Accepted manuscript. Final version can be found at: https://link.springer.com/chapter/10.1007/978-3-031-30445-3_19
Roéciszewski, P., Krzywaniak, A., Iserte, S., Rojek, K., Gepner, P. (2023). Adaptation of AI-Accelerated CFD Simulations to the IPU
Platform. In: Wyrzykowski, R., Dongarra, J., Deelman, E., Karczewski, K. (eds) Parallel Processing and Applied Mathematics. PPAM
2022. Lecture Notes in Computer Science, vol 13827. Springer, Cham. https://doi.org/10.1007/978-3-031-30445-3_19

© 2023 Springer Nature

Adaptation of Al-accelerated CFD
simulations to the IPU platform

Pawel Rosciszewski!, Adam Krzywaniak!, Sergio Iserte?3, Krzysztof Rojek?,
and Pawet Gepner!®

! Graphcore Poland
{royr,adamk,pawelg}@graphcore.ai
2 Dpt. of Construction and Mechanical Engineering, Universitat Jaume I, Spain
siserteQuji.es
3 Barcelona Supercomputing Center, Spain
sergio.iserte@bsc.es
* Institute of Computer and Information Sciences, Czestochowa University of
Technology, Czestochowa, Poland
krojek@icis.pcz.pl
5 Faculty of Mechanical and Industrial Engineering, Warsaw University of
Technology, Warszawa, Poland
pawel.gepner@pw.edu.pl

Abstract. Intelligence Processing Units (IPU) have proven useful for
many Al applications. In this paper, we evaluate them within the emerg-
ing field of A1 for simulation, where traditional numerical simulations are
supported by artificial intelligence approaches. We focus specifically on
a program for training machine learning models supporting a computa-
tional fluid dynamics application. We use custom TensorFlow provided
by the Poplar SDK to adapt the program for the IPU-POD16 platform
and investigate its ease of use and performance scalability. Training a
model on data from OpenFOAM simulations allows us to get accurate
simulation state predictions in test time. We show how to utilize the
popdist library to overcome a performance bottleneck in feeding train-
ing data to the IPU on the host side, achieving up to 34% speedup.
Due to communication overheads, using data parallelism to utilize two
IPUs instead of one does not improve the throughput. However, once the
intra-IPU costs have been paid, the hardware capabilities for inter-IPU
communication allow for good scalability. Increasing the number of IPUs
from 2 to 16 improves the throughput from 560.8 to 2805.8 samples/s.

Keywords: Intelligence processing unit - Computational fluid dynamics
- Machine learning

1 Introduction

One of the emerging trends in high performance computing (HPC) is support-
ing traditional numerical simulations with artificial intelligence (AI) approaches.
While various names have been proposed for this field of research, such as simu-
lation intelligence [7] or cognitive simulation [19], we refer to it as simply as AT

2 P. Rosciszewski et al.

for simulation [12,11]. Another significant trend is designing hardware architec-
tures specifically for the type of workloads that are the backbone of AT [8,15,
13]. In this paper, we look into an AI for simulation approach, where a machine
learning (ML) model supports a computational fluid dynamics (CFD) applica-
tion, and investigate how it can benefit from a Al-specific hardware architecture:
the intelligence processing unit (IPU) processor.

The IPU is a computing accelerator specifically designed for machine learn-
ing computation. Each IPU has 1472 cores, with its own on-chip 624KiB SRAM
memory per core. The combination of the core and the associated on-chip mem-
ory is named a tile. The tile Instruction Set Architecture (ISA) [2] includes
focused hardware elements such as Accumulating Matrix Product (AMP) and
Slim Convolution (SLIC) units which allow to complete up to 64 multiply-add
instructions per clock cycle. There are also hardware support instructions for
random number generation and selected transcendental operations generally
used in machine learning. Every tile runs 6 hardware execution threads in a
time-sliced round-robin schedule, allowing instruction and memory latency to
be hidden. With this mechanism, most instructions, including memory access
and vectorised floating-point operations, complete within one thread cycle (6
clock cycles). Every thread represents a truly independent program. There is no
restriction that threads run in groups executing the same program in lockstep,
and no requirement that memory accesses are coalesced to achieve high SRAM
bandwidth [2].

