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ABSTRACT

Speech enhancement improves speech quality and promotes
the performance of various downstream tasks. However, most
current speech enhancement work was mainly devoted to im-
proving the performance of downstream automatic speech
recognition (ASR), only a relatively small amount of work
focused on the automatic speaker verification (ASV) task.
In this work, we propose a MVNet consisted of a memory
assistance module which improves the performance of down-
stream ASR and a vocal reinforcement module which boosts
the performance of ASV. In addition, we design a new loss
function to improve speaker vocal similarity. Experimental
results on the Libri2mix dataset show that our method outper-
forms baseline methods in several metrics, including speech
quality, intelligibility, and speaker vocal similarity et al.

Index Terms— Speech enhancement, Complex network,
Speaker similarity, Memory assistance, Vocal reinforcement

1. INTRODUCTION

The interference of additive noise with speech can seriously
reduce the perceptual quality and intelligibility of speech,
which increases the difficulty and complexity of speech-
related recognition tasks. In some scenarios, the security of
algorithms for tasks such as speech recognition and speaker
verification can be seriously threatened by noise interference
[1]. Speech enhancement (SE) is an important speech pro-
cessing task dedicated to improving the perceptual quality
as well as the intelligibility of the disturbed speech and to
restore the performance of downstream tasks.

A good SE algorithm should obtain the output speech that
is closer to the clean speech. And the output speech often has
better speech quality and intelligibility than the input speech.
In recent years, deep learning methods [2] [3] [4] [5] [6] were
widely applied to SE tasks and achieved good results. Deep
learning based methods can be classified into time domain
and frequency domain depending on how the input speech
is processed. The common practice of time domain meth-
ods [7] [8] [9] [10] is to map the time domain waveform of
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noisy speech directly to the time domain waveform of clean
speech, through the learned mapping relationship. The fre-
quency domain approach [5] [11] obtains a mask by inputting
the noisy speech spectral features into the network. Then
the clean speech is obtained by multiplying the mask and the
noisy speech.

Most of the previous work focused on improving speech
quality as a training goal, and the current mainstream metrics
are also based on speech quality. Several studies proposed to
train SE models directly with speech quality metrics (PESQ
and STOI), including quality-net [12], MetricGAN-u [13] and
hifi-gan [14]. These methods achieved a significant improve-
ment in speech quality. However, ASR and ASV pay different
attention to speech features. ASR pays more attention to the
intelligibility of speech, while ASV pays more attention to
speaker vocal similarity. The optimization focus of the two
is not consistent. Speech with higher speech quality can have
more outstanding performance in the downstream ASR task,
while less outstanding in ASV. Current methods greatly im-
prove speech quality (PESQ and STOI), ignoring the impor-
tance of vocal information. However, inconsistent vocals will
lead to inconsistencies between speakers and increased dis-
tortion, which in turn affects the performance of downstream
ASVs. We call this the vocal distortion problem.

PFPL [15] started to demonstrate the importance of pho-
netic information. Their work demonstrates that adding the
necessary speech information can guarantee speech details as
well as speech quality. This provides us with ideas to alleviate
the vocal distortion problem.

In this work, to adapt to both ASR and ASV at the same
time, achieve the improvement of speech quality and vocal
consistency, we propose a MVNet consisted of a memory as-
sistance module and a vocal feature reinforcement module.
Vocal reinforcement module is to extract the vocal informa-
tion. We consider it important for vocal distortion problem.
Memory assistance module is to improve the enhanced per-
formance of the complex network. It reduces the loss from
forgetting valid information in long sequences by the network
while enhancing the gain from focusing on important infor-
mation. Besides, we design a similarity joint loss that aims
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Fig. 1. The overall structure of MVNet.

to alleviate vocal distortion problem. The experiments ver-
ify that our method can alleviate the vocal distortion problem
while further improving the speech quality.

