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Abstract. Social fragmentation transition is a transition of social states
between many disconnected communities with distinct opinions and a
well-connected single network with homogeneous opinions. This is a
timely research topic with high relevance to various current societal is-
sues. We had previously studied this problem using numerical simulations
of adaptive social network models and found that two individual behav-
ioral traits, homophily and attention to novelty, had the most statistically
significant impact on the outcomes of social network evolution. However,
our previous study was limited in terms of the range of parameter values
examined, and possible interactions between multiple behavioral traits
were largely ignored. In this study, we conducted a substantially larger-
scale parameter sweep numerical experiment of the same model with
expanded parameter ranges by an order of magnitude in each parame-
ter dimension, resulting in a total of 116,640 simulation runs. To capture
nontrivial interactions among behavioral parameters, we modeled and vi-
sualized the dependence of outcome measures on the model parameters
using artificial neural networks. Results show that, while the competition
between homophily and attention to novelty is still the primary deter-
minant of social fragmentation, another transition plane emerges when
individuals have strong social conformity behavior, which was not previ-
ously known. This implies that social fragmentation transition can also
occur in the homophily-social conformity trade-off, the two behavioral
traits that have very similar microscopic individual-level effects but pro-
duce very different macroscopic collective-level outcomes, illustrating the
nontrivial macroscopic dynamics of complex collective systems.

Keywords: adaptive social networks · social fragmentation · large-scale
numerical simulations · homophily · attention to novelty · social confor-
mity.
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1 Introduction

The study of temporal evolution of social structure is one of the significant ap-
plication domains of complex collective systems research. In particular, social
fragmentation transition, i.e., transition of social states between many discon-
nected communities with distinct opinions and a well-connected single network
with homogeneous opinions, is a timely research topic with high relevance to var-
ious current societal issues [1–8]. We had previously studied this problem using
numerical simulations of adaptive social network models [9] and found that two
individual behavioral traits, homophily (i.e., tendency to strengthen connections
to similar individuals and weaken those to dissimilar ones) [10–12] and attention
to novelty (i.e., tendency to strengthen connections to individuals whose opin-
ions stand out compared to others), had the most statistically significant impact
on the outcomes of social network evolution [9]. Specifically, when homophily
was strong, the social network evolved into fragmented states of many discon-
nected clusters with diverse opinions, but when attention to novelty was strong,
the social network evolved to well-connected yet informationally homogeneous
states. However, the previous study was rather limited in terms of the range
of parameter values examined, and possible interactions between multiple be-
havioral traits were largely ignored, especially about the other behavioral trait,
social conformity (i.e., how strongly individuals assimilate themselves to social
neighbors).

In this study, we examined a broader spectrum of social network dynamics
through a larger-scale parameter sweep experiment of the same model with ex-
panded parameter ranges by an order of magnitude in each parameter dimension,
resulting in a total of 116,640 simulation runs. To capture nontrivial interactions
among behavioral parameters, we modeled and visualized the dependence of out-
come measures on the model parameters using artificial neural networks. Results
show that, while the competition between homophily and attention to novelty
is still the primary determinant of social fragmentation when social conformity
behavior of individuals is weak, another transition plane emerges at an interme-
diate homophily level when individuals have strong social conformity behavior,
which was not previously known.

In what follows, we describe the model of adaptive social networks and the
settings and results of the large-scale parameter sweep numerical experiments.
We further discuss implications of the results for social evolution and potential
future research directions.

2 Model

Our original model [9] describes distributed opinion dynamics on an adaptive
social network made of n nodes. Adaptive networks [13, 14] are a class of dy-
namical network models in which node states and edge connectivities co-evolve
in adaptation to each other. In our model, node i has its own opinion state
xi ∈ R. Nodes are connected through weighted directed edges that represent
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the information flow from source to target nodes. The edge weight is denoted as
wij ∈ R≥0, where i is the target node and j is the source node.