IPU accelerators have proven useful for many AT applications, but employing
them in AI for simulation is a new area of research. In this paper we adapt a
training program for Al-accelerated CFD simulations to the IPU-based POD16
platform. This allows us to evaluate the models trained on the IPU-POD16
platform for the selected problem and investigate performance scalability of the
training workload. The remainder of the paper is organized as follows: references
to related work are given in Section 2, implementation details are described in
Section 3, experimental results are reported and discussed in Section 4, while a
summary is provided along with proposed future work directions in Section 5.

2 Related work

Kochkov et al. in [6] summarized the applications of ML to accelerating numerical
simulations and proposed the following classification:

— supporting simulations with ML for better accuracy but no performance
improvement;

— pure ML replacing the entire simulation, allowing for significant performance
gains but weak on generalization (when new physical constraints are applied
to previously trained model);

— hybrid approach replacing/accelerating iterative solvers inside the simulation
without accuracy reduction.

We reviewed several papers which support such a classification of Al-accelerated
simulations.

Adaptation of Al-accelerated CFD simulations to the IPU platform 3

Maulik et. al in their work [9] presented the results of two-dimensional
Kraichan turbulence subgrid modeling with a novel data-driven neural network
support for predicting the turbulence source. Their work aimed to improve the
accuracy of modeling without focusing on increasing its performance.

Kim et al. in their paper [5] proposed a generative model called DeepFluids
to synthesize fluid simulations from a set of reduced parameters. They train a
convolutional neural network (CNN) for predicting the fluid velocity fields. In
their work they propose a fluid-specific loss function to improve the convergence
of the trained model. The aim of their work is to replace the simulation in order
to use the trained ML model in inference mode and improve the performance of
velocity fields reconstruction up to 700x.

Wiewel et al. in their work [18] proposed an approach based on the long
short-term memory (LSTM) network for fluid flow modeling, i.e. to predict the
changes of pressure fields over time. They achieved practical speed-ups with
neural network-based simulation of 3D+time functions of a physics system.

Ribeiro et al. in their paper [10] presented a CNN-based model called Deep-
CFD, that efficiently approximates solutions for the problem of non-uniform
steady laminar flows. Their proposed model is able to learn complete solutions
of the Navier-Stokes equations, for both velocity and pressure fields, directly from
ground-truth data generated using a state-of-the-art CFD code. The predictions
of the proposed model allow for achieving up to 1000x speedup in obtaining the
resulting velocity and pressure fields, when comparing classical simulation on
CPU with CNN model running on GPU.

Thuerey et. al in their work [16] investigated the accuracy of deep learning
models for the inference of Reynolds-Averaged Navier-Stokes solutions. Their
best results allowed them to obtain mean relative pressure and velocity error of
less than 3% across a range of previously unseen airfoil shapes.

Um et al. in their paper [17] present a hybrid approach called Solver-in-the-
loop. By integrating the learned function into a differentiable physics pipeline,
the corrections can interact with the physical system, alter the states, and receive
gradients about the future performance of these modifications. This provided the
model with realistic input distributions that take previous corrections into ac-
count, yielding improvements in accuracy with stable rollouts of several hundred
recurrent evaluation steps and surpassing even tailored supervised variants.

In this paper we evaluate the LSTM-based approach for predicting the fluid
flow in a homogenization tank which aims to replace the simulation with an
OpenFOAM numerical solver. We evaluate the LSTM model on IPU, a new
Al-dedicated massively parallel hardware accelerator.

3 Implementation

In this section we describe the details behind the proposed implementation.
First, in Section 3.1 we describe the original implementation of the model se-
lected for adaptation. Section 3.2 contains a detailed description of the hardware
configuration used for the experiments. The basic process of porting the training

4 P. Rosciszewski et al.

application to the IPU platform is described in Section 3.3. Additionally, Section
3.4, describes the improvements that we introduced using the popdist library to
alleviate data loader limitations.

