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Abstract. The identification of vulnerabilities is an important element
in the software development life cycle to ensure the security of soft-
ware. While vulnerability identification based on the source code is a
well studied field, the identification of vulnerabilities on basis of a binary
executable without the corresponding source code is more challenging.
Recent research [1] has shown, how such detection can be achieved by
deep learning methods. However, that particular approach is limited to
the identification of only 4 types of vulnerabilities. Subsequently, we
analyze to what extent we could cover the identification of a larger va-
riety of vulnerabilities. Therefore, a supervised deep learning approach
using recurrent neural networks for the application of vulnerability de-
tection based on binary executables is used. The underlying basis is a
dataset with 50,651 samples of vulnerable code in the form of a stan-
dardised LLVM Intermediate Representation. The vectorised features of
a Word2Vec model are used to train different variations of three basic ar-
chitectures of recurrent neural networks (GRU, LSTM, SRNN). A binary
classification was established for detecting the presence of an arbitrary
vulnerability, and a multi-class model was trained for the identification of
the exact vulnerability, which achieved an out-of-sample accuracy of 88%
and 77%, respectively. Differences in the detection of different vulnera-
bilities were also observed, with non-vulnerable samples being detected
with a particularly high precision of over 98%. Thus, the methodology
presented allows an accurate detection of 23 (compared to 4 [1]) vulner-
abilities.

1 Introduction

1.1 Background

Identifying vulnerabilities is an important element of the software development
process to ensure the security of software. In the early stages of development,
this can be done by testing the code and performing static analysis based on
the source code. The identification of vulnerabilities, however, becomes more
challenging when analysing applications without knowledge of the associated
source code. This usually occurs when analysing legacy applications, proprietary
software or other forms of black-box pentesting scenarios. In these cases, black-
box tests can be used to identify vulnerabilities based on the behaviour of an
application without knowing its internal workings.
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Unfortunately, black-box analysis methods have a number of disadvantages.
Vulnerability detection methods such as fuzzing are very time-consuming, offer
low code coverage and have high resource requirements. Furthermore, the suc-
cess of these methods depends heavily on the specification of the test and the
completeness of the test cannot be proven [2]. Since in an analysis scenario with-
out the presence of the source code, the application would still be available in
the form of assembly code, this code could be used for an analysis to avoid the
disadvantages of a black-box analysis. However, due to its complexity a manual
analysis of assembly code performed by humans may hardly be feasible for larger
applications.

The analysis of assembly code is therefore particularly interesting in the
form of an automated analysis. Since the creation of a program for automated
analysis is not a trivial task due to the complexity of the code, this demanding
programming task in the field of binary code analysis can be accomplished by
using machine learning techniques [3], whereby statistical models are used to
identify relevant associations for the detection of vulnerabilities on the basis of
a database of already known vulnerable samples.

1.2 Motivation

The use of machine learning for processing program code opens up a variety of
interesting application areas. Besides promising application areas such as auto-
mated code generation [4], where impressive progress has been made recently,
the analysis of existing code is a widely studied area [3].

An analysis of existing source code on the basis of machine learning can be
used as a supplementary or alternative means of a conventional static code anal-
ysis to find bugs within the code. The advantage of this approach is that no
fixed set of rules has to be defined for this static analysis, but it can be learned
from a database by the model used. The application of machine learning based
analysis methods to binary files is more challenging. A term used in this context
is binary code similarity analysis, in which characteristics of different samples
are compared [5]. Using this method as a foundation already supports a variety
of applications. In particular, the reuse of code snippets can be detected. Such
a detection is of interest when determining authors and the reuse of identical
functions of programs [6], a technique used in particular in malware analysis [7].
Similarity-based analysis methods can also be used for the discovery of vulner-
abilities, which is useful if an already known vulnerability is reproduced in a
nearly identical form, for example by reusing a complete function [8].

In order to offer a generalised form of vulnerability detection for binaries,
the use of more profound forms of analysis is necessary. Such an analysis would
not only take into account the similarity with already known patterns, but also
include the actual inner workings of the code under investigation. Research into
machine learning-based fuzzing methods has already shown that they are suitable
for significantly improving the runtime and success rate of the vulnerability
discovery process [9], [10]. While such an approach is more effective, it still
remains dependent on the dynamic execution of the program and, despite a
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good coverage of the program flow, cannot guarantee completeness and claims
a certain runtime, which however is shorter compared to conventional fuzzing.

