algorithm 1: Aux-Net algorithm

1 Inputs: Base Module: S; Middle Module M ; Auxiliary Module: A; End Module: E; Learning rate: η;
Smoothing Parameter: λ; Discounting Parameter: β;

2 Initialize: A DNN with L = S +M +A+E layers and attach classifiers to each layer as shown in Figure 3b;

αZz = 1/L ∀Z ∈ {S,M,A,E}, z ∈ {1, ..., Z} ; K1 using equation 7;
3 for t = 1, ..., T do
4 Receive input feature xt;
5 Create a list At of the auxiliary features received in xt;
6 Create the model Mt based on At using equation 8;
7 Predict ŷt on xt using equation 1 based on Mt;
8 Receive output label yt;
9 Calculate the loss of the model Mt based on yt and ŷt using equation 2;

10 Update parameters of Mt based on the loss incurred and get M∗t using 9;
11 Update Kt based on M∗t to get Kt+1 using 10;

12 end

Obtaining knowledge base Kt+1 for next instance: The parameters of the model Mt are updated based
on the loss incurred at time instance t. The updated model, represented by M∗t is given by:

M∗t = M(W ∗t , c
∗
t , θ
∗
t , α
∗
t) (9)

where W ∗t , c
∗
t , θ
∗
t , α
∗
t are the parameters obtained by updating the parameters Wt, ct, θt, αt of the model Mt by using

equation 2, 4, 5, and 6. After training the model at time step t, we create the knowledge base Kt+1 before moving

5

Figure 5: Cumulative average accuracy (a) and loss (b) for different values of probability p of auxiliary inputs on
Italy power demand dataset. ODL with 12 and 24 features is included for baseline. Snippet of data availability for
p = 0.6 and p = 0.9 are shown in (c), analogous to Figure 1.

to the next iteration. All the parameters updated at time step t and the parameters of the freezed layers (A−At)
are collected. Then, Kt+1 is given by:

Kt+1 = {W ′t+1, c
′
t+1, θ

′
t+1, α

′
t+1} (10)

whereG′t+1 = {G∗t , {G′Aj,t}∀ j∈A−At
} ifG ∈ {W, c, θ}, and α′t+1 = {α′Zz,t+1}Z∈U, z={1,...,Z} where α′Zz,t+1 = α′′Zz,t /

[∑
Z∈U

Z∑
z=1

α′′Zz,t

]
and α′′t+1 = {α∗t , {α′Aj,t}∀ j∈A−At

}.

4 Experimental Results

We evaluate our model using the Italy power demand dataset [2]. It has 1096 data instances with 24 input features.
In all the studies, we retain the original order of the input features. To the best of our knowledge, there is no method
that incorporates the intermittently available input data in an online setting. Thus, we compare the Aux-Net model
with the ODL model. We train both the models in a purely online setting where after each instance the model
predicts and trains.

Architecture details We fix the number of base layers (S) to be 5, the number of middle layer (M) is 1, and
the number of end layers (E) is also 5 for Aux-Net. The number of auxiliary layers (A) are equal to the number of
auxiliary features. The number of layers for ODL is set as 11 (S + E +M = 11). For both Aux-Net and ODL, we
used the the ReLU activation function and the number of nodes in each layer was set as 50. The Adam optimizer
(η = 0.01) was used for backpropagation. The smoothing rate and the discount rate was set as λ = 0.2 and β =
0.99 respectively. The cross-entropy loss was chosen as the loss function. The above settings are true for all the
following experiments.

Varying the probability p of the availability of auxiliary inputs in Aux-Net The first 12 input features
of Italy power demand dataset are considered as the base features and remaining as the auxiliary features. The
availability of each auxiliary feature at a given time instance is modeled as a uniform distribution with probability p.
The same value of p is used for all the auxiliary features but the availability of each is computed independently.
The results of Aux-Net with varying values of p, ODL with all the 24 features, and ODL with only the 12 base
features are presented in Table 1. We report the average of losses observed at all the time instances, and similarly
the average accuracy observed across all the time instances. The cumulative average loss and accuracy curves are
shown in Fig. 5. We study the performance of Aux-Net and comparison with ODL with the following aims:
• Sensitivity of Aux-Net to p and its performance: The average accuracy and loss for all the time instances in the