3.1 The original Model for accelerating CFD simulations

The case study selected for this paper trains a ML model for accelerating CFD
simulations of an industrial homogenization tank. The tank is composed of two
interconnected subtanks of 10m length, 5m width, and 5m depth each. Figure 1
depicts the geometry of the tank. The figure highlights the location of the areas
of interest. They do not correspond to regular walls and can be parametrized.
The flow enters the tank through Imflow. The flow is driven to Outflow through
Bulkhead wall. Part of the flow is fed back from the second subtank to the first
one using Recirculator. Finally, stirrers inside the tank (Stirrer #1 and #2) are
responsible for impelling the flow.

Bulkhead wall

Recirculati@i

Stirrer #2

Fig. 1: Geometry of the reactor under study [3]. Arrows represent the flow direc-
tion on the highlighted areas.

We have simulated 131 different configurations of the case under study with
OpenFOAMS. In these simulations, the values of in Inlet and Recirculation are
varied within a minimum and a maximum limit. The OpenFOAM solver models
a transient incompressible flow using the Unsteady Reynolds-averaged Navier-
Stokes (URANS) equations. The state of the simulation is adjusted to a write
interval of 10 seconds of simulated time. The flow is evolved until the second
4,201, which is translated into 420 stored states per executed simulation. In

5 http://www.openfoam.com

Adaptation of Al-accelerated CFD simulations to the IPU platform 5

this regard, taking it all into account, the number of simulated cases, states per
case, the cells in the domain, and the velocity dimensions, generate an eventual
dataset with a shape 131 x 420 x 125,565 x 3.

Before feeding the trainable model, each velocity dimension is normalized to
have a distribution of mean zero and a standard deviation of one. Moreover, the
dataset is split into train and test subsets. For this purpose, cases are shuffled
and 80% of them (104 cases) are assigned to the training dataset, while the
remaining (27 cases) are assigned to the testing dataset. Notice that 20% of
training cases (20 cases) are used for cross-validating the learning.

In order to capture the temporal dependencies in the data, a sequence to
sequence model is trained, where features representing 3 consecutive simulation
states are used as the input sequence, while output represents 1 succeeding sim-
ulation state. The training program is implemented in Python using TensorFlow
and the model is constructed sequentially using the Keras API, as shown in
Listing 1.1. The main building blocks of the model are the encoder and decoder
LSTM layers with 10 hidden units each. Repeated copies of the encoder output
are used as the input for the decoder. Finally, temporal slices of the decoder
output are used by two dense layers. The rectified linear unit (ReLU) function
is used for activation and Adam optimizer is used for training.

It should be noted that considering the input sequence length, the number of
cells in the domain and the velocity dimensions, the input sequence dimensional-
ity is 3 x 125,565 x 3 giving 1, 130, 085 features per sample. This, in combination
with relatively small hidden state numbers in the model layers, makes the train-
ing workload highly I/O-bound.

Listing 1.1: Implementation of the model layers

from tensorflow .keras.layers import LSTM, RepeatVector,
Dense, TimeDistributed

model = Sequential ()
model.add (LSTM(10, activation='relu’,
input_shape=(n_timesteps, n_features),

return_ sequences=False))

model .add (RepeatVector (n_outputs))
model .add (LSTM (10, activation='relu’, return_ sequences=True))

model.add (TimeDistributed (Dense (10, activation='relu’)))
model.add (TimeDistributed (Dense(n_features)))

opt = tf.keras.optimizers.Adam(learning rate=0.00025)
model.compile(loss="mae’, optimizer=opt)

model. fit (train, epochs=n_epochs, verbose=1, shuffle=True,
steps per epoch=steps per epoch, callbacks=callbacks)

3.2 The IPU processor, IPU-M2000 system and IPU-POD16
configuration

From the hardware definition IPUs are distributed memory, massively parallel,
multiple-instruction multiple-data (MIMD) devices. With 1472 tiles, the IPU has

