
High Performance Dataframes from Parallel
Processing Patterns

Niranda Perera1[0000−0003−3076−0011], Supun Kamburugamuve2, Chathura
Widanage2, Vibhatha Abeykoon2, Ahmet Uyar2, Kaiying Shan3, Hasara

Maithree4, Damitha Lenadora5, Thejaka Amila Kanewala2, and Geoffrey Fox6

1 Luddy School of Informatics, Computing, and Engineering, Indiana University,
Bloomington, IN 47408, USA

2 Indiana University Alumni, Bloomington, IN 47405, USA
3 University of Virginia, Charlottesville, VA 22904, USA

4 University of Moratuwa, Bandaranayake Mawatha, Moratuwa 10400, Sri Lanka
5 University of Illinois Urbana-Champaign, Urbana, IL 61801, USA

6 Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, VA
22904, USA

Abstract. The data science community today has embraced the con-
cept of Dataframes as the de facto standard for data representation and
manipulation. Ease of use, massive operator coverage, and popularization
of R and Python languages have heavily influenced this transformation.
However, most widely used serial Dataframes today (R, pandas) expe-
rience performance limitations even while working on even moderately
large data sets. We believe that there is plenty of room for improvement
by investigating the generic distributed patterns of dataframe operators.
In this paper, we propose a framework that lays the foundation for
building high performance distributed-memory parallel dataframe sys-
tems based on these parallel processing patterns. We also present Cylon,
as a reference runtime implementation. We demonstrate how this frame-
work has enabled Cylon achieving scalable high performance. We also
underline the flexibility of the proposed API and the extensibility of the
framework on different hardware. To the best of our knowledge, Cylon is
the first and only distributed-memory parallel dataframe system avail-
able today.

Keywords: Dataframes · High performance computing · Data engineering ·
Relational algebra · MPI · Distributed Memory Parallel

1 Introduction

The Data Science domain has expanded monumentally in both research and
industry communities over the past few decades, predominantly owing to the
Big Data revolution. Artificial Intelligence (AI) and Machine Learning (ML) offer
even more complexities to data engineering applications, which are now required
to process terabytes of data. Typically, a significant amount of developer time

ar
X

iv
:2

20
9.

06
14

6v
1

 [
cs

.D
C

]
 1

3
Se

p
20

22

2 Perera et al.

is spent on data exploration, preprocessing, and prototyping while developing
AI/ML pipelines. Therefore, improving its efficiency directly impacts the overall
pipeline performance.

With the wide adoption of R and Python languages, the data science com-
munity is increasingly moving away from established SQL-based abstractions.
Dataframes play a pivotal role in this transformation [14] by providing a func-
tional interface and interactive development environment for exploratory data
analytics. pandas is undoubtedly the most popular dataframe library available
today. Its open source community has grown significantly, and the API has ex-
panded up to 200+ operators. Despite this popularity, both R-dataframe and
pandas encounter performance limitations even on moderately large data sets. In
our view, dataframes have now exhausted the capabilities of a single computer,
which paves way for distributed dataframe systems.

There are several significant engineering challenges related to developing a
scalable and high performance distributed dataframe system (Section 2.1). In
this paper, we analyze dataframe operators to establish a set of generic dis-
tributed operator patterns and present an open-source high performance dis-
tributed dataframe system framework based on them, Cylon. We take inspira-
tion from Mattson et al’s Patterns for Parallel Programming [13]. Our main
focus is to present a mechanism that promotes an existing serial/ local operator
into a distributed operator (Section 2.2, 3). The proposed framework is aimed at
a distributed memory system executing in a Bulk Synchronous Parallel (BSP)
[20,8] environment. This combination has been widely employed by the high
performance computing (HPC) community for exascale computing applications
with admirable success.

2 Dataframe Systems

A dataframe is a heterogeneous data structure containing a set of arrays that
are individually homogeneous. In contrast, deep learning or machine learning
use tensors which are homogeneously typed multidimensional arrays. These two
data structures are integrated to support end-to-end data engineering workloads.
Dataframes were first introduced by the S language in 1990, and their popularity
grew exponentially with R and Python languages[14]. These libraries contain
a large number of SQL-like statistical, linear algebra and, relational algebra
operators and are sequential in execution. With the increasing size of data, there
have been some attempts to scale dataframe execution both in the cloud and
high performance computing environments such as, Dask[19], Modin[18], and
Koalas.

2.1 Engineering Challenges

While there is a compelling need for a distributed dataframe system, there are
several engineering challenges.