In order to avoid execution of the code and the associated problems men-
tioned, the approach of a machine learning based static analysis of binary code
is an appealing option. For this purpose, we define the analysis of binary code as
any form of analysis of information that we can extract from a binary executable.
A decompilation into LLVM Intermediate Representation would be an example
of this. In [1], this approach was demonstrated using deep learning in the form
of recurrent neural networks. The authors used a selection of six architectures
to perform a classification of four vulnerabilities, which were categorised by us-
ing the Common Weakness Enumeration (CWE). Also, instead of directly using
assembly language as input for the models, the code was decompiled into LLVM
Intermediate Representation, which we equally use as our working definition of
binary code.

1.3 Aims and Objectives

This paper aims to analyse whether deep learning-based models can be used
to sufficiently identify vulnerabilities (categorised by CWESs) in binary executa-
bles. The adopted methodology is based on the approach from [1], and extends
this in both implementation and scope. Therefore, the following objectives are
examined:

— Can the approach shown in [1] be reproduced and significantly extended
beyond identification of only four vulnerabilities?

— To which of the 118 vulnerability types (categorised by CWESs) in the used
dataset (SARD) can the approach be extended and how well are they iden-
tifiable?

— Is such a model able to identify the exact type of vulnerability or is it more
efficient at identifying the presence of an arbitrary vulnerability?

— Which architectural design decisions influence the result?

Based on the defined objectives, this paper first provides an overview of re-
lated research (Section 2). Then, the creation of the dataset used and the training
process based on that data is described in detail (Section 3 and Section 4). Af-
terwards we discuss our findings, its implications and possible improvements

(Section 5 and 6).

2 Related Work

Previous work on machine learning based vulnerability detection can be divided
into static versus dynamic analysis approaches. When considering static analysis
methods, those can be further divided on static analysis of the source code and
analysis techniques in which no source code is available.
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2.1 Static vulnerability detection based on source code

In the area of vulnerability detection through static source code analysis, re-
search has been conducted to determine a code similarity order of a fingerprint
to already known vulnerabilities. A number of publications have shown how al-
gorithmic solutions can be used to detect reused vulnerable code fragments on
the basis of the source code [11], [12], [13], [14]. Limitations of these approaches
were found in the detection of new vulnerabilities that were not a direct copy of
known vulnerabilities or were heavily modified.

A detection of new vulnerabilities requires a deeper understanding of the code
to be analysed, which can be implemented by deep learning based analysis. Vul-
nDeePecker [15] uses such a deep learning based detection method on program
slices to detect bidirectional LSTM neural network API function calls related vul-
nerabilities. For this purpose, six datasets were derived from the SARD dataset
[16] and tested with a set of deep learning architectures of different depths. It was
determined that architectures with two to three layers performed best, resulting
in an Fl-score of 86.6 - 95 % depending on the dataset.

In VulDeeLocator [17] it was demonstrated how the use of an intermediate
code representation and an associated reduction of the code of interest can be
used for detection. It was shown how the use of the intermediate code represen-
tation enabled the detection of vulnerabilities with an Fl-score of 90.2 % to 96.9
%.

Further work in the area of source code based detection showed how vulner-
abilities on a function-level can be detected by using abstract syntax trees [18],
[19].

2.2 Static vulnerability detection based on binary executables

Another subarea of static analysis is in the area of vulnerability detection without
using the source code, which will also be the focus of this work. Instead of
processing the source code, this work involves extracting relevant information
from the binary executable.

In this scenario, the detection based on code similarity was also investigated.
In [20], it was shown how similarity-based binary detection methods can be used
under consideration of cross-architecture. For this purpose, binary code from
ARM, MIPS and x86 CPU architectures was analysed by first translating them
into an intermediate representation and later deriving a similarity score of the
translated samples.

Another similarity-based detection method that does not require the use of
source code is discovRE [21]. This tool uses a k-Nearest Neighbour algorithm
to identify similar functions based on numerical features and then filter them
based on similarity of control-flow graphs. A special feature of this work is the
efficiency of the tool, which can check over 130,000 functions in 80 milliseconds.
However, the control-flow graph-based filtering of relevant functions is also one
of the major drawbacks of this approach, since minor changes in the control-flow
makes detection very difficult.
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Beyond the similarity-based detection approach, the use of deep learning
methods is also an option for the processing of binary executables. The authors
of [22] showed how a detection based on decompiled ASM code can be performed.
Similar to the deep learning methods based on the source code, the transformed
code was processed by recurrent neural networks following methods of natural
language processing (NLP). In their work, only stack-based buffer overflows were
considered, which were collected from public repositories, which is why these
are very realistic data. The authors report that their model achieved perfect
classification results both in-sample and out-of-sample, although it cannot be
ruled out that this is due to intensive hyperparameter optimization.