2. RELATED WORK

2.1. Complex Structure of CRN

The traditional CRN [16] network is symmetric. It uses an
encoder-decoder architecture in the time-domain, usually
with an LSTM layer in the middle to model the temporal
dependencies. The encoder-decoder block consists of con-
volution and deconvolution layers, batch normalization and
activation functions.

To improve the performance of convolution in the com-
plex domain, Tan et al. [17] proposed a one encoder two
decoders convolution method. Unlike previous CRN that
only targets amplitude mapping in the real domain, this net-
work structure is also capable of modeling phase mapping
in the complex domain. Compared with the traditional en-
hancement model, this structure can enhance the amplitude
and phase of the speech at the same time, and the enhanced
speech no longer needs to reuse the phase of the noisy speech.
However, this one encoder two decoders structure actually di-
vided the input into two channels, the real part and the imagi-
nary part, and processed them as real numbers, which did not
strictly follow the operation rules of complex numbers.

The above approaches did not directly utilize the prior
knowledge of the magnitude and phase correlations of com-
plex arithmetic. Hu et al. provided a complex domain convo-
lution model DCCRN [11], which used a complex encoder-
decoder combined with a complex LSTM to enhance speech.
This network provided the ability to simulate complex mul-
tiplication, further enhancing the network’s ability to capture
the correlation between magnitude and phase. DCCRN has
been shown to be effective, and we take it as our baseline
model.

2.2. Speech Feature Information

With the research in the signal processing, researchers devel-
oped different speech features according to the characteristics
of different tasks. Speech feature extraction methods such as

MFCC [18] and i-vector [19] showed value in various speech
signal processing tasks such as speech recognition, speaker
recognition, and phoneme detection. These feature represen-
tations focus on different speech information. A suitable fea-
ture representation can strongly promote the performance of
a specific task.

Hsieh et al. [15] proposed a perceptual loss (PFPL) for
SE task. They pointed out that phonetic feature information is
the key to optimizing human perceptual. PFPL first proposed
the idea of adding phonetic feature information to the origi-
nal speech. This self-supervised SE method is based on DC-
CRN and wav2vec [20]. Their experimental results showed
effectiveness of phonetic information. And we take PFPL as
another baseline model.

3. METHOD

In this work, we propose a MVNet as shown in Fig. 1. In
general, we extract the speaker vocal features through vocal
reinforcement module, and fuse it with the noisy speech spec-
trum. A complex mask is then estimated by the memory as-
sistance speech enhancement module and multiplied by the
noisy spectrum to obtain the enhanced speech. Besides, we
use the proposed similarity joint loss to alleviate vocal distor-
tion problem.

Our method is based on DCCRN which excels in speech
quality. We propose the memory assistance module to further
improve speech quality and make the model pay more atten-
tion to the vocal features. To improve the vocal similarity of
speech, we propose the vocal reinforcement module and the
similarity joint loss.

3.1. Memory Assistance

In order to make the model further improve the speech qual-
ity, and at the same time make it have the ability to pay atten-
tion to the vocal features. We propose the memory assistance
module under the DCCRN framework, as shown in Fig. 2.

We use 6 complex convolution blocks and symmetric 6
deconvolution blocks to implement the construction of the
encoder-decoder with the number of channels set to {32, 64,
128, 256, 256, 256}, where each complex convolution block
contains complex Conv2d, complex batch normalization and
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Fig. 3. Memory assistance speech enhancement module. Outr
and Outi is the real and the imaginary part of the encoder
output, respectively. Outc is the fused complex feature map.
CLSTM is the complex LSTM layer.

real-valued PReLU. Each complex Conv2d contains a real
conv2d and an imaginary conv2d as in DCCRN [11].

3.1.1. Memory Assistance Module

The overall framework of the DCCRN model is based on
CED, and the speech enhancement is mainly realized by the
LSTM with causal modeling ability in between. The LSTM
network controls the memory state of information in the long-
term transmission process through gates, retains important in-
formation and forgets the information that the network con-
siders unimportant. It plays the role of information filtering.
Vocal information is a very detailed speech feature that can
only be noticed from a global perspective. The core logic
of the attention mechanism is the global attention, which can
capture the vocal features. But only from a global perspec-
tive will weaken some local characteristics of speech. Thus,
we combine it with the LSTM to form the memory assistance
module, which focuses on the both global features and local
details of speech.