The adaptive network dynamics, i.e., the co-evolution of node states and edge
weights, are governed by the following differential equations:

dxi
dt

= c (〈x〉i − xi) + ε (1)

dwij

dt
= hFh(xi, xj) + aFa(〈x〉i, xj) (2)

〈x〉i =
∑

j wijxj∑
j wij

(3)

Here, 〈x〉i (Eq. (3)) represents the weighted local average of neighbors’ opinions
(i.e., social norm) perceived by node i. Parameter c and noise term ε in Eq. (1)
represent the strength of social conformity and stochastic fluctuation of node
states, respectively. Parameters h and a in Eq. (2) represent the strength of ho-
mophily and attention to novelty, respectively. Fh and Fa in Eq. (2) are functions
that describe the increase/decrease of edge weights because of homophily and
attention to novelty, respectively. Fh and Fa can be any functions that mono-
tonically decrease (for Fh) or increase (for Fa) as the distance between the two
arguments increase. In this study, we used the following simple functions for Fh

and Fa:

Fh(xi, xj) = θh − |xi − xj | (4)
Fa(〈x〉i, xj) = |〈x〉i − xj | − θa (5)

Here θh and θa are the default values of Fh and Fa, respectively, when the
two given arguments are equal. These functions describe that the edge from
node j to node i tends to become strengthened when j’s state is similar to i’s
(i.e., homophily) and distant from the local average (i.e., attention to novelty),
or weakened otherwise. We restricted wij to be always nonnegative, and any
negative values resulted from numerical simulation of Eq. (2) would be rounded
up to zero.

Simulating this adaptive social network model from a random initial condi-
tion produces a sequence of social network configurations in which node states
(opinions) spread through social ties and edge weights (connection strengths)
also change due to node states (an example is shown in Fig. 1). We implemented
the numerical simulator of the model in Python 3.7 with NetworkX [15] and
PyCX [16]3.

This model is known to exhibit social fragmentation transition, i.e., transition
between fragmented and homogenized social network states, as the individuals’
behavioral parameters are varied (Fig. 2) [1–4]. Our previous study [9] showed
that, when homophily (h) is stronger or attention to novelty (a) is weaker, the
social network is more inclined to become fragmented into many disconnected

3 The simulator code is available from the author upon request.
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Fig. 1. A snapshot of the
proposed adaptive social net-
work model visualized in the
middle of a simulation. Col-
ors of nodes represent their
states (opinions) using Mat-
plotlib’s “spectral” color map,
while the shade of edges rep-
resent their weights (connec-
tion strengths).

small clusters with various opinion states (Fig. 2, left), and in the opposite
settings social homogenization is more likely to occur (Fig. 2, right). Meanwhile,
the potential effect of social conformity (c) was unclear in the previous analysis,
which is the main focus of the present study.

3 Experiments

3.1 Settings

We conducted numerical simulations of the above adaptive social network model
to systematically investigate the effects of individual behavioral parameters (c,
h, a, θh, and θa) on the course of social network evolution. The parameter values
used are as follows:

– Network size: n ∈ {30, 100, 300}4
– Behavioral parameters: c, h, a, θh, θa ∈ {0.003, 0.01, 0.03, 0.1, 0.3, 1.0}

The above range of values for behavioral parameters was an order-of-magnitude
larger in each dimension than what was examined before [9]. Each parameter
value combination was simulated 5 times with independently generated random
initial conditions. This resulted in a total of 3×65×5 = 116, 640 simulation runs,
taking a substantial amount of computational time and resource. Simulations
were thus conducted in parallel on four designated PCs for over a few months.

In each simulation, the initial configuration of the network was randomly gen-
erated so that every pair of nodes were connected by two directed edges (in both

4 Simulations with a larger network size (n = 1, 000) were also conducted in our
earlier work [9] and we confirmed that their results did not differ much from those
with n = 300.
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Fig. 2. Examples of final states of the adaptive social network simulation with n = 100
that demonstrate social fragmentation transition. Left: Fragmented state with large h
and small a. Right: Homogenized state with small h and large a. Specific parameter
settings are shown beneath each panel. Visualizations were done in the same way as in
Fig. 1.

directions) with a randomly generated weight sampled from a standard uniform
distribution (wij ∈ [0, 1]) in each direction5 and each node had a random node
state sampled from the normal distribution N (0, 1). Equations (1) and (2) were
numerically simulated using a simple Euler forward method with time step size
∆t = 0.1 for t ∈ [0, 100]. The stochastic behavior of node states represented by ε
in Eq. (1) was simulated by adding a random number sampled from N (0, 0.12)
to xi at each discrete time step ∆t.