In addition to the use of assembly code, it is also possible to use an inter-
mediate representation of the code for this case, as demonstrated in [1]. In this
work a total of 14,657 code fragments were used for the four vulnerability types
CWE-134 (Use of Externally-Controlled Format String), CWE-191 (Integer Un-
derflow (Wrap or Wraparound)), CWE-401 (Improper Release of Memory Before
Removing Last Reference ("Memory Leak’)) and CWE-590 (Free of Memory not
on the Heap) of the SARD dataset. These code fragments consist of LLVM In-
termediate Representation code extracted from the compiled binary executables.

To classify the different vulnerabilities, six different variants of recurrent neu-
ral networks were trained with the bidirectional simple recurrent neural network
giving the best result. The results were only presented graphically but based
on the reported accuracy, a range of 98 - 100% could be deduced. Since this
work serves as an orientation to this paper, the implications of this work will be
discussed in more detail later in our work.

2.3 Dynamic vulnerability detection based on binary executables

In addition to the use of machine learning for the static detection of vulner-
abilities, the increasing use for the optimization of dynamic methods is also
worth mentioning. For this, research showed how existing fuzzing methods can
be improved by machine learning in terms of detection rate and code coverage.

In [23] it was shown how machine learning can be used to optimize the seed
inputs for the fuzzing process carried out on four PDF viewers, in order to reach
more execution paths. The improved seed generation of the fuzzer resulted in
32% more execution paths.

NeuFuzz [24] follows a similar approach and, in addition to the improved
seed selection strategy, also shows how deep learning techniques can be used to
predict whether an execution path is vulnerable. Using real-world programs, the
authors have shown that this approach can detect more vulnerabilities in less
time than conventional fuzzing tools.
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3 Data gathering and preprocessing

This section contains the preparation of a dataset for a training process to create
a deep learning-based detection of vulnerabilities in binary executables. Since
this process requires excessive preprocessing and preparation of the data, the
whole machine learning process carried out in this paper is divided into the
description of the dataset in this section separately from the actual training
process following in Section 4.

3.1 Overview

The approach adopted in this paper follows the methodology reported in [1],
where we initially replicate the reported results and then extend their approach
to cover 19 additional CWEs and required preprocessing steps. This approach
can be defined using the taxonomy introduced in [3] as supervised deep learning
using recurrent neural networks for the application of vulnerability discovery.
Therefore, code-base features on a token-level are embedded by using a word-
to-vector model.

SARD Binary lifting LLVM IR_ Test Case Word2Vec
to IR Preprocessing Selection Encodng
. 41,295 vuln. 19,066 vuln.
64,099 test cases 83'6;(?;&?;8;25 lled functions functions tracvsi{grgpgc:)gata
for 118 CWEs for 86 CWE 98.838 non-vuin 35,004 non-vuin (50651 106
or s functions functions 1000)
for 23 CWEs

Fig. 1. Data gathering and preprocessing steps

The steps for generating and preprocessing our dataset follow those of [1]
and are outlined in Figure 1 and detailed in the following.

3.2 Software Assurance Reference Dataset

The Software Assurance Reference Dataset! published by the National Institute
of Standards and Technology contains code of over 170,000 programs in the pro-
gramming languages C, C++, Java, PHP and C#. The programs included repre-
sent test cases taken from a selection of 150 weaknesses, following the Common
Weakness Enumeration (CWE). The test cases are labelled ”good” or ”bad”,
indicating within the dataset whether the respective weakness is present [16].
This means that both non-flawed and a flawed implementation of the respec-
tive test cases are included, which is why the use of this dataset is considered
to be suitable for training a vulnerability detection model. As part of the SARD

! https://samate.nist.gov/SARD/
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subset, the Juliet Suite for v1.3 C/C++ contains 64,099 artificially generated
test cases? that will be used in this work.