6 P. Rosciszewski et al.

e } DORA DIMM x2 —
o \
S
S)
N
L f
=z F o
o 1 ¥
2 —
2
=
= Bt ‘

IPU-FABRIC™

Fig.2: Schematic and building block of IPU-M2000 Machine [2]

just under 900 MB of memory in total. This local memory is the only memory
directly accessible by tile instructions. It is used for both the code and the data
used by that tile. There is no shared memory access between tiles. Tiles cannot
directly access each others’ memory but can communicate via message passing
using an all-to-all high bandwidth exchange (theoretical 8 TB/s). The memory
has very low-latency (6 cycles) and ultra-high bandwidth (theoretical 47.5 TB/s).
The whole chip is built on the budget of 59.4 billion transistors using the TSMC
7nm manufacturing process [2].

The Graphcore IPU-M2000 system is essentially a 1U server utilizing 4 IPUs.
It includes also a gateway chip which connects IPUs into the compute domain
and provides access to the DRAM, two 100Gbps IPU-Fabric Links, a PCle slot
for standard Smart NICs, two 1GbE Open BMC management interfaces, and
access to an M.2 slot. Figure 2 shows the block diagram of the TPU-M2000 sys-
tem. The host system accesses the IPU-M2000 platform over 100Gb Ethernet
with ROCE (RDMA over Converged Ethernet) with very low-latency access.
Such an implementation based on Ethernet avoids the bottlenecks and costs of
PClIe connectors and PCle switches. This enables a flexible host CPU to ac-
celerators combination and provides scaling from a single IPU-M2000 system to
massive supercomputer scale including 64,000 IPUs, all networked over standard
networking at a lower cost and providing much more flexibility than using e.g.,
InfiniBand [1].

IPU-Fabric is a totally new scale-out fabric designed from the ground up
to support the needs of machine intelligence communication. IPU-Fabric is na-
tively integrated into the IPU processors and IPU-M2000 system. A key differ-
ence between IPU-Fabric and other proprietary fabrics is the usage of Compiled
Communication and Bulk Synchronous Parallel protocol; both these elements
provide deterministic communication behaviour. Every IPU has dedicated IPU-
Links providing 64GB/s of bidirectional bandwidth and an aggregate bandwidth
per chip of 320 GB/s. Each IPU-M2000 has 8 external IPU-Links for intra-rack

Adaptation of Al-accelerated CFD simulations to the IPU platform 7

Host-Link 100GE network interface (QSFP)
1GbE Management (Cat5)

Sync-Link (Cats)

1PU-Link (OSFP)

Fig.3: IPU-POD16 direct attach configuration [2]

scale out using OSFP copper cables. The intra-rack configuration called TPU-
POD16 contains 4 TPU-M2000s connected into a single instance with a daisy
chain topology utilizing IPU-Links. Host-Link connectivity is provided from the
Gateway through a PCle NIC or SmartNIC card. Figure 3 shows the IPU-POD16
configuration [1].

The memory model for the IPU-Machine is also quite unique. In addition

to in-IPU Memory, each IPU-M2000 system has DDR memory available to the
four IPUs. This DDR memory is used differently from memory found in CPUs or
GPUs. Instead of a memory hierarchy that requires swapping data and code from
the host memory store to the accelerator’s memory, the Poplar Graph Compiler
creates deterministic code-memory relationships in both the memory on the IPU
tile and the DDR memory. In fact, the IPU-M2000 system can use this additional
memory in stand-alone mode for inference processing without any attachment
to a host server. And thanks to the bulk synchronous parallel (BSP) model
compiling both computation and communication, the network communication
overhead is kept to a minimum compared to traditional messaging or shared
memory constructs commonly used for parallel processing.
Built-in fabrics are becoming a necessity for Al accelerators since model sizes
are increasing dramatically, some containing billions of parameters. These large
models must be distributed across hundreds or thousands of processors to solve
problems in a reasonable time. Graphcore’s hybrid model uses a proprietary IPU-
Link fabric to communicate across the tiles in an IPU and adjacent rack IPUs,
while tunnelling the IPU-Link protocol across standard 100GbE for rack-to-rack
scale-out supporting larger configurations [1].