High Performance Dataframes from Parallel Processing Patterns 3

– Lack of Specification: Despite the popularity, there is very little consen-
sus on a specification/standard for dataframes and their operators amongst the
systems available today. Rapid expansion in applications and the increasing de-
mand for features may have contributed to this divergence. The current trend
is to use pandas as the reference API specification [18], and we also follow this
approach for the work described in this paper.
– Massive API: pandas API consists of 240 operators [3,18]. There is also sig-
nificant redundancy amongst the operators. It would be a mammoth undertaking
to parallelize each of these operators individually. Petersohn et al [18], have taken
a more practical approach by identifying a core set of operators (Dataframe Al-
gebra) listed in Table 1. In this paper, we have taken a different approach by
identifying distributed patterns in dataframe operators, and devise a framework
that can best scale them in a distributed memory parallel environment.

Fig. 1: Distributed Memory Dataframe Abstraction

Selection Window
Projection Transpose
Union Map

Difference Aggregation∗

Join ToLabels
Unique FromLabels
GroupBy Rename

Sort
*Not categorized in Modin

Table 1: Modin
DataFrame Algebra [18]

– Efficient Parallel Execution: Distributed data engineering systems gen-
erally vary in their execution model. Dask, Modin, and Koalas dataframes are
built on top of a fully asynchronous execution environment. Conversely, Bulk-
Synchronous-Parallel (BSP) model is used in data parallel deep learning. This
mismatch poses a challenge in creating a fully integrated scalable data engi-
neering pipeline. Our framework attempts to bridge this gap by taking an HPC
approach to parallelizing Dataframe operators.

2.2 System Considerations

There are multiple aspects that need to be considered when developing a dis-
tributed data processing framework [11]. Our distributed dataframe model is
designed based on the following considerations.

– BSP Execution: The most widely used execution models are, 1) Bulk
Synchronous Parallel [20,8] and 2) Fully Asynchronous. The former assumes all
the tasks are executing in parallel, and the executors synchronize with each other
by exchanging messages at certain points. The sections of code between com-
munication synchronizations execute independently. In the latter, tasks would
be executed independently. Input and output messages will be delivered us-
ing queues, and often this requires a central scheduler to orchestrate the tasks.
Many recent data engineering frameworks (e.g. Apache Spark, Dask, etc.) have

4 Perera et al.

adopted fully asynchronous execution. Our framework is based on BSP execution
in a distributed memory environment. Gao et al [9] recently published a similar
concept for scaling joins over thousands of GPUs. We intend to show that this
approach generalizes to all operators and achieves commendable scalability and
high performance.
– Distributed Memory: Most often the parallel memory model of a sys-
tem is a choice between, 1) Shared : multiple CPU cores in a single machine via
threads/ processes (e.g. OpenMP), 2) Distributed : every instance of the program
is executed on an isolated memory, and data is communicated via message pass-
ing (e.g. MPI), and 3) Hybrid : combines shared and distributed models. Our
framework is developed based on Distributed memory.
– Columnar Data Format: Most of dataframe operators access data along
columns, and using a columnar format allows operators to be vectorized using
SIMD and hardware accelerators (e.g. GPUs). As a result, the patterns described
in this paper focus on columnar dataframes.
– Row-based Partitioning: Dataframe partitioning is semantically different
from traditional matrix/tensor partitioning. Due to the homogeneously typed
data storage, when a matrix/ tensor is partitioned, the effective computation
reduces for each individual partition. By comparison, dataframe operator pat-
terns (Section 3.3) show that not all columns of a dataframe contribute equally
to the computation, e.g. join is performed on key columns, while the rest of the
columns move alongside the keys. Both Apache Spark [23] and Dask [19] follow
a row-based partitioning scheme, while Modin [18] uses block-based partitioning
with dynamic partition ID allocation. Our framework employs BSP execution
on a distributed memory parallel environment. We would like to distribute the
computation among all available executors to maximize the scalability. We also
use row-based partitioning because it allows us to hand over the data partitions
with identical schema to each executor.

3 Distributed Memory Dataframe Framework

The lack of a specification presents a challenge in properly defining a dataframe
data structure. It is not quite a relation in an SQL sense, nor a matrix/multidi-
mensional array. For our distributed memory model, we borrow definitions from
Petersohn et al [18]. Dataframes contain heterogeneously typed data originating
from a known set of domains, Dom = {dom1, dom2, ...}. For dataframes, these
domains represent all the data types they support.