The scope of the included programs primarily covers the use of the standard
C library API for all platforms. Beyond that, no other third-party libraries are
used in the dataset [25].

The dataset contains weaknesses in the form of CWEs. However, since our
work focuses on vulnerability detection, we want to define those terms in more
detail. When speaking of vulnerability detection in this context, a vulnerability
is represented as the result of one or more weaknesses [26]. Conversely, despite
the presence of a weakness, filtering an input may not result in an exploitable
vulnerability [16]. Since we are using a function-based approach, we only con-
sider the filtering of input within a function. We therefore speak of vulnerability
detection in this context, even though this dataset only contains weaknesses. In
other words, we examine functions in isolation to see if they have a vulnerability,
even if the vulnerability found is potentially non-exploitable by filtering outside
that function.

3.3 Dataset Preparation

The code of the dataset is available in the form of source code divided into
different CWEs and test cases. However, since we do not want to process the
source code for further processing, but rather in the form of a black-box-based
approach, the code first gets compiled into binary executables. This is performed
automatically using already public code from the [27] repository, which takes care
of the organisation of the code, generation of the correct make files, separation
of the compiled files by CWE type and the presence or absence of a weakness.

3.4 Decompilation

With the compiled executables created as a starting point, the analysis scenario
corresponds to a real scenario without available source code. A decompilation to
LLVM IR using the tool RetDec® is performed using its default configuration,
as it was also used in [1]. We expect from this preprocessing step that useful
properties of LLVM IR will simplify the learning of relevant structures of the
code in the later training steps.

Since all Windows-specific CWEs were excluded in the previous step, these
are test cases from 86 remaining CWEs. The compilation process resulted in
the separate storage of flawed and non-flawed implementations of individual
test cases, which is why the total number of files to be processed increased to
83,623 executable files. We further noticed unintended over-optimisation effects
performed by RetDec, resulting in simplified test cases, which no longer contian
the flawed implementation. With regard to these cases, we were able to ensure
that they were completely removed through the subsequent selection processes.

2 https://samate.nist.gov/SARD/resources/releaseJulietl.3Doc. txt
% https://github.com/avast/retdec
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3.5 LLVM IR Preprocessing

The following preprocessing serves to put the textual information of the decom-
piled functions into a standardised form that can be used for further processing
Therefore, a custom parser was implemented, which also performs the following
standardisation steps on each file:

Global variables, local variables and labels are standardised by replacing each
unique keyword with a prefix and a counter variable, so that these keywords
are then present in the form of "LBL_1”, ”LBL_2”, ”VAR_1”, "VAR_2”, etc.
Function calls are distinguished between local and non-local functions. Non-
local functions come from external libraries and already have a unique name
across several applications. For example, a standard C function like ”mem-
copy” has the same name across all applications, which was generated by
RetDec. We deliberately leave these in the code and do not standardise them,
as the recognition of these functions commonly used for programming is rel-
evant for finding vulnerabilities. Local functions are instead replaced with a
fixed keyword and are therefore identically for all local functions, since those
do not contribute to the logic of a vulnerability.

All numbers get standardised by splitting each numeric value into individual
digits, which are treated as individual tokens.

An 7EOL” (end of line) token is added after each code line, to preserve the
contextual information of individual code lines even after combining them
into one large array.

The processed code lines are split to individual tokens which are represented
by one array of tokes per function processed.

This process was carried out for all 83,623 files and 86 CWEs in total. As

a result of this step those functions are now available in form of standardised
arrays of tokens, which are used for the following steps. An overview of the
number of all extracted test cases is given in Appendix A.

3.6 Test Case Selection

The number of the extracted functions is narrowed down to a number of relevant
weaknesses, based on the following criteria:

The windows specific weaknesses are excluded

From the selection of all functions of the test cases, only those are selected
which are directly related to the respective weakness

All weaknesses with less than 500 test cases are excluded

All samples with a length below 300 tokens are removed

Only weaknesses which are also present after compilation are considered
(e.g. CWEs like ”CWE 615, Information Exposure Through Comments” are
removed)
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For this purpose, using the terminology defined for the SARD dataset, only
the relevant primary and secondary good functions as well as the primary good
functions were selected by using regular expressions. The final selection of 54,070
samples from 23 CWEs is listed in Appendix B sorted by descending absolute
frequency. The percentage proportion of individual weaknesses ranges from 0.61
% to 12.09 %. Due to the chosen order of selection, there is also one CWE with
less than 500 entries, which is, however, negligible for this individual class.