3.3 Porting the training program to the IPU platform

The IPU is based on a sophisticated architecture which offers, to our knowledge,
the first ever BSP model implementation in hardware. Fortunately, users do not
have to be parallel processing experts to benefit from the performance opportu-
nities offered by the IPU accelerator. The hardware comes with a comprehensive
software ecosystem 7 with the Poplar SDK 8, a complete tool chain that enables

" https://www.graphcore.ai/developer
8 https://docs.graphcore.ai/projects/sdk-overview /en/latest /index.html

8 P. Rosciszewski et al.

the user to exploit IPU features. The SDK includes a graph compiler responsi-
ble for handling the scheduling and work partitioning of large parallel programs
including memory control. To provide maximum possible ease of use, the SDK
is integrated with a number of industry-standard ML frameworks. In this pa-
per, we benefit from such an integration with TensorFlow, which requires the
user to employ pip to install a separate tensorflow package provided with the
Poplar SDK. Using this approach, porting the original code to the IPU platform
requires only a few changes, as outlined in Listing 1.2.

Listing 1.2: Code changes required to port the program to the IPU
from tensorflow .python import ipu
config = ipu.config.IPUConfig()

config.auto_ select ipus = FLAGS.num _replicas
config.configure ipu_system ()

strategy = ipu.ipu_strategy.IPUStrategy ()

with strategy .scope ():
<code from Listing 1.1>

Running the code on the IPU requires the user to import the corresponding
module tensorflow.python.ipu and use it to configure the IPU system as well
as place the adequate variables on the IPU. Running the training on multiple
IPUs using data parallelism is as simple as setting the auto select ipus config-
uration parameter to the desired value. Tensor and operation placement is per-
formed by wrapping the original code in the scope of a custom implementation
of a TensorFlow distribution strategy. Additionally, to avoid frequent host-IPU
synchronization, it is worth setting the steps per execution parameter of the
model.compile() function to a large value. We use the number of steps per epoch
as a rule of thumb in order to run the whole epoch on the IPU before returning
to the host. This straightforward approach to porting the code to IPU benefits
from the ease of use of the Poplar SDK’s TensorFlow integration.

3.4 Using the popdist library to remove the I/0 bottleneck

In many cases a simple porting procedure described in Section 3.3 would be
sufficient for optimal utilization of the IPU platform. However, as shown in
Section 4, in the case of the investigated I0-bound CFD application, using a
single Python process for feeding multiple IPUs with input data results in a 1/O
bottleneck.

To remove this bottleneck, we used the poprun tool associated with the Poplar
distributed configuration library (popdist)® to execute a separate system process
per each IPU. The crucial code changes required are shown in Listing 1.3.

Listing 1.3: Code changes required to run the training in a distributed setup

import popdist
from tensorflow.python.ipu import horovod as hvd

9 https://docs.graphcore.ai/projects/poprun-user-guide/en /latest /configuration.html

Adaptation of Al-accelerated CFD simulations to the IPU platform 9

from tensorflow.python.ipu.horovod import popdist_strategy

popdist.tensorflow.set ipu_ config(config, ipus_ per replica=1)
hvd.init ()
train = train.shard(num_shards=popdist.getNumlInstances(),

index=popdist.getInstancelndex ())
strategy = popdist_ strategy.PopDistStrategy ()

Popdist allows the user to automatically configure the desired number of IPUs
per model replica. It is used along with an implementation of the Horovod com-
munication scheme [14]. Shards of the training dataset are selected accordingly
to the number of instances executed by the poprun tool and the correspond-
ing process instance numbers. Finally, instead of the standard IPUStrategy, the
PopDistStrategy class ensures the proper variable placement in the context of
distributed execution.