3.2 Outcome measures

At the end of each simulation run (t = 100), we converted the final network
configuration into an undirected network by replacing the two directed edges
between each pair of nodes with a single undirected edge whose weight was the
average of the original two edges’ weights. Then the Louvain modularity maxi-
mization method [17] was applied to the undirected network to detect community
structure in the final network configuration. Within each detected community,
we calculated the average node state (called “average community state” here-
after). Using the results of these steps, we calculated the following five network
metrics as final outcome measures:

1. Average edge weight (= arithmetic average of all the edge weights in the
network)

5 We did not use more realistic social network structures like those with long-tailed
degree distributions or modular community structures. This is because, in order to
understand social self-organization, those structures should arise as an outcome of
dynamical interactions among agents rather than used as the initial condition given
a priori.
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2. Number of communities
3. Modularity of the community structure
4. Range of average community states (= difference between largest and small-

est average community states)
5. Standard deviation of average community states

These outcome measures were averaged over five independent simulation runs for
each combinations of parameter values. The first three outcome measures capture
the structural properties of the social network, while the last two capture the
opinion diversity in the social network. When the social network is fragmented,
the average edge weight takes a small value, while all the other measurements
takes large values. The opposite pattern is realized when the social network is
homogenized. This allows us to easily detect which state the adaptive social
network evolved into in quantitative ways.

4 Results

In order to capture and visualize the effects of the five behavioral parameters
on the five outcome measures (including possible nonlinear interactions among
those behavioral parameters), we modeled the parameter-outcome mapping us-
ing artificial neural networks with Wolfram Research Mathematica 12’s artificial
neural network predictor [18]. Natural logarithms of the five behavioral param-
eter values were used as five-dimensional input vectors, and the five outcome
measures obtained from simulation results under those parameter settings were
used as five-dimensional output vectors. The combinations of these input and
output vectors were gathered for the whole simulation runs for each network size
(n ∈ {30, 100, 300}) and used as the data set to train an artificial neural network
model for specific n. The performance goal of training was set to maximizing
the accuracy of outcome prediction [18].

Illustrative results with n = 300 are shown as heat maps of each outcome
measure in Fig. 3 (for final network structure) and Fig. 4 (for final node states).
The competition between homophily (h) and attention to novelty (a) is still ob-
served as the primary determinant of social fragmentation in a low-conformity
(c) regime (top rows of all panels in Figs. 3 and 4), seen as the diagonal tran-
sition plane in the plots. However, another vertical transition plane emerges at
an intermediate homophily level in a high-conformity regime (bottom rows of
all panels in Figs. 3 and 4), which was not previously known. Similar patterns
were observed for other outcome measures and network sizes. This new result
shows that, when individuals’ social conformity (c) is sufficiently strong, homog-
enization of the social network can occur even without attention to novelty. This
implies that social conformity and attention to novelty, while very different in
their intentions and actions at microscopic individual levels, have similar effects
of promoting connections among individuals in an adaptive social network.

The result shown above also reveals a previously unrecognized competition
between social conformity (c) and homophily (h) when attention to novelty is
weak (i.e., low-a regions; near the bottom edge of each heat map in Figs. 3 and
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(a) Number of communities

(b) Modularity of the community structure

Fig. 3. Phase diagrams of adaptive social network evolution in terms of network struc-
ture outcome measures. Each plot shows outcome dependence on homophily (h, hor-
izontal axis), attention to novelty (a, vertical axis) and conformity (c, varied from
top-left to bottom-right) modeled using artificial neural networks. (a) How the num-
ber of communities depends on h, a and c. (b) How the modularity of the community
structure depends on h, a and c. Red and blue regions correspond to fragmented and
homogenized network states, respectively. n = 300, θh = 0.1, and θa = 0.1. Similar
patterns were observed for other outcome measures and network sizes.
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(b) Standard deviation of average community states