3.7 Word to Vector Encoding

To transform the data, in the form of arrays of tokens, into a vector, a Word2Vec
model using the continuous bag-of-words architecture is trained on the created
dataset using the python gensim library. For this purpose, all tokens of the 54,070
samples are combined to a corpus of 30,710,959 tokens in total, containing 760
unique tokens. The model was trained with parameters of 100 dimensions, a
context size of 3 and a downsampling rate of le-3. Subsequently, all samples
were transformed token by token using the trained Word2Vec model and a zero-
padding to a sequence length of 1000 was carried out. In [28] it was shown
that with LSTM architectures, pre-padding provides significantly better results,
which is why pre-padding is used in this work.

4 Machine learning - Training and Evaluation

Two experiments of vulnerability detection are performed for a selection of dif-
ferent machine learning architectures (Section 4.2). The first experiment is a
binary classification, which is only intended to detect whether any vulnerability
is present. For the second experiment, a classification is performed on the specific
vulnerability, which should determine the exact nature of the vulnerability.

4.1 Dataset and Training Architecture

We apply a train-test-validation split to the total of 50,651 samples, with
70/15/15 % of the data respectively. The test data was used in the following
training process for callbacks for training optimisation, which is why we use
the additional validation split for a final out-of-sample evaluation to exclude
overfitting.

The used architectures are partially based on [1] and consist of recurrent
neural network layers followed by ordinary fully connected feed forward lay-
ers. However, as we specifically evaluated the learning effects for larger neural
networks, LSTM, GRU and SRNN architectures were also applied. Each archi-
tecture was tested as a unidirectional and bidirectional variant. For each variant,
a smaller single layer and a two layer variant were tested to check how the model
reacts to a larger capacity. This size refers to the number of RNN layers, as well
as the subsequent fully connected layers. A unit size of 64 is used for all RNN
layers, as well as the feed forward layers. All RNN layers use a tanh activation
function, all fully connected layers use a linear activation function.
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4.2 Training and Model Selection

This section details the training process for the binary and multi-class classifica-
tion, which are described below. Thereby, we aim to find out which architecture
is most suitable in solving the given problem and which design decisions take
influence on the result.

All training tests are carried out using a batch size of 64, to optimise the
categorical cross entropy using an Adam optimiser with an initial learn rate of
le-4. The learning rate was automatically decreased by half using the Reducel-
ROnPlateau-callback if the validation loss did not improve for five epochs in a
row. A training run was interrupted by an early stopping callback if the vali-
dation loss did not improve after 15 epochs. The classes were weighted for the
training process according to their frequency to compensate for the imbalance.

—— GRU - bi - 1 layer = LSTM - bi - 1 layer —— SRNN - bi - 1 layer
—— GRU - bi - 2 layer ——— LSTM - bi - 2 layer —— SRNN - bi - 2 layer
—— GRU -uni-1layer = LSTM-uni-1layer —— SRNN-uni-1 layer
GRU - uni - 2 layer LSTM - uni - 2 layer SRNN - uni - 2 layer
Accuracy Val. Accuracy
0.90
0.85
0.80 4
= 0.751
v
e
2 0.70
<
0.65
0.60
0.55
0.50
Loss Val. Loss
0.7
0.6 4
0.51
2
3
0.4
0.3
0.21
0 20 40 60 80 100 0 20 40 60 80 100
Epoch Epoch

Fig. 2. Accuracy and loss for the binary classification training process
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Binary Vulnerability Classification The implementation of binary classifi-
cation describes the experiment in which only a classification between a non-
flawed (class 0) and a flawed (class 1) implementation is carried out, without
considering the exact nature of the vulnerability.

Figure 2 shows the results of the tested architectures across all training
epochs. Based on the data, we see a successful training process across all ar-
chitectures, which is also evident out-of-sample without overfitting. The group
of SRNN models produced the best results in this respect, with the differences
between the various variants within the group being low. Out of this group the
single layer unidirectional SRNN model achieves the best accuracy and lowest
loss both in-sample and out-of-sample.