4 Experimental results

In order to evaluate the usefulness of the IPU-POD16 platform for the applica-
tion we are focusing on in this paper, first we utilized it to train a model and
investigated its accuracy. The findings are described in Section 4.1. Then, to as-
sess its performance capabilities, we measured training throughput depending on
the number of used IPUs and chosen implementation. The performance results
are provided in Section 4.2. The experiments were run on an IPU-POD16 with
16 IPU-M2000 IPU chips using Graphcore TensorFlow-2.6.3 and Keras 2.6.0 on
top of Poplar SDK r2.6.0.

4.1 Model verification

To develop a model for verification, we executed ten training sessions with a
random selection of learning rate between le-7 and le-5. The runs were stopped
when the validation loss has not improved more than 0.0001 for 10 epochs. Out of
the ten trained models we selected the one that performed best on the validation
set. The accuracy results for this model are presented in Table 1.

To estimate the accuracy, we used statistical metrics such as RMSE (root-
mean-square-error) and correlation coefficients that measure the extent to which
two variables tend to change together. These coefficients describe both the
strength and the direction of the relationship. Here, we use two coefficients, in-
cluding the Pearson correlation which estimates the linear relationship between
two continuous variables, as well as the Spearman correlation which assesses the
monotonic relationship between two continuous or ordinal variables. The corre-
lation coeflicients can return values from -1 to 1. The RMSE statistic shows that
the error is below 0.08 for all the results. Since the range of data is from 0 to
1.1 we conclude that the differences are below 8% of the maximum value for the
10th-time step and below 1% for the steady-state. The correlation coefficients
show a strong dependency between trends of the predicted and real values (>0.9
for all the time steps).

10 P. Rosciszewski et al.

’Step‘Pearson’s correlation|Spearman’s correlation|{Root mean squared error

10 0.949 0.917 0.078
20 0.989 0.982 0.038
100 1.000 0.999 0.008

Table 1: Accuracy of the trained model for the selected steps of simulation.

4.2 Performance and scalability

Table 2 shows training throughput depending on the number of utilized IPUs and
implementation variant averaged from the aforementioned five runs, additionally
providing standard deviation. The number of IPUs corresponds to the number
of model replicas in the "data parallel" scheme used for training parallelization.
The "single process" variant is described in Section 3.3 while the "popdist"
variant is described in Section 3.4. We performed five runs for each parameter
combination. In each run, we executed four training epochs and measured the
throughput for the three last epochs as the total number of used samples divided
by execution time. We treated the first epoch as a warm-up.

While IPUs do not have a particularly high memory capacity, they do not
require large batch sizes to achieve good performance, so for all experiments
we used mini-batches containing one training sample. As training data, we used
random samples generated on the host side, so that the benchmark measures the
capability of the host + IPU system as a whole, without considering potential
limitations of storage I/O overheads. To overcome the limitations of FP16 data
handling on the CPU side, in two cases of single process implementation (8 and
16 IPUs) we used non-standard, increased buffer sizes in the internal TensorFlow
data queue.

The results allow us to draw the following conclusions. Firstly, most of the
results are statistically significant, with exceptions in the cases where 4, 8 and
16 IPUs are used by the single process implementation. The configuration that
results in the most variable results (16 IPUs, single process) is also the one
which benefits the most from switching to popdist (34% speedup). We performed
detailed profiling of the program to determine that there is a bottleneck on
the host side: multi-threading limitations of Python result in slow data pre-
processing and populating the input data queue by the CPU. As a result, the
more [PUs that are used, the more likely that they are starved.

Another interesting observation is related to scalability: increasing the num-
ber of used IPUs from 1 to 2 doesn’t significantly improve the throughput, and
even makes it slightly worse. At the same time, increasing the number of IPUs 8-
fold from 2 to 16 improves the throughput around 5-fold, which is relatively good
scalability, considering the characteristics of data-parallel deep neural network
training. Again, the reason for the lack of scalability between 1-2 IPUs has been
determined through detailed profiling. In this case, the bottleneck is on the IPU
side: for this particular model, the overhead of introducing additional buffers

Adaptation of Al-accelerated CFD simulations to the IPU platform 11

No. of IPUs utilized || average throughput
single process popdist
1 571.8 +4.31 574.4 + 3.20
2 558.8 + 3.92 560.8 +1.94
4 862.8 +7.14 871.4+1.36
8 1344.2 + 8.35 1566.4 £+ 1.02
16 2099.8 +193.19 |2805.8 +1.17
Table 2: Throughput (samples/s) depending on implementation variant and

number of utilized IPUs

and exchange operations makes the data-parallel implementation significantly
slower on a single IPU.