Definition 1. A Schema of a Dataframe, SM is a tuple (DM , CM), where DM

is a vector of M domains and CM is a vector of M corresponding column labels.
Column labels usually belong to String/ Object domain.

Definition 2. A Dataframe is a tuple (SM , ANM , RN), where SM is the Schema
with M domains, ANM is a 2-D array of entries where actual data is stored,
and RN is a vector of N row labels belonging to some domain. Length of the
Dataframe is N , i.e. the number of rows.

High Performance Dataframes from Parallel Processing Patterns 5

3.1 Distributed Memory Dataframe

"How to develop a high performance scalable dataframe runtime?" is the main
problem we aim to address in our framework. We attempt to promote an already
available serial (local) operator into a distributed-memory parallel execution en-
vironment (Figure. 1). For this purpose, we extend the definition of a dataframe
for a distributed memory parallel execution environment with row-based parti-
tioning.

Definition 3. A Distributed-Memory Dataframe (DMDF) is a virtual col-
lection of P Dataframes (named Partitions) of lengths {N0, ..., NP−1} and a
common Schema SM . Total length of the DMDF is ΣNi = N , and the row la-
bels vector is the concatenation of individual row labels, RN = {R0R1...RP−1}.

Fig. 2: Distributed Memory Dataframe

Data Structure
Operation Dataframe Array Scalar

Shuffle (AllToAll) Common Rare N/A
Scatter Common Rare N/A

Gather/AllGather Common Common Common
Broadcast Common Common Common

Reduce/AllReduce N/A Common Common

Table 2: Communication semantics in
Dataframe Operators and the

frequency of occurrence

3.2 Building Blocks

As shown in Figure 1, a distributed operator is comprised of multiple compo-
nents/ building blocks, such as,

1. Data Structures: The distributed memory framework we employ uses three
main data structures: dataframes, arrays, and scalars. While most of the oper-
ators are defined on dataframes, arrays and scalars are also important because
they present different communication semantics.
2. Serial/Local Operators: These refer to single-threaded implementations of
core operators (Table 1). There could be one or more libraries that provide this
functionality (e.g. numpy, pandas, RAPIDS CuDF, Apache Arrow Compute,
etc). Choice of the library depends on the language runtime, the underlying
memory format, and the hardware architecture.
3. Communication Routines: A BSP execution allows the program to con-
tinue independently until the next communication boundary is reached (Section
2.2). HPC message passing libraries such as MPI (OpenMPI, MPICH, MSMPI)
and UCX provide communication routines for memory buffers (works for homo-
geneously typed arrays). The most primitive routines are tag-based async send
and async receive. Complex patterns (generally termed collectives) can be de-
rived on top of these two primitive routines (e.g. MPI-Collectives, UCX-UCC).

6 Perera et al.

The columnar data format represents a column by a tuple of buffers and a
dataframe is a collection of such columns. Therefore, a communication routine
would have to be called on each of these buffers. We identified a set of communi-
cation routines required to implement distributed memory dataframe operators.
These are listed in Table 2.
4. Auxiliary Operators: Partition operators are essential for distributed mem-
ory applications. Partitioning determines how a local data partition is split into
subsets so that they can be sent across the network. This operator is closely tied
with Shuffle communication routine. The goal of hash partitioning is to assign a
partition ID to each row of the dataframe so that at the end of the communica-
tion routine, all the equal/key-equal rows end up in the same partition. Ordered
Partitioning is used when the operators (e.g. Sort) need to be arranged based on
sorted order. Parallel sorting on multiple key-columns further complicates the
operation by accessing values along row-dimension (cache-unfriendly). Rebalance
repartitions data across the executors equally or based on a sequence of rows
per partition. On average, an executor would only have to exchange data with
its closest neighbors to achieve this. To determine the boundaries, the executors
must perform an AllGather on their partition lengths. Merge is another impor-
tant auxiliary operator. It is used to build the final ordered dataframe in Sort
operator to merge individually ordered sub-partitions (∼merge-sort).