Since the use of callback functions might influence the shown validation re-
sults, a separate true out of sample using untouched validation data (as described
in Section 4.1) was used to further validate the selected single layer unidirectional
SRNN model. A detailed interpretation of the test results is given in Table 1. In
addition to the overall accuracy of around 88 %, this table also shows the im-
balance of the classes, the Fl-scores per class, as well as the precision and recall
metrics. From the frequency of the classes (the support column of the table), a
baseline of 65.86 % accuracy is obtained. This baseline was largely exceeded by
the selected model, as well as by all other models. With a precision of 96% for
the detection of non-flawed implementations, it can be stated that the model is
very well suited to identify flawless implementations, despite the existing false
positives.

Class ID Precision|Recall|F1-score{Support
0 0.96 0.85 ]0.91 5004
1 0.77 0.94 |0.84 2594
accuracy 0.88 7598
micro avg 0.88 0.88 ]0.88 7598
macro avg [0.87 0.90 ]0.88 7598
weighted avg|0.90 0.88 |0.88 7598

Table 1. Classification report for the binary classification

Multi-class Vulnerability Classification If not only the existence of an arbi-
trary weakness is to be detected, but also the exact type of the respective weak-
ness, a multi-class classification can be performed. Here, the class of non-flawed
implementations remains as in the previous experiment. However, a separate
class is defined for each of the flawed implementations, resulting in a total of 24
classes for the selection of weaknesses used in this training process.

As can be seen from the frequency of the classes from Table 2, there is a much
greater imbalance of classes when considering each weakness individually. The
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basic structure of the experiment and the architectures used remain identical to
the previous binary classification. The results of the training runs are shown in
Figure 3.

—— GRU - bi - 1 layer —— LSTM - bi - 1 layer —— SRNN - bi - 1 layer
—— GRU - bi - 2 layer ——— LSTM - bi - 2 layer —— SRNN - bi - 2 layer
—— GRU-uni-1layer —— LSTM-uni-1layer —— SRNN - bi- 3 layer
GRU - uni - 2 layer LSTM - uni - 2 layer  —— SRNN - bi - 3 layer (128)

~—— SRNN - uni - 1 layer
SRNN - uni - 2 layer

Accuracy Val. Accuracy

0 20 40 60 8’0 1(’)0 léO 0 20 40 60 80 100 120
Epoch Epoch

Fig. 3. Accuracy and loss for multi-class classification

From the training curves, clear distinctions can be made between the ar-
chitectural variants in this experiment, with the SRNN implementations again
producing the best results. In both the unidirectional and bidirectional imple-
mentations, it can be observed that the models with more hidden layers clearly
outperform the smaller models. In a direct comparison, the models with bidi-
rectional implementation perform better, which is why additional models were
tested in this group. These are a SRNN model with three hidden layers and a
unit size of 64, and a model with three hidden layers and a unit size of 128.
The bidirectional SRNN with three hidden layers and the unit size of 128 gave
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the best results with a validation accuracy of 78% and will be used for further
evaluation.

The selected model was tested again on the separate out-of-sample dataset,
yielding the results of the normalised confusion matrix shown in Figure 4. Due
to the large number of classes, only the numerical values in the confusion matrix
that do not contain the value zero are shown to improve the readability of the
figure.
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Fig. 4. Normalised confusion matrix for the multi-class classification

The confusion matrix shows the correct assignments of the classes, which
make up the majority of all classes with minor misclassifications occurring across
all classes, particularly noticeable in class 0 across all weakness classes. Other
conspicuous misclassifications can be explained by the type of weakness. This
applies, for example, to the Absolute Path Transversal and the Relative Path
Transversal weakness (Class 6 and 14), the Integer Overflow and Integer Under-
flow (Class 10 and 16), and Buffer Under-read and Buffer Under-write (Class 7
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and 22). These misclassifications can be explained by the similarity of these weak-
nesses. Further details of this classification, including the imbalance of classes,
can be found in the detailed classification report in Appendix C.

5 Discussion

We examined whether a supervised deep learning approach using recurrent neu-
ral networks for the application of vulnerability detection based on binary ex-
ecutables, as introduced in [1], is a suitable means. Therefore, the existing ap-
proach was expanded in both implementation and scope. We aimed to find out
if additional vulnerabilities can be detected, if the exact type of vulnerabilities
can be identified and which architectural changes of a recurrent neural network
are relevant for the learning process.