5 Summary and future work

In this paper, we adopt a deep neural network training application from the AT
for simulation field for the IPU platform, demonstrating the ease of use provided
by the Poplar SDK software ecosystem. Training a model on data from tradi-
tional CFD simulations allows us to get accurate simulation state predictions
in test time. Investigating the performance of the training on the IPU-POD16
platform reveals that the main bottleneck of this particular application is feeding
training data to the IPU on the host side. We show how to utilize the popdist
library to overcome the limitations of host-side data loading. Scaling of the
program is limited to a small scale of 1-2 IPUs by communication overheads.
However, once the intra-IPU costs have been paid, the hardware capabilities for
inter-IPU communication allow for good scalability.

In the future, we would like to investigate the scalability of the IPU platform
further, utilizing a larger platform such as the IPU-POD64. It could be also ben-
eficial to use the FP8 data type to increase training performance. The predictive
model introduced in this work can be leveraged in hybrid CFD-DL solvers such
as that presented in [4]. This solver alternates stages of CFD simulation with
predictions made by a DL engine in order to reduce the time-to-solution. In their
paper, the authors are able to accelerate the simulation interleaving predictions
during the CFD simulation. That module could be easily substituted by the
IPU-trained model for inference.

Acknowledgements

The authors would like to thank Grzegorz Andrejczuk for his ideas and help
with investigating data loading overheads. Big thanks to Charis Fisher for her
support and valuable comments. Researcher Sergio Iserte was supported by the
postdoctoral fellowship APOSTD/2020,/026 from Valencian Region Government
(GVA) and European Social Funds (ESF). CFD Simulations were executed on
Tirant IIT cluster of the Servei d’Informatica of the University of Valencia (UV).

12 P. Rosciszewski et al.
References
1. Freund, K., Moorhead, P.: The Graphcore Second-Generation IPU.

10.

11.

12.

13.

14.

https://moorinsightsstrategy.com /research-paper-the-graphcore-second-
generation-ipu/ (2020)

Gepner, P.: Machine Learning and High-Performance Computing Hybrid Systems,
a New Way of Performance Acceleration in Engineering and Scientific Applications.
In: 2021 16th Conference on Computer Science and Intelligence Systems (Fed CSIS).
pp. 27-36 (2021). https://doi.org/10.15439/2021F004

. Iserte, S., Carratala, P., Arnau, R., Barreda, P., Basiero, L., Matinez-Cuenca, R.,

Climent, J., Chiva, S.: Modeling of Wastewater Treatment Processes with Hy-
droSludge. Water Environment Research pp. 1-38 (2021)

Iserte, S., Macias, A., Martinez-Cuenca, R., Chiva, S., Paredes, R., Quintana-
Orti, E.S.: Accelerating Urban Scale Simulations Leveraging Local Spa-
tial 3D Structure. Journal of Computational Science 62, 101741 (2022).
https://doi.org/https://doi.org/10.1016/j.jocs.2022.101741

Kim, B., Azevedo, V.C., Thuerey, N., Kim, T., Gross, M., Solenthaler, B.: Deep
Fluids: A Generative Network for Parameterized Fluid Simulations. Computer
Graphics Forum 38(2), 59-70 (2019). https://doi.org/doi.org/10.1111/cgf.13619,
https://onlinelibrary.wiley.com/doi/10.1111 /cgf.13619