3.3 Generic Operator Patterns

Pattern Operators Result
Semantic Communication

Embarrassingly parallel Select, Project, Map,
Row-Aggregation Partitioned -

Loosely Synchronous

– Shuffle Compute Union, Difference,
Join, Transpose Partitioned Shuffle

– Combine Shuffle Reduce Unique, GroupBy Partitioned Shuffle
– Broadcast Compute Broadcast-Join∗ Partitioned Bcast
– Globally Reduce Column-Aggregation Replicated AllReduce
– Globally Ordered Sort Partitioned Gather, Bcast, Shuffle, AllReduce
– Halo Exchange Window Partitioned Send-recv
Partitioned I/O Read/Write Partitioned Send-recv, Scatter, Gather

*Specialized join algorithm
Table 3: Generic Dataframe Operator Patterns

Our key observation is that dataframe operators can be categorized into
several generic parallel execution patterns. We believe a distributed framework
based on these patterns would make the parallelization of the massive API more
tractable. These generic patterns (Table 3) have distinct distributed execution
semantics, and individually analyzing the semantics allowed us to recognize op-
portunities for improvement. Rather than optimizing each operator individually,
we can focus more on improving bottlenecks of the pattern, and thereby bene-
fiting all operators derived from it.

Result Semantic: A local dataframe operator may produce dataframes,
arrays, or scalars as results. When we promote a local operator to distributed
memory, these result semantics could be nuanced (a global-viewed dataframe).

High Performance Dataframes from Parallel Processing Patterns 7

Distributed memory dataframes (and arrays) are partitioned, and therefore a
dataframe/array result (e.g. select, join, etc.) should also be partitioned.
By contrast, scalars cannot be partitioned, so when an operator produces a
scalar, it needs to be replicated to preserve the overall operator semantic.

Embarrassingly Parallel (EP) EP operators are the most trivial class of op-
erators. They do not require any communication to parallelize the computation.
Select, Project, Map, and Row-Aggregation fall under this pattern. While Select
and Map apply to rows, Project works by selecting a subset of columns. These
operations are expected to show linear scaling. Arithmetic operations (e.g. add,
mul, etc.) are good examples of this pattern.

Loosely Synchronous

1. Shuffle-Compute: This is a common pattern that can be used for operators
that depend on Equality/Key Equality of rows. Of the core dataframe operators,
join, union and difference directly fall under this pattern, while transpose
follows a more nuanced approach.
Hash partitioning and shuffle communication rearrange data in such a way that
equal/key-equal rows are on the same partition. Corresponding local operation
can then be called trivially. Join, Union and Difference operators follow this
pattern:

HashPartition → Shuffle → LocalOp

The local operator may access memory randomly, and allowing it to work on
in-cache data improves the efficiency of the computation. We could also simply
attach a local hash partition block at the end of the shuffle to achieve this since
hash-partitioning can stream along the columnar data and is fairly inexpensive.

HashPartition → Shuffle → LocalHashPartition → LocalOp

A more complex scheme would be to hash-partition data into much smaller sub-
partitions from the start. Possible gains on each of these schemes depend heavily
on runtime characteristics.
Transpose is important for dataframe Pivot operations. It can be implemented
without communication in a block partitioned environment [18]. In a row par-
titioned setup, a shuffle is required at the end of block-wise local transpose to
rearrange the blocks.
2. Combine-Shuffle-Reduce: An extension of the Shuffle-Compute pattern,
Combine-Shuffle-Reduce is semantically similar to the famous MapReduce paradigm.
The operations that reduce the resultant dataframe length such as Groupby and
Unique, could benefit from this pattern. The initial local operation would reduce
data into a set of intermediate results (similar to the combine step in MapRe-
duce) e.g. groupby.std, creating sum_x2, sum_x, and count_x, which would
then be shuffled. Upon their receipt, a local operation is performed to finalize
the results. Perera et al [17] also discuss a similar approach for dataframe reduc-
tions. The effectiveness of combine-shuffle-reduce over shuffle-compute depends
on the Cardinality (C) (Section 3.4).

LocalOp (interm. res.) → HashPartition → Shuffle → LocalOp (final res.)

8 Perera et al.

3. Broadcast-Compute: This requires a broadcast routine rather than shuffle.
broadcast_join, a special algorithm for join, is a good example of this pattern.
Broadcasting the smaller length relation to all other partitions and performing
a local join is potentially much more efficient than shuffling both relations.
4. Globally-Reduce: This is most commonly seen in dataframe Column Ag-
gregation operators. It is similar to EP, but requires communication to arrive
at the final result. For example, calculating the column-wise mean requires a
local summation, a global reduction, and a final value calculation. Some utility
methods such as distributed length and equality also follow this pattern. For large
data sets, the complexity of this operator is usually governed by the computation
rather than the communication.