dataset shows monotonic trend as a function of p, as noted in Table 1. This shows that Aux-Net is sensitive to the
availability of the auxiliary inputs, as expected. Yet, the performance of Aux-Net degrades gracefully as p reduces.
Moreover, Aux-Net still performs better compared to ODL with 12 features when p < 1 (as ODL can not work with
inconsistent features). Further, the best case performance of Aux-Net when p = 1.00, is comparable to the scenario
of ODL with 24 features. This means that even though the knowledge base of Aux-Net supports for 212 knowledge
models, only the knowledge model with largest dimensionality is invoked and trained. In this case loss of Aux-Net is
poorer than ODL, but the accuracy is better. In case of p = 0.5 which means no consistency in either availability
or unavailability of the auxiliary inputs the observed poorer performance of Aux-Net in comparison to ODL is
only marginal, indicating robustness of Aux-Net to the extremely challenging scenario and its graceful degradation.

6

Figure 6: Loss of Aux-Net as function of the number of base features B and ODL (trained using B number of
features) in Italy power demand dataset. The probability of availability of the (24−B) auxiliary inputs is fixed at
p = 0.9. Lower loss indicates better learning.

Table 1: Average accuracy and loss of Aux-
Net (for different values of probability(p) of
availability of auxiliary features) and ODL
(with different number of input features(feat))
in Italy Power Demand dataset. ODL is
shown in italics.

Model Accuracy Loss

ODL(24 feat) 0.8783 0.4297
Aux-Net(p = 1.00) 0.8884 0.5093
Aux-Net(p = 0.99) 0.8811 0.5165
Aux-Net(p = 0.95) 0.8637 0.5168
Aux-Net(p = 0.90) 0.8243 0.5456
Aux-Net(p = 0.80) 0.7054 0.6130
Aux-Net(p = 0.70) 0.6240 0.6788
Aux-Net(p = 0.60) 0.6167 0.6831
ODL(12 feat) 0.6139 0.6868
Aux-Net(p = 0.50) 0.5956 0.6975

• Agile adaptation of Aux-Net: The demand on agility significantly
enhances as p reduces. For example, for p = 0.6 in Figure 5(c),
not only a different knowledge model needs to be invoked at every
instance but also the same knowledge model may not be invoked in
next many time instances. The situation is easier when p = 0.9 even
though there are many time instances when a different knowledge
model is invoked. Nonetheless, Aux-Net remains stable in either case
and adapts to the agility needs in an efficient manner, indicated in
accuracy and loss plots in Figure 5(a,b). Indeed, the accuracy is
better and the loss decreases faster over time for p = 0.9. Nonetheless,
when p = 0.6, the accuracy and loss curves closely follow ODL with
12 features, indicating that even though new knowledge models are
being dynamically invoked every single instance, the performance of
Aux-Net does not deteriorate in comparison to ODL and Aux-Net
is indeed able to maintain agility over time, contributing to reduced
loss and improved accuracy as time passes.
• Decreased loss and improved accuracy over time: We note that

for the situation of 12 auxiliary inputs, support for 212 knowledge
models, and invocation of each knowledge model multiple times is needed to study the aspects such as convergence of
knowledge base over time. Yet, the decreasing loss in Figure 5(b) is a positive indicator of performance improvement
over time and possible convergence.

Varying number of base features In this experiment, we fix p as 0.9, but vary the number of base features
(B) from 1-23. The number of auxiliary features (A) are consequently (24-B). The first B features in the dataset
are used as base features in Aux-Net and the only features in ODL. The average loss of Aux-Net and ODL are
compared in Fig. 6 as a function of B. We observe the following:
• Extreme scalability: As expected, the performances of both Aux-Net and ODL deteriorate as B reduces.

Nonetheless, the loss of Aux-Net is significantly smaller than ODL in the challenging scenarios when more than 4
inputs are inconsistently available. This clearly indicates that Aux-Net is able to leverage the auxiliary inputs for
better learning even if they are inconsistently available. Especially, the extremely challenging scenarios (B = 1 for
example) demonstrate that Aux-Net is indeed able to step up to the need of supporting several knowledge models of
varying inputs and dimensionalities and provide better performance than the minimalist approach.
• Poorer performance than ODL when B ∈ [20, 23]: During initialization, Aux-Net assigns the same weights (α)

to each classifier. However, the classifier corresponding to an auxiliary feature will be lossier as compared to the
classifier of middle layer that uses base features. As time progresses, the value of α for each layer gets customized to
suit its contribution towards accurate classification. Often, it means that α of auxiliary layer reduces in the first few
time instances, indicating that Aux-Net has learnt that its inconsistent availability may cause increased loss if α
corresponding to it is high.