(a) Range of average community states

Fig. 4. Phase diagrams of adaptive social network evolution in terms of node state
outcome measures. Each plot shows outcome dependence on homophily (h, horizontal
axis), attention to novelty (a, vertical axis) and conformity (c, varied from top-left
to bottom-right) modeled using artificial neural networks. (a) How the range of av-
erage community states depends on h, a and c. (b) How the standard deviation of
average community states depends on h, a and c. Red and blue regions correspond
to fragmented and homogenized network states, respectively. n = 300, θh = 0.1, and
θa = 0.1. Similar patterns were observed for other outcome measures and network sizes.
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4). Namely, when c is low social fragmentation dominates, but when c is high
social homogenization becomes possible for smaller values of h. This is quite
intriguing because these two behaviors (social conformity and homophily) have
very similar effects at an individual level (i.e., they both make ego and alter
similar to each other). In fact, their differences are often very vague and unde-
tectable in empirical social network studies [19]. Meanwhile, these two behaviors
are mechanistically distinct, because social conformity is about node dynamics
while homophily is about edge dynamics. This finding, that their competitive
balance may lead to very different societal outcomes down the road, offers a lot
of implications for how we should consider our social interactions and behaviors
in this highly interconnected world.

5 Conclusions

In this study, we conducted large-scale parameter sweep simulations of our adap-
tive social network model to investigate the transition points between fragmen-
tation and homogenization of social networks in a multidimensional behavioral
parameter space. Artificial neural network-based modeling and visualization of
the parameter-outcome mapping revealed a new transition plane for strong so-
cial conformity (c) and weak attention to novelty (a) regimes, which was previ-
ously unrecognized. The overall multidimensional phase space structure shows
a nonlinear interaction among the three key behavioral mechanisms (social con-
formity, homophily, and attention to novelty). Within the range of parameter
values tested so far, it appears that social homogenization (blue regions in Figs. 3
and 4) occupied a greater volume in the log-scale parameter space than social
fragmentation did.

This study presents a concrete example of complex collective systems re-
search to study Artificial Society, i.e., study of hypothetical models of society-as-
it-could-be. Such theoretical/mathematical/computational exploration of social
systems can play valuable roles complementary to more empirical social science
research, in the same spirit of Artificial Life research [20] that complements
traditional biology. Computational examination of hypothetical scenarios, such
as changing individual behaviors in our model, allows for exploration of vari-
ous possible forms of our society and may lead to a discovery of novel possible
social states which would not be realized just by analyzing empirical data ob-
tained from real society [5]. Such exploratory endeavor is becoming increasingly
important and relevant in today’s highly automated, interconnected society, as
our daily interactions are moving away from traditional, “natural” forms and
becoming more and more mediated by artificially designed, “engineered” com-
munication platforms. This has become even more manifested because of the
recent COVID-19 pandemic (think about Zoom, YouTube, Slack, and other so-
cial media/collaboration platforms). We hope that studies like ours presented
here may help re-evaluate and re-design the algorithms and interfaces of online
human communications and interactions for the betterment of our social network
evolution.
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This study is still limited in several aspects. First, we did not explore vari-
ations of the amplitude of stochastic fluctuations (ε) or functional shapes of
homophily and attention to novelty (Fh and Fa). Second, transition planes were
identified only by numerical simulations while analytical estimate of transition
conditions is not accomplished yet. Third, we assumed that the behavioral pa-
rameter values would apply uniformly to all individuals in society with zero
behavioral diversity. Fourth, the size of the simulated networks was relatively
small (only up to 300 nodes). Future research directions are naturally to address
each and all of these limitations in the current model. In particular, introducing
individual behavioral diversity within a collective complex system is known to
produce unexpected, nontrivial macroscopic outcomes [5, 21]. Such behavioral
heterogeneity should be represented in future models to gain more nuanced,
more realistic collective outcomes. High Performance Computing frameworks
for agent-based models [22] also may be used to increase the simulated network
size and to expand parameter sweep ranges further. Finally, quantitative com-
parison and validation of model behaviors with actual social network evolution
data will ultimately be needed. However, obtaining such empirical data of social
network evolution has been extremely difficult, and this will remain one of the
major challenges in adaptive social network modeling research.
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