LocalOp → Allreduce → Finalize

5. Halo Exchange: This is closely related to window operations. pandas API
supports rolling and expanding windows. For row-partitions, the windows at the
boundaries would have to communicate with their neighboring partitions and
exchange partially computed results. The amount of data sent/received is based
on the window type and individual length of partitions.
6. Globally Ordered: Ascending order of rows (rowi ≤ rowj) holds if all
elements in rowi are less than or equal to the corresponding element in rowj .
Ordered partitioning preserves this order along the partition indices. For a single
numerical key-column, the data can be range-partitioned based on a key-data
histogram.

Sample → Allreduce range → Range part. → Shuffle → Local sort

For multiple key-columns, we use sample sort with regular sampling [12]. It sorts
data locally and sends out a sample to a central entity that determines pivot
points for data. Based on these points, sorted data will be split and shuffled, and
finally all executors merge the received sub-partitions locally.

Local
sort → Sample → Gather

@rank0 →
Calc. pivots
@rank0 → Bcast

pivots → Split → Shuffle → Local
merge

Partitioned I/O Partitioned Input parallelizes the input data (CSV, JSON,
Parquet) by distributing the files to each executor. It may distribute a list of
input files to each worker evenly. Alternatively, it receives a custom one-to-many
mapping from worker to input file(s) and reads the input files according to the
custom assignment. In Partitioned Output, each executor writes its own partition
dataframe to one file.

3.4 Runtime Aspects

– Cardinality: Hash-shuffle in Shuffle-Compute pattern roughly takes O(n) +
O(log P ∗ n), where n is average length of a partition. In the Combine-Shuffle-
Reduce pattern, the initial local operation has the potential to reduce commu-
nication order to n′ < n. This gain depends on the Cardinality (C) of the
dataframe C ∈ [1N , 1], which is the number of unique rows relative to the length.
C ∼ 1

N =⇒ n′ ≪ n, making the combine-shuffle-reduce much more efficient

High Performance Dataframes from Parallel Processing Patterns 9

than a shuffle-compute. Consequently, when C ∼ 1 =⇒ n′ ∼ n may in fact
worsen the combine-shuffle-reduce complexity. In such cases, shuffle-compute
pattern is more efficient (5).
– Data Distribution: This heavily impacts the partitioning operators. When
there are unbalanced partitions, some executors may be underutilized, thereby
affecting the overall distributed performance. Work-stealing scheduling is a pos-
sible solution to this problem. In a BSP environment, pseudo-work-stealing exe-
cution can be achieved by storing partition data in a shared object store. Some
operations could employ different operator patterns based on the data distribu-
tion. (e.g. When one relation is very small, Join could use a broadcast_join).
– Logical Plan Optimizations: An application consists of multiple Dataframe
operator. Semantically, they are arranged in a DAG (directed acyclic graph), i.e.
logical plan. An optimized logical plan can be generated based on rules (e.g.
predicate push-down) or cost metrics. While these optimizations produce signif-
icant gains in real-life applications, this is an orthogonal detail to the individual
operator patterns we focus on in this paper.

4 Cylon

Cylon is a reference distributed memory parallel dataframe runtime based on
Section 3. We extended concept to implement a similar GPU Dataframe system,
GCylon. The source code is openly available in GitHub [6] under Apache License.

4.1 Architecture

– Arrow Format & Local Operators: Cylon was developed in C++ using
Apache Arrow Columnar format, which allows zero-copy data transfer between
language runtimes. Arrow C++ Compute library is used for the local operators
where applicable. Some operators were developed in-house.Additionally, we use
pandas and numpy in Python for EP operators.
– Communication: Cylon currently supports MPI (OpenMPI, MPICH, MSMPI),
UCX, and Gloo communication frameworks. The communication routines (Ta-
ble 2) are implemented using a collection of non-blocking routines on internal
dataframe buffers. For the user, it would be a blocking routine on dataframes.
For example, Dataframe Gather is implemented via a series of NB_Igatherv
calls on each buffer.
– Auxiliary Operators: Cylon supports all auxiliary operators discussed in
Section 3. These operators are implemented with utilities developed in-house and
from Arrow Compute, and for GCylon, we use CuDF utilities where applicable.
– Distributed Operators Except for Window and Transpose, Cylon imple-
ments the rest of the operators identified in Table 1. As shown in Figure 1, all of
them are implemented as a composition of local, auxiliary and communication
operators based on the aforementioned patterns. Currently the pandas operator
coverage is at a moderate 25%, and we are working on improving the coverage.