5 Discussion and conclusion

Scalability and knowledge entity: Aux-Net supports scalability for the situations ranging from no auxiliary
input being available to all auxiliary inputs being available. Aux-Net incorporates knowledge models corresponding

7

to all possible combinations of auxiliary inputs within a single knowledge base. The architectural support in
Aux-Net for auxiliary inputs in the form of dedicated parallel layers is a critical feature for scalability. At the same
time, being able to update the pertinent knowledge models selectively and reflect the new knowledge back into the
main knowledge base (see Fig. 4) ensures that a single knowledge base needs to be maintained as opposed to the
resource-heavy maximalist approach. Further more, online learning in the current framework dispenses away the
need of offline storage of data. Nonetheless, in the future application-specific framework, maintaining a stash of
offline data may provide an advantage and exploring that is a possibility.

Agility and stability: Agility in Aux-Net is characterized by its ability to dynamically invoke the relevant
knowledge model without making the network unstable or unadaptive. A key factor that supports dynamic stability
and agility is the importance parameter γ, which automatically adjusts the contributions of base inputs (through
the middle layer) and the currently available auxiliary inputs so that neither the new auxiliary features introduce
inordinate instability, nor are they suppressed.

It is of interest to investigate the convergence of Aux-Net, which could not be investigated rigorously in this
study though indicators of convergence were observed (results in the supplementary). Since there was no possibility
so far for dealing with intermittently available inputs, we found that there is a dearth of suitable benchmark
datasets and applications, which allow us to empirically assess aspects such as convergence. However, we deem that
more elaborate studies are needed on suitably designed datasets and investigation of rigorous theoretical proofs of
convergence will be significantly useful.

So far, we have demonstrated scalability, agility, and stability of Aux-Net and its ability to deal with intermittently
available inputs in a completely online manner. This, in our observation is not only the first such architecture, it is
also a first demonstration of results on intermittently available input features. Having set a new paradigm, we hope
that new datasets, new frameworks, new applications, and more extensive studies are developed in the near future
to exploit the possibility of learning in extremely dynamic and uncertain scenarios. We hope that advanced artificial
intelligence for dynamic complex environments will soon emerge. We will work on providing further conceptual
groundwork to Aux-Net, identifying or creating new benchmark datasets, extending Aux-Net to perform tasks such
as prediction and detection or deal with more variety of inputs, such as images, adapt it to use convolutional kernels,
and working with asynchronous multi-modal inputs in the future.

Machine learning community has been afflicted by rigid architectures for long even though activities in extreme
learning, neuro-evolution, and incremental or online learning have been explored to ease the problem of architectural
rigidity. Yet, the dream to perform advanced artificial intelligence in a highly dynamic, situation adaptive manner for
efficient operation in real-world dynamic complex environments is far from accomplished. Even the most advanced
AI agents, such as autonomous cars considers rigid architecture as the amount and type of data availability changes.
We are all waiting for a truly agile, scalable, self-adapting non-rigid artificial intelligence approach that redefines
how intelligent machines deal with varying amount and types of input features and ad hoc environment.

Aux-Net is a baby step towards the above mentioned dream. For the first time (in our knowledge) we have
showcased that an architecture can be online, scalable and agile in nature. In the future, scalable and agile machine
learning will bring the next wave of research and development activities, which can address the pressing needs of
advanced machine learning in complex dynamic environment. To support the initial activity on this new direction,
we will release the Aux-Net source code and its development platform for the benefit of the further research and
development activities.

Aux-Net in its current form has its limitations. It needs to be developed for online image based classification
similar to the current state-of-the-art deep learning architecture. It has been currently built on keras with tensorflow
backend, which currently lack support for Aux-Net type online scalable and agile learning. We will soon release the
basic functionality libraries which can support the scalable, agile and online learning. We invite researchers for
developing suitable benchmarking datasets from dynamic complex environment with scalable and agile machine
learning needs as well as contribute to better implementation and other AI tasks.

References

[1] Doyen Sahoo, Quang Pham, Jing Lu, and Steven CH Hoi. Online deep learning: Learning deep neural networks
on the fly. In International Joint Conference on Artificial Intelligence (IJCAI), pages 2660–2666, 2017.

[2] Hoang Anh Dau, Anthony Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh Gharghabi,
Chotirat Annh Ratanamahatana, and Eamonn Keogh. The ucr time series archive. IEEE/CAA Journal of
Automatica Sinica, 6(6):1293–1305, 2019.