Kochkov, D., Smith, J.A., Alieva, A., Wang, Q., Brenner, M.P,
Hoyer, S.: Machine Learning-accelerated Computational Fluid
Dynamics. Proceedings of the National Academy of Sciences
118(21), 2101784118 (2021). https://doi.org/10.1073 /pnas.2101784118,
https://www.pnas.org/doi/abs/10.1073 /pnas.2101784118

Lavin, A., et al.: Simulation Intelligence: Towards a New Generation of Scientific
Methods (Dec 2021), http://arxiv.org/abs/2112.03235

Li, Z., Wang, Y., Zhi, T., Chen, T.: A survey of neural network accelerators. Fron-
tiers of Computer Science 11(5), 746-761 (2017). https://doi.org/10.1007 /s11704-
016-6159-1, https://doi.org/10.1007/s11704-016-6159-1

Maulik, R., San, O., Rasheed, A., Vedula, P.: Subgrid Modelling for Two-
dimensional Turbulence Using Neural Networks. Journal of Fluid Mechanics 858,
122-144 (2019). https://doi.org/10.1017/jfm.2018.770

Ribeiro, M.D., Rehman, A.; Ahmed, S., Dengel, A.: DeepCFD: Efficient Steady-
State Laminar Flow Approximation with Deep Convolutional Neural Networks
(Nov 2021), http://arxiv.org/abs/2004.08826, arXiv:2004.08826 [physics|

Rojek, K., Wyrzykowski, R.: Performance and scalability analysis of Al-accelerated
CFD simulations across various computing platforms. In: HeteroPar 2022. Springer
International Publishing (in press 2022)

Rojek, K., Wyrzykowski, R., Gepner, P.: Al-Accelerated CFD Simulation Based
on OpenFOAM and CPU/GPU Computing. In: Computational Science — ICCS
2021. pp. 373-385. Springer International Publishing, Cham (2021)

Rosciszewski, P., Iwanski, M., Czarnul, P.: The impact of the AC922 Architecture
on Performance of Deep Neural Network Training. In: 2019 International Confer-
ence on High Performance Computing Simulation (HPCS). pp. 666-673 (Jul 2019).
https://doi.org/10.1109/HPCS48598.2019.9188164

Sergeev, A., Del Balso, M.: Horovod: Fast and Easy Distributed
Deep Learning in TensorFlow. arXiv:1802.05799 |[cs, stat] (Feb 2018),
http://arxiv.org/abs/1802.05799, arXiv: 1802.05799

15.

16.

17.

18.

19.

Adaptation of Al-accelerated CFD simulations to the IPU platform 13

Sze, V., Chen, Y.H., Emer, J., Suleiman, A., Zhang, Z.: Hardware
for machine learning: Challenges and opportunities. pp. 1-8 (04 2018).
https://doi.org/10.1109/CICC.2018.8357072

Thuerey, N., Weifsenow, K., Prantl, L., Hu, X.: Deep learning methods for reynolds-
averaged navier-stokes simulations of airfoil flows. AIAA Journal 58, 1-12 (11
2019). https://doi.org/10.2514/1.J058291

Um, K., Brand, R., Fei, Y.R., Holl, P., Thuerey, N.: Solver-in-the-Loop: Learning
from Differentiable Physics to Interact with Iterative PDE-Solvers. In: Proceedings
of the 34th International Conference on Neural Information Processing Systems.
NIPS’20, Curran Associates Inc., Red Hook, NY, USA (2020)

Wiewel, S., Becher, M., Thuerey, N..: Latent Space Physics: Towards
Learning the Temporal Evolution of Fluid Flow. Computer Graphics
Forum 38(2), 71-82 (2019). https://doi.org/doi.org/10.1111/cgf.13620,
https://onlinelibrary.wiley.com/doi/10.1111 /cgf.13620

Wyatt II, M.R., Yamamoto, V., Tosi, Z., Karlin, I., Van Essen, B.: Is Disaggre-
gation Possible for HPC Cognitive Simulation? arXiv:2112.05216 [cs] (Dec 2021),
http://arxiv.org/abs/2112.05216, arXiv: 2112.05216