10 Perera et al.

4.2 Features

– Scalability and High Performance: Cylon achieves above-average scala-
bility and higher performance than the commonly used distributed dataframe
systems. In Section 5, we compare strong scaling of Cylon, Modin, and Dask.
– Flexible Dataframe API: Cylon API clearly distinguishes between local
and distributed operators with minimal changes to the pandas API semantics.
This allows complex data manipulations for advanced users. As an example, a
join (shuffle) can be easily transformed into a broadcast_join just by changing
a few lines of code.

df1 = read_csv_dist (. . . , env) # large df
df2 = read_csv (. . .) i f env.rank == 0 else None # read small df at rank 0
df2_b = env.broadcast(df2 , root=0) # broadcast
df3 = df1 .merge(df2_b, . . .) # local join

– Extensibility: With the proposed model, Cylon was able to switch between
multiple communication frameworks. Additionally, we extended this model to
develop an experimental distributed memory dataframe for GPUs, GCylon with
minimum development effort.

5 Experiments

Our experiments were carried out in a 15-node Intel® Xeon® Platinum 8160
cluster. Each node has a total RAM of 255GB, uses SSD for storage and are
connected via Infiniband with 40Gbps bandwidth. A maximum of 40 (of 48)
cores were used from each node. The software used: Python v3.8 & Pandas v1.4;
Cylon (GCC v9.4, OpenMPI v4.1, & Apache Arrow v5.0); Modin v0.12 (Ray
v1.9); Dask v2022.1.Uniformly random distributed data was used with two int64
columns, 109 rows (∼16GB), and C = 0.9. This constitutes a worse-case scenario
for key-based operators. The scripts to run these experiments are available in
Github [7].

The main goal of these operator benchmarks was to show how such generic
patterns helped Cylon achieve scalable high performance. Dask and Modin oper-
ators are compared here only as a baseline. We tried our best to refer to publicly
available documentation, user guides and forums while carrying out these tests
to get the optimal configurations.

– Scalability: Figure 3 depicts strong scaling for the patterns. Dotted lines
represent the speed-up over pandas (pandas_time/time). Compared to Dask,
Modin, and pandas, Cylon shows consistent performance and superior scala-
bility. When the parallelism is increased from 1 to 256, the wall-clock time is
reduced. Operations takes longer to complete at 512 parallelism. Per executor
work is at its lowest in this instance, therefore the communication cost dominates
over computation. For EP, a Barrier is called at the end and it might carry some
communication overhead. Cylon’s local operators also perform on par or better
than pandas, which validates our decision to develop in a C++ backend.

High Performance Dataframes from Parallel Processing Patterns 11

1 2 4 8 16 32 64 128 256 512
parallelism

102

103

104
ti
m
e
(m

s)

Strong Scaling - Scalar

Cylon
modin
dask
pandas 10−1

100

101

102

sp
ee
d-
up

ov
er

pa
nd

as

1 2 4 8 16 32 64 128 256 512
parallelism

101

102

103

104

105

ti
m
e
(m

s)

Strong Scaling - Scalar Aggregation

Cylon
modin
dask
pandas

10−1

100

101

102

sp
ee
d-
up

ov
er

pa
nd

as

1 2 4 8 16 32 64 128 256 512
parallelism

104

105

106

ti
m
e
(m

s)

Strong Scaling - GroupBy

Cylon_hash
Cylon_mapred_hash
modin
dask
pandas

100

101

102

sp
ee
d-
up

ov
er

pa
nd

as

1 2 4 8 16 32 64 128 256 512
parallelism

104

105

106

ti
m
e
(m

s)

Strong Scaling - Join

Cylon_hash
Cylon_sort
dask
pandas

100

101

102

sp
ee
d-
up

ov
er

pa
nd

as

Fig. 3: Strong Scaling (1B rows, Log-Log) with speed-up over pandas

Unfortunately, Modin join for 1B rows failed, therefore we ran a smaller 100
million row test case (Figure. 4(a)). It only uses broadcast-join [15], which
explains the lack of scalability. However, we encountered similar problems for the
rest of the operators (Figure 3). Compared to Modin, Dask showed comparable
scaling to Cylon for both groupby and join. Still it is disconcerting not to see
any speed-up for both scalar tests.
– Cardinality Impact: Figure 4(b) illustrates the impact of Cardinality (C) on
the groupby performance. When C = 0.9, hash-groupby (shuffle-compute) con-
sistently outperforms the mapred-groupby (combine-shuffle-reduce), because the
local combining step does not reduce the shuffle workload sufficiently. Whereas
whenC = 10−5, shuffled intermediate result size is significantly lesser, and there-
fore the latter is much faster. This shows that the same operator might need to
implement several patterns and choose an implementation based on runtime
characteristics.