Placing the attention before LSTM can amplify the mem-
ory ability, improves the memory ability of LSTM for global
vocal characteristics. If it is placed in the back, LSTM will
forgot this information. At this time, the global characteristics
of this information will be destroyed, and the global attention
will not be able to pay attention to this information. Plac-
ing the attention in the back aggravates the forgetting ability.
Thus, the final vocal reinforcement is as Fig. 3.

We utilize the features on the crisscross path to achieve
global attention through two loops while controlling the mem-
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Fig. 4. Vocal reinforcement module.

ory consumption. Module collects contextual information in
both horizontal and vertical directions to enhance the expres-
siveness of feature maps. As shown in Fig. 3, the noisy
speech is passed through the complex encoder to obtain the
feature maps of both the real and imaginary parts. The fea-
ture maps is fused and send into three Conv1ds. The hor-
izontal and vertical attention map is obtained from the first
two Conv1ds and then passed back to the input to obtain the
global attention map. The global attention map and the output
of the third Conv1d are concatenated and fed into the complex
LSTM. The output is concatenated with the output of the en-
coder and fed to the decoder for further processing.

3.2. Vocal Reinforcement

Vocal feature is an important factor affecting the distortion de-
gree of the final enhanced speech. When the vocal features of
the enhanced speech and the clean speech are quite different,
the speech sounds lack of uniform speaker characteristics, and
it does not sound like the original speaker. That causes vocal
distortion problem.

The problem of missing vocal characteristics in the pro-
cess of enhancing speech can be considered from two per-
spectives. One is that the model does not have the ability to
discover such characteristics, and the other is that the opti-
mization direction of the model does not care about this. To
improve the vocal similarity of speech from these two per-
spectives, we propose the vocal reinforcement module and
similarity joint loss.

3.2.1. Vocal Reinforcement Module

For the first perspective, our solution is to explicitly add vocal
features to the network, which is the direct idea of our vocal
reinforcement module.

The way of combining MFCC with TDNN [21] is a com-
mon way to obtain speaker representation in ASV, which has
a strong expressive ability for vocal features. But MFCC is a
compact speech representation. Since it uses mel filter to ig-
nore the dynamics and distribution of speech energy, it still
loses some speech details in essence [22]. It is a coarse-
grained speech representation. Therefore, we adopt STFT
(short-time Fourier transform) to obtain the spectral repre-
sentation of speech and preserve the temporal information of



speech. Combined with TDNN, a fine-grained vocal feature
extraction method suitable for speech enhancement is real-
ized. ASV directly uses the speech representation obtained
by MFCC and TDNN to do the recognition task. But speech
enhancement requires more than just vocal information. We
therefore combine the obtained representation as an auxiliary
feature with the spectrum obtained by STFT as the input to
CED. This forms our vocal reinforcement module.

The proposed vocal reinforcement module is shown in
Fig. 4. The spectrum obtained by STFT is sent to 5 TDNNs
connected in sequence, the first four output 1024 channels,
the last collapses the channels to 512, and the average and
standard deviation of the last TDNN‘s output are calculated
and connected to the original output, and then go through two
linear layers in turn to get the vector about the vocal features.
We fuse the feature vector and the original input into Memory
Assistance CED.

3.2.2. Similarity Joint Loss

As mentioned above, to improve the vocal consistency, there
are two perspectives. Designing a new loss function is from
the second, changing the direction of model optimization.