Extensions of this work to existing research fall into the three sub-areas of
test-case selection, pre-processing, and the training process. As part of the test-
case selection, we expanded the test case selection and justified this selection
resulting in the use of 23 weaknesses and 50,651 samples in total. In the prepro-
cessing step, existing methods were extended to standardise numerical values in
the form of individual digits. We expect this step to be essential for the detection
of memory allocation related vulnerabilities. The model training are represents
our main contribution, which serves to evaluate the objectives set for this work.

Appendix C details the implementation results of our multi-classification
approach. Comparing the used weaknesses CWE 134, 191, 401 and 590 of [1]
with the remaining CWEs, we get a macro Fl-score of 0.72 for the four CWEs
and a 0.64 across all classes. The data show that the approach can be adopted
to identify other types of vulnerabilities, but that on average these are more
difficult to detect.

When examining the suitability of an exact identification of the weakness
type, a binary classification was compared with a multi-class classification, which
achieved an accuracy of 88% and 77% respectively. On the other hand, it was
observed that in the case of multi-class classification, an interpretation of the
error associations between related vulnerability types was shown. In addition,
the learning effects and accuracy of detecting flawed code were both better with
multiclass classification, so we conclude that identifying the exact type is more
useful.

However, we were not able to determine from [1] whether the classifications
performed consider classes in isolation and thus binary classify each of the flawed
and non-flawed samples of a single CWE. We are actually concerned that such
a sample selection could introduces a bias, since the isolated consideration of
single vulnerabilities does not reflect the real use case of vulnerability detection,
where several vulnerabilities have to be considered. For that reason our work
explicitly details the the implementation of both approaches.

Regarding the influence of the architectural model decisions, in the case of bi-
nary classification, the SRNN model was found to perform best, and the number
of layers and directionality had a minor influence. In the multiclass classification,
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the SRNN model also showed the best results, which were, however, influenced
by the hyperparameters mentioned above. Both unidirectional models performed
worse than the bidirectional implementation. With regard to the number of lay-
ers, it was found that a larger network produced better results. Therefore, in
addition to the two-layer implementations, a three-layer implementation and
another variant of this three-layer implementation with increased unit size were
carried out, each of which performed better than the previous variants. From
this observation, it can be concluded that the size of the network used has a
significant influence compared to the previous experiment.

5.1 Limitations

Limitations of the approach used mainly arise from the dataset used, which con-
sists of synthetically generated test cases of selected CWEs. It can be presumed
that this data set has different properties in terms of structure and complexity
than real code, which would deviate the detection rate in real use cases. Fur-
thermore, the approach used at the function level has the disadvantage that it
is not suitable for identifying weaknesses that extend across several functions.

5.2 Future Work

In order to overcome the limitations discussed we propose the expansion of
the training dataset by using more realistic data for further enhancement. In
addition a combination with taint analysis methods could be used to be able to
identify vulnerabilities spreading across multiple functions. To not only identify
a vulnerability, but also to find out how this vulnerability can be exploited
and how the respective code location would be reached, a combination of our
approach with fuzzing techniques would be possible. In the first step, possible
vulnerable functions could be identified, and then fuzzing would be used to
determine the most ideal way to reach them. For finding the correct execution
branch, existing research has already impressively shown how the use of machine
learning methods can also accelerate this process [24].

6 Conclusion

This paper aimed to analyse whether deep learning-based models can be used
to sufficiently identify vulnerabilities in binary executables.

When reviewing existing work in the field of machine learning based vulner-
ability detection, it was found that the detection based on the original source
code is a well researched objective that showed convincing results. In contrast,
much less research has been done on static analysis of vulnerabilities using bi-
nary executables, and the work considered is limited in scope, especially with
regard to the selection of vulnerability types. This motivated us to test and op-
timise the suitability of these existing approaches for a broader scope. Another
motivation for conducting this research was the fact that almost perfect results
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were reported in [22] and [1], suggesting that these approaches might perform
better than source code-based detection.

We have shown how the approach introduced in [1] can be extended from 4
to 23 types of identifed vulnerabilities and how additions to the preprocessing
process allow for better processing of numerical values in particular. It was also
pointed out how preprocessing introduces possible sources of error and how these
can be removed for a clean training process. These differences in preprocessing
and our extended scope meant that it was not possible to reproduce the work
precisely.