8

[3] Thomas Seidl, Ira Assent, Philipp Kranen, Ralph Krieger, and Jennifer Herrmann. Indexing density models for
incremental learning and anytime classification on data streams. In International Conference on Extending
Database Technology: Advances in Database Technology, pages 311–322, 2009.

[4] Charu C Aggarwal, Jiawei Han, Jianyong Wang, and Philip S Yu. A framework for on-demand classification of
evolving data streams. IEEE Transactions on Knowledge and Data Engineering, 18(5):577–589, 2006.

[5] Ivor W Tsang, Andras Kocsor, and James T Kwok. Simpler core vector machines with enclosing balls. In
International Conference on Machine Learning (ICML), pages 911–918, 2007.

[6] Pedro Domingos and Geoff Hulten. Mining high-speed data streams. In ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 71–80, 2000.

[7] Ron Tor Das, Kai Keng Ang, and Chai Quek. ierspop: A novel incremental rough set-based pseudo outer-product
with ensemble learning. Applied Soft Computing, 46:170–186, 2016.

[8] Aparna Ramesh Iyer, Dilip K Prasad, and Chai Hiok Quek. PIE-RSPOP: A brain-inspired pseudo-incremental
ensemble rough set pseudo-outer product fuzzy neural network. Expert Systems with Applications, 95:172–189,
2018.

[9] Hai-Long Nguyen, Yew-Kwong Woon, and Wee-Keong Ng. A survey on data stream clustering and classification.
Knowledge and Information Systems, 45(3):535–569, 2015.

[10] Joao Gama. A survey on learning from data streams: current and future trends. Progress in Artificial
Intelligence, 1(1):45–55, 2012.

[11] Robi Polikar, Lalita Upda, Satish S Upda, and Vasant Honavar. Learn++: An incremental learning algorithm
for supervised neural networks. IEEE Transactions on Systems, Man, and Cybernetics, part C, 31(4):497–508,
2001.

[12] Robi Polikar, Joseph DePasquale, Hussein Syed Mohammed, Gavin Brown, and Ludmilla I Kuncheva. Learn++.
mf: A random subspace approach for the missing feature problem. Pattern Recognition, 43(11):3817–3832,
2010.

[13] Michael D Muhlbaier, Apostolos Topalis, and Robi Polikar. Learn ++ nc: Combining ensemble of classifiers
with dynamically weighted consult-and-vote for efficient incremental learning of new classes. IEEE Transactions
on Neural Networks, 20(1):152–168, 2008.

[14] Michael D Muhlbaier and Robi Polikar. Multiple classifiers based incremental learning algorithm for learning
in nonstationary environments. In International Conference on Machine Learning and Cybernetics, volume 6,
pages 3618–3623, 2007.

[15] Gregory Ditzler, Robi Polikar, and Nitesh Chawla. An incremental learning algorithm for non-stationary
environments and class imbalance. In International Conference on Pattern Recognition, pages 2997–3000, 2010.

[16] Monidipa Das, Mahardhika Pratama, Andri Ashfahani, and Subhrajit Samanta. Fernn: A fast and evolving
recurrent neural network model for streaming data classification. In International Joint Conference on Neural
Networks (IJCNN), pages 1–8, 2019.

[17] Monidipa Das, Mahardhika Pratama, Septiviana Savitri, and Jie Zhang. Muse-rnn: A multilayer self-evolving
recurrent neural network for data stream classification. In IEEE International Conference on Data Mining
(ICDM), pages 110–119, 2019.

[18] Andri Ashfahani and Mahardhika Pratama. Autonomous deep learning: Continual learning approach for
dynamic environments. In SIAM International Conference on Data Mining, pages 666–674. SIAM, 2019.

[19] Chenping Hou and Zhi-Hua Zhou. One-pass learning with incremental and decremental features. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 40(11):2776–2792, 2017.

[20] Bo-Jian Hou, Lijun Zhang, and Zhi-Hua Zhou. Learning with feature evolvable streams. In Advances in Neural
Information Processing Systems (NIPS), pages 1417–1427, 2017.

9

[21] Yoav Freund and Robert E Schapire. A desicion-theoretic generalization of on-line learning and an application
to boosting. In European Conference on Computational Learning Theory, pages 23–37, 1995.

[22] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In International
Conference on Machine Learning (ICML), pages 928–936, 2003.

10

	1 Introduction
	2 Related Works
	3 Auxiliary Network (Aux-Net)
	3.1 Problem Setting
	3.2 Architecture
	3.3 Parameters Learning
	3.4 Algorithm

	4 Experimental Results
	5 Discussion and conclusion