The complete information of the speech signal is jointly
represented by the amplitude and the phase, and the phase
contains more detailed information of the speech. In the pre-
vious speech enhancement models, SI-SNR [23] was mostly
used as the loss function. Although SI-SNR takes into ac-
count the vector direction of speech, the calculation process
still depends on the signal amplitude. The cosine similarity
has a stronger constraint on the consistency of the vector di-
rection. In order to make the model pay more attention to
the vector direction, we introduce the cosine similarity to our
loss function. The ability of the model to improve the vocal
consistency is enhanced by strengthening the constraint of the
loss function on the consistency of the vector direction.

The proposed similarity joint loss is to make some im-
provements on the basis of the loss function of SI-SNR. We
take the additive inverse of SI-SNR in our LSI-SNR, so that
larger calculated results indicate less ideal separation. LSI-SNR
is defined as Eq. 1:

starget = 〈 ˆs,s〉s
‖s‖2

enoise = ŝ− starget

LSI-SNR = 10 log10
‖starget ‖2

‖enoise ‖2

(1)

where < ·, · > represents the dot product of two vectors,
‖ · ‖2 is the euclidean norm (L2 norm), s is the clean speech,
and ŝ means the enhanced speech. SI-SNR is commonly used
in papers.

In addition to LSI-SNR, we propose to use cosine similarity
to improve the speaker vocal consistency. The similarity loss
is defined as Eq. 2:

Lsmi = α log10(1− cossmi(ŝ, s) + δ), (2)

where the hyperparameter α is the scaling factor, which we
set to 100.

The value range of the cosine similarity function cossmi(·, ·)
is [-1, 1]. We take the -cossmi, so that the higher the calcu-
lation result, the more dissimilar the two speeches are. We
add a constant number 1 to fix the range in [0,2]. δ is an ex-
tremely small number used to avoid zero values. We smooth
the change of the curve through a logarithmic function, so
that Lsmi has a consistent change trend with LSI-SNR. Finally,
we combine these two functions to propose our similarity
joint loss Ljoint, defined as Eq. 3:

Ljoint = LSI-SNR + Lsmi. (3)

3.3. Training Target

Our training target is to obtain a complex ratio mask(CRM)
[24] to estimate clean speech. We adopt the method of signal
estimation, that is, the noisy signal and the estimated mask
are directly multiplied to obtain the enhanced signal. We im-
prove the performance of the model by minimizing the Ljoint
between the enhanced and the clean speech.

4. EXPERIMENT AND RESULT

4.1. Setup

4.1.1. Dataset

In our experiments, we use the Librispeech [25] as the clean
data, which has 1252 speakers, each speaking for about 25
minutes, for a total of 478 hours of speech duration. The noise
data in the experiment comes from the noise dataset WHAM!
[26], which consists of real ambient noises.

We mix the Lirispeech and WHAM! datasets in the same
way as the LibriMix [27], resulting in a training set with 921
speakers for a total of 364 hours, and a validation set and a
test set with 40 speakers for a total of 5.4 hours. The dataset
SNR we get from the mix is between -15bB and 5dB.

4.1.2. Evaluation Metrics

The evaluation of our experiments is based on several general
metrics of speech quality, including Perceptual Evaluation
of Speech Quality (PESQ) [28], Short-Time Objective In-
telligibility (STOI) [29], the predicted Mean Opinion Score
of signal distortion (CSIG) [30], background noise distor-
tion (CBAK) [30], overall quality (COVL) [30], the scale-
invariant signal-to-noise ratio improvement (SI-SNRi) [31],
segmental SNR (segSNR) [32] and SIMI (a measure of vocal
similarity). SIMI is the proposed new metric to measure the
degree of vocal distortion, which is calculated by the speaker
recognition algorithm provided by Deep-speaker [33]. The
higher the score, the higher the probability that the speaker
will be judged to be the same in the ASV task.



4.1.3. Setup and Baseline

We sample waveforms at 16kHz, and set the window length
and number of hops to 25 ms and 6.25 ms, respectively. The
FFT length is 512. We use Adam optimizer. The initial learn-
ing rate is set to 0.001, and when the validation loss increases,
the learning rate decreases by 0.5. We train for 200 epochs
and record the top PESQ ranked model parameters as our best
model for related experiments. For fairness, we run the offi-
cial codes of baseline models (PFPL and DCCRN) with the
same training configuration as ours for comparison.