We also showed that our approach can be transferred to other types of vulner-
abilities and that false negatives in particular can be excluded, thus generously
reducing the scope of an analysis. In the extended model selection, the findings
from the work [1] regarding the result that SRNN produce the best results could
be confirmed. Furthermore, the observation that two to three layer-models pro-
duces comparably good results, as reported in [15], could be confirmed. We have
also shown how extending the experiment to larger unit sizes further improves
the results, suggesting that there is further potential for optimisation.

Based on these findings, we can recommend the general analysis approach
and state that deep learning methods are able to identify a variety of practically
relevant vulnerabilities. However, in terms of practical application, it was noted
that it is unclear how accurately the relationships learned from synthetic data
can be recognised in real applications.

A reasonable next step for further research would therefore be to apply the
investigated approach to realistic data in order to prove its added value for find-
ing weakness with regard to real applications. For this purpose, a comparison
with other methods discussed, such as the similarity-based analysis of binaries
or the common methods of static analysis, would also be useful. Finally, the
possibility of combining the presented approach with alternative analysis meth-
ods was discussed. We consider such a combination to be reasonable due to the
possibility of precise narrowing of the scope of analysis of a binary file based on
the detection methodology presented in this work.
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B Selected CWEs

Name CWE ID|# bad|# good|# total|% of total
Heap-based Buffer Overflow 122 2412|4127 6539 12.09%
Integer Overflow or Wraparound 190 1441|3597 5038 9.32%
Stack-based Buffer Overflow 121 1575|2777 4352 8.05%
Integer Underflow (Wrap or Wraparound) |191 1125 |2816 3941 7.29%
Use of Uninitialized Variable 457 650 2320 2970 5.49%
Uncontrolled Format String 134 820 2060 2880 5.33%
Free of Memory not on the Heap 590 1141|1477 2618 4.84%
Mismatched Memory Management Rou-|762 611 1940 2551 4.72%
tines
Improper Neutralization of Special Ele-|78 960 1260 2220 4.11%
ments used OS Command Injection
Relative Path Traversal 23 930 1230 2160 3.99%
Buffer Underwrite ("Buffer Underflow’) 124 810 1333 2143 3.96%
Absolute Path Traversal 36 907 1205 2112 3.91%
Unexpected Sign Extension 194 907 983 1890 3.50%
Signed to Unsigned Conversion Error 195 896 988 1884 3.48%
Buffer Under-read 127 764 1110 1874 3.47%
Improper Release of Memory Before Re-[401 265 1455 1720 3.18%
moving Last Reference (Memory Leak)
Uncontrolled Resource Consumption ('Re-[400 543 1154 1697 3.14%
source Exhaustion’)
Divide By Zero 369 535 1107 1642 3.04%
Buffer Over-read 126 602 910 1512 2.80%
Integer Overflow to Buffer Overflow 680 450 474 924 1.71%
Double Free 415 181 393 574 1.06%
Numeric Truncation Error 197 447 54 501 0.93%
Unchecked Return Value to NULL Pointer|690 94 234 328 0.61%
Dereference

Table 2. Selected samples per CWE
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C Multi-class Classification Report

Class ID|CWE ID Precision|Recall|F1-score|Support
0 - 0.98 0.78 ]0.87 5004
1 197 0.55 0.58 |0.56 62
2 401 0.71 0.88 ]0.78 33
3 121 0.58 0.83 |0.68 237
4 122 0.55 0.83 |0.66 333
5 194 0.64 0.90 ]0.75 88
6 23 0.35 0.41 |0.38 127
7 127 0.67 0.71  |0.69 126
8 195 0.58 0.68 ]0.62 103
9 415 0.76 0.94 |0.84 17
10 190 0.67 0.67 |0.67 187
11 762 0.72 0.96 ]0.82 93
12 126 0.49 0.80 ]0.61 89
13 680 0.40 0.75 ]0.52 61
14 36 0.37 0.44 ]0.40 110
15 78 0.66 0.89 |0.76 130
16 191 0.59 0.71 |0.64 162
17 400 0.24 0.75 |0.36 72
18 369 0.59 0.64 ]0.61 7
19 457 0.53 0.97 ]0.68 79
20 690 0.36 1.00 |0.53 13
21 134 0.48 0.79 ]0.60 94
22 124 0.48 0.71  |0.57 119
23 590 0.80 0.92 |0.86 182
accuracy 0.77 7598
macro avg 0.57 0.77 0.64 7598
weighted avg|0.84 0.77 10.79 7598

Table 3. Classification report for the multi-class classification
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