6 Related Work

Dask distributed dataframe[19] was the first and foremost distributed dataframe
system. It was targeted at providing better performance in personal worksta-
tions. RAPIDS CuDF, later extended Dask DDF for GPU dataframes. In large-
scale supercomputing environments, HPC-based systems like MPI (Message Pass-
ing Interface) [1], PGAS (partitioned global address space)[24], OpenMP, etc.
performed better compared to Apache Spark[23] and Dask [10,21,2]). Modin

12 Perera et al.

1 2 4 8 16 32 64 128 256 512
parallelism

103

104

105

ti
m
e
(m

s)

Strong Scaling - Join (100M)

Cylon_hash
Cylon_sort
modin
dask
pandas

100

101

sp
ee
d-
up

ov
er

pa
nd

as

1 2 4 8 16 32 64 128 256 512
parallelism

103

104

105

ti
m
e
(m

s)

GroupBy Cardinality

hash C=0.9
mapred C=0.9
hash C=1e-5
mapred C=1e-5

(a) (b)

Fig. 4: a: Strong Scaling Joins with Modin (100M rows, Log-Log),
b: Cardinality Impact on Combine-Shuffle-Reduce (groupby, 1B rows, Log-Log)

[18], Dask [19], and Koalas (Apache Spark) are some of the emerging distributed
dataframe solutions, but the domain shows a lot more room for improvement.
HPC-based distributed data engineering systems show promising support for
workloads running in supercomputing environments [22,4,3,17], and this is the
main motivation for this paper.

7 Limitations & Future Work

Cylon Sort and Window operators are still under development. Additionally,
larger scale experiments have been planned to provide more finer-grained analy-
sis on communication and computation performance. Cylon execution currently
requires dedicated resource allocation, which may be a bottleneck in a multi-
tenant cloud environment. Furthermore, fault tolerance is another feature that
is yet to be added. We believe that both BSP and asynchronous executions are
important for complex data engineering pipelines and are currently working on
integrating Cylon with Parsl [5] and Ray [16]. This would enable the creation
of individual workflows that run on BSP, each of which can be scheduled asyn-
chronously, that would optimize resource allocation without hindering the overall
performance.

8 Conclusion

We recognize that today’s data science community requires scalable solutions
to meet their ever-growing data demand. Dataframes are at the heart of such
applications, and in this paper we proposed a framework based on a set of
generic operator patterns that lays the foundation for building scalable high
performance dataframe systems. We discussed how this framework complements
the existing literature available. We also presented Cylon, a reference runtime
developed based on these concepts and showcased the scalability of its operators
against leading dataframe solutions available today. We believe that there is far

High Performance Dataframes from Parallel Processing Patterns 13

more room for development in domain, and we hope our work contributes to the
next generation of distributed dataframe systems.

References

1. MPI: A Message-Passing Interface Standard Version 3.0 (2012), http://
mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf, Technical Report

2. Abeykoon, V., Kamburugamuve, S., Govindrarajan, K., Wickramasinghe, P.,
Widanage, C., Perera, N., Uyar, A., Gunduz, G., Akkas, S., Von Laszewski, G.:
Streaming machine learning algorithms with big data systems. In: 2019 IEEE In-
ternational Conference on Big Data (Big Data). pp. 5661–5666. IEEE (2019)

3. Abeykoon, V., Kamburugamuve, S., Widanage, C., Perera, N., Uyar, A., Kanewala,
T.A., von Laszewski, G., Fox, G.: Hptmt parallel operators for high performance
data science & data engineering. arXiv preprint arXiv:2108.06001 (2021)

4. Abeykoon, V., Perera, N., Widanage, C., Kamburugamuve, S., Kanewala, T.A.,
Maithree, H., Wickramasinghe, P., Uyar, A., Fox, G.: Data engineering for hpc
with python. In: 2020 IEEE/ACM 9th Workshop on Python for High-Performance
and Scientific Computing (PyHPC). pp. 13–21. IEEE (2020)

5. Babuji, Y.N., Chard, K., Foster, I.T., Katz, D.S., Wilde, M., Woodard, A., Woz-
niak, J.M.: Parsl: Scalable parallel scripting in python. In: IWSG (2018)

6. CylonData: Cylon (2021), https://github.com/cylondata/cylon
7. CylonData: Cylon experiments (2021), https://github.com/cylondata/cylon_

experiments
8. Fox, G., Johnson, M., Lyzenga, G., Otto, S., Salmon, J., Walker, D., White, R.L.:

Solving problems on concurrent processors vol. 1: General techniques and regular
problems. Computers in Physics 3(1), 83–84 (1989)

9. Gao, H., Sakharnykh, N.: Scaling joins to a thousand gpus. In: 12th International
Workshop on Accelerating Analytics and Data Management Systems Using Modern
Processor and Storage Architectures, ADMS@ VLDB (2021)

10. Kamburugamuve, S., Wickramasinghe, P., Ekanayake, S., Fox, G.C.: Anatomy of
machine learning algorithm implementations in MPI, Spark, and Flink. The In-
ternational Journal of High Performance Computing Applications 32(1), 61–73
(2018)

11. Kamburugamuve, S., Widanage, C., Perera, N., Abeykoon, V., Uyar, A., Kanewala,
T.A., Von Laszewski, G., Fox, G.: Hptmt: Operator-based architecture for scalable
high-performance data-intensive frameworks. In: 2021 IEEE 14th International
Conference on Cloud Computing (CLOUD). pp. 228–239. IEEE (2021)

12. Li, X., Lu, P., Schaeffer, J., Shillington, J., Wong, P.S., Shi, H.: On the versatility of
parallel sorting by regular sampling. Parallel Computing 19(10), 1079–1103 (1993)

13. Mattson, T., Sanders, B., Massingill, B.: Patterns for Parallel Programming (09
2004)

14. McKinney, W., et al.: pandas: a foundational python library for data analysis
and statistics. Python for High Performance and Scientific Computing 14(9), 1–9
(2011)

15. Modin: Modin scalability issues (2021), https://github.com/modin-project/
modin/issues

16. Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R., Liang, E., Elibol, M.,
Yang, Z., Paul, W., Jordan, M.I., et al.: "ray: A distributed framework for emerging
{AI} applications". In: 13th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 18). pp. 561–577 (2018)

http://mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
https://github.com/cylondata/cylon
https://github.com/cylondata/cylon_experiments
https://github.com/cylondata/cylon_experiments
https://github.com/modin-project/modin/issues
https://github.com/modin-project/modin/issues

14 Perera et al.

17. Perera, N., Abeykoon, V., Widanage, C., Kamburugamuve, S., Kanewala, T.A.,
Wickramasinghe, P., Uyar, A., Maithree, H., Lenadora, D., Fox, G.: A fast, scalable,
universal approach for distributed data reductions. In: International Workshop on
Big Data Reduction, IEEE Big Data (2020)

18. Petersohn, D., Macke, S., Xin, D., Ma, W., Lee, D., Mo, X., Gonzalez, J.E., Heller-
stein, J.M., Joseph, A.D., Parameswaran, A.: Towards scalable dataframe systems.
arXiv preprint arXiv:2001.00888 (2020)

19. Rocklin, M.: "dask: Parallel computation with blocked algorithms and task schedul-
ing". In: Proceedings of the 14th python in science conference. No. 130-136, Citeseer
(2015)

20. Valiant, L.G.: A bridging model for parallel computation. Communications of the
ACM 33(8), 103–111 (1990)

21. Wickramasinghe, P., Kamburugamuve, S., Govindarajan, K., Abeykoon, V.,
Widanage, C., Perera, N., Uyar, A., Gunduz, G., Akkas, S., Fox, G.: Twister2:
Tset high-performance iterative dataflow. In: 2019 International Conference on
High Performance Big Data and Intelligent Systems (HPBD&IS). pp. 55–60. IEEE
(2019)

22. Widanage, C., Perera, N., Abeykoon, V., Kamburugamuve, S., Kanewala, T.A.,
Maithree, H., Wickramasinghe, P., Uyar, A., Gunduz, G., Fox, G.: High perfor-
mance data engineering everywhere. In: 2020 IEEE International Conference on
Smart Data Services (SMDS). pp. 122–132. IEEE (2020)

23. Zaharia, M., Xin, R.S., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X.,
Rosen, J., Venkataraman, S., Franklin, M.J., et al.: "apache spark: a unified engine
for big data processing". Communications of the ACM 59(11), 56–65 (2016)

24. Zheng, Y., Kamil, A., Driscoll, M.B., Shan, H., Yelick, K.: Upc++: a pgas extension
for c++. In: 2014 IEEE 28th International Parallel and Distributed Processing
Symposium. pp. 1105–1114. IEEE (2014)

	High Performance Dataframes from Parallel Processing Patterns