4.2. Ablation Study for Memory Assistance

We propose the memory assistance module to further improve
speech quality and make the model pay more attention to the
vocal features.
Table 1. Ablation study for memory assistance. Oursma and
Oursbma represents the result of placing the memory assis-
tance module before the LSTM layer and after the LSTM,
respectively. DCCRN represents the results obtained without
memory assistance.

Metric noisy Oursbma DCCRN Oursma

PESQ 1.18 2.52 2.65 2.70
STOI 0.54 0.81 0.84 0.87
SIMI 0.36 0.39 0.43 0.46

From Table 1, it can be seen that memory assistance mod-
ule has the best results when placed before LSTM. Mem-
ory assistance module can amplify the importance of effec-
tive information before the LSTM forgets some information,
so that LSTM continues to amplify those effective informa-
tion. When the memory assistance module is placed behind
LSTM, the degree of forgetting of the LSTM will be aggra-
vated, thereby reducing the performance of the model.

Memory assistance module outperforms DCCRN in
PESQ, STOI and SIMI. This indicates its ability to further
improve speech quality while empowering the model to focus
on vocal features.

4.3. Ablation Study for Vocal Reinforcement

To improve the vocal similarity of speech, we propose the
vocal reinforcement module and the similarity joint loss. We
compare with PFPL(with phonetic information) and DC-
CRN(without any speech information). Results are shown
in Table 2, our results are significantly better than the above
methods.

PFPL explicitly added the additional information (pho-
netic information) to the DCCRN. This additional informa-
tion contained more speech details, which made the PESQ,
SIMI and CSIG of PFPL higher than those of DCCRN. How-
ever, PFPL did not modify the original CED structure of
DCCRN, and its model did not have the ability to adapt to

Table 2. Ablation study for vocal reinforcement. Oursvr is
the model with only the vocal reinforcement. OursMVL is
the MVNet with both memory assistance and vocal reinforce-
ment.

Metric noisy DCCRN PFPL Oursvr OursMVL

PESQ 1.18 2.65 2.71 2.90 2.88
STOI 0.54 0.84 0.78 0.91 0.91
SIMI 0.36 0.43 0.51 0.52 0.52

SegSNR 2.07 6.49 5.58 5.88 6.55
CSIG 2.02 2.10 2.37 2.47 2.44

SI-SNRi - 6.98 6.27 9.88 9.97

this fine-grained information. Thus, its STOI, SegSNR and
SI-SNRi were degraded. Compared with DCCRN and PFPL,
both Oursvr and OursMVL have better SIMI and CSIG scores,
which prove that the vocal reinforcement can improve the
vocal consistency. Since Oursvr lacks the memory assistance
module in OursMVL, the local details (SegSNR) and overall
performance (SI-SNRi) of Oursvr are worse than OursMVL.

4.4. Comprehensive Evaluation

We comprehensively evaluate the performance of our method
on various metrics, as shown in Table 3. Our model outper-
forms the baseline models in all metrics and lower distortion
can be guaranteed while maintaining higher speech quality.

5. CONCLUSION
In this work, we propose the MVNet consisted of a mem-
ory assistance module and a vocal reinforcement module.
Memory assistance module is proposed to further improve
the speech quality while making the model focus more on
vocal features. Vocal reinforcement module explicitly intro-
duces vocal features to improve the speaker vocal similarity.
Besides, we design a similarity joint loss, which aims to
improve the speaker vocal consistency. Experiments verify
that the MVNet can further improve speech quality while
maintaining the increase in speaker similarity and the de-
crease in speech distortion, which correspond to the concerns
of the ASR and ASV tasks, respectively. In the future, we
will continue to explore what affects speech enhancement
performance.
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