Skip to main content

Trustworthiness and Confidence of Gait Phase Predictions in Changing Environments Using Interpretable Classifier Models

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Abstract

The recognition of the different phases of human gait is valuable in areas such as rehabilitation and sports. Machine Learning models have been increasingly used for such recognition tasks. However, such models are usually trained on data obtained from participants in strictly controlled environments which—needless to say—might vary quite significantly from the environment in which the models are subsequently employed. Therefore, it is advisable to analyze the confidence of the model’s predictions. To this end, we present an interpretable classifier for gait phase detection. Together with classification reliability estimation tools, classification predictions can be rejected in low confidence scenarios. Our classifier is based on a robust and distance-based Learning Vector Quantization classifier. Finally, we present our approach using a real-world application in gait phase detection, which consists of one learning scenario and two different prediction scenarios.

M.K is funded by the European Social Fund (ESF), ESF-SAB 100381749.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    alaska/Dynamicus is a module for efficient, and comfortable generation and use of maker-based-system models of the human body provided by the ICM - Institute Chemnitzer Maschinen- und Anlagenbau e.V, Chemnitz, Germany.

References

  1. Biehl, M., Hammer, B., Villmann, T.: Prototype-based models in machine learning. Wiley Interdisc. Rev. Cogn. Sci. 7(2), 92–111 (2016). https://doi.org/10.1002/wcs.1378

    Article  Google Scholar 

  2. Bunte, K., Schneider, P., Hammer, B., Schleif, F.M., Villmann, T., Biehl, M.: Limited rank matrix learning, discriminative dimension reduction and visualization. Neural Networks 26(1), 159–173 (2012)

    Article  Google Scholar 

  3. Crammer, K., Gilad-Bachrach, R., Navot, A., A.Tishby: Margin analysis of the LVQ algorithm. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information Processing, vol. 15, pp. 462–469. MIT Press, Cambridge, MA (2003)

    Google Scholar 

  4. Fischer, L., Hammer, B., Wersing, H.: Optimal local rejection for classifiers. Neurocomputing 214, 445–457 (2016)

    Article  Google Scholar 

  5. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  6. Güth, V., Klein, D., Rosenbaum, D.: Ganganalyse. In: Rehabilitation in Orthopädie und Unfallchirurgie, pp. 32–41. Springer, Cham (2005)

    Google Scholar 

  7. Hammer, B., Villmann, T.: Generalized relevance learning vector quantization. Neural Networks 15(8–9), 1059–1068 (2002)

    Article  Google Scholar 

  8. Jöllenbeck, T., Pietschmann, J.: Ganganalyse und gangtraining in der orthopädischen rehabilitation nach gelenkersatz-zurück zum normalen gang, aber wie? B &G Bewegungstherapie und Gesundheitssport 35, 3–13 (2019)

    Article  Google Scholar 

  9. Kaden, M., Lange, M., Nebel, D., Riedel, M., Geweniger, T., Villmann, T.: Aspects in classification learning - review of recent developments in learning vector quantization. Found. Comput. Decis. Sci. 39(2), 79–105 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kohonen, T.: Learning vector quantization. Neural Networks 1(Supplement 1), 303 (1988)

    Google Scholar 

  11. Lisboa, P., Saralajew, S., Vellido, A., Villmann, T.: The coming of age of interpretable and explainable machine learning models. In: Verleysen, M. (ed.) Proceedings of the 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, pp. 547–556. i6doc.com, Louvain-La-Neuve, Belgium (2021). https://doi.org/10.14428/esann/2021.ES2021-2

  12. Perry, J., Schoneberger, B.: Gait Analysis: normal and pathological function. In: SLACK (1992)

    Google Scholar 

  13. Ravichandran, J., Kaden, M., Saralajew, S., Villmann, T.: Variants of dropconnect in learning vector quantization networks for evaluation of classification stability. Neurocomputing 403, 121–132 (2020). https://doi.org/10.1016/j.neucom.2019.12.131

    Article  Google Scholar 

  14. Ravichandran, J.: Prototorch. https://github.com/si-cim/prototorch (2020)

  15. Rudin, C., Chen, C., Chen, Z., Huang, H., Semenova, L., Zhong, C.: Interpretable machine learning: fundamental principles and 10 grand challenges. Stat. Surv. 16, 1–85 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  16. Saralajew, S., Holdijk, L., Villmann, T.: Fast adversarial robustness certification of nearest prototype classifiers for arbitrary seminorms. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Proceedings of the 34th Conference on Neural Information Processing Systems, vol. 33, pp. 13635–13650. Curran Associates, Inc. (2020)

    Google Scholar 

  17. Sato, A., Yamada, K.: Generalized learning vector quantization. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neural Information Processing Systems, pp. 423–9. MIT Press, Cambridge (1996)

    Google Scholar 

  18. Sch"olkopf, B., Smola, A.: Learning with kernels. MIT Press, Cambridge (2002)

    Google Scholar 

  19. Schneider, P., Hammer, B., Biehl, M.: Adaptive relevance matrices in learning vector quantization. Neural Comput. 21, 3532–3561 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schneider, P., Hammer, B., Biehl, M.: Distance learning in discriminative vector quantization. Neural Comput. 21, 2942–2969 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Villmann, T., Staps, D., Ravichandran, J., Saralajew, S., Biehl, M., Kaden, M.: A learning vector quantization architecture for transfer learning based classification in case of multiple sources by means of null-space evaluation. In: Bouadi, T., Fromont, E., Hüllermeier, E. (eds.) IDA 2022. LNCS, vol. 13205, pp. 354–364. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-01333-1_28

    Chapter  Google Scholar 

  22. Villmann, T., Kaden, M., Nebel, D., Biehl, M.: Learning vector quantization with adaptive cost-based outlier-rejection. In: Azzopardi, G., Petkov, N. (eds.) CAIP 2015. LNCS, vol. 9257, pp. 772–782. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23117-4_66

    Chapter  Google Scholar 

  23. Yang, Q., Zhang, Y., Dai, W., Pan, J.: Transfer Learning. Cambridge University Press, Cambridge (2020)

    Google Scholar 

  24. Zhuang, F., et al.: A comprehensive survey on transfer learning. Proc. IEEE 109(1), 43–76 (2021). https://doi.org/10.1109/JPROC.2020.3004555

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Villmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Möbius, D., Ravichandran, J., Kaden, M., Villmann, T. (2023). Trustworthiness and Confidence of Gait Phase Predictions in Changing Environments Using Interpretable Classifier Models. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Lecture Notes in Computer Science, vol 13624. Springer, Cham. https://doi.org/10.1007/978-3-031-30108-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30108-7_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30107-0

  • Online ISBN: 978-3-031-30108-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics