
ar
X

iv
:2

21
2.

11
65

3v
2

 [
cs

.D
S]

 2
 S

ep
 2

02
3

Parameterizing Path Partitions

Henning Fernaua,∗, Florent Foucaudb, Kevin Manna, Utkarsh Padariyac, Rajath Rao K.N.c

aUniversität Trier, Fachbereich IV, Informatikwissenschaften, Germany
bUniversité Clermont Auvergne, CNRS, Clermont Auvergne INP, Mines Saint-Étienne, LIMOS, 63000

Clermont-Ferrand, France
cInternational Institute of Information Technology Bangalore, India

Abstract

We study the algorithmic complexity of partitioning the vertex set of a given (di)graph into a small
number of paths. The Path Partition problem (PP) has been studied extensively, as it includes
Hamiltonian Path as a special case. The natural variants where the paths are required to be either
induced (Induced Path Partition, IPP) or shortest (Shortest Path Partition, SPP), have received
much less attention. Both problems are known to be NP-complete on undirected graphs; we strengthen
this by showing that they remain so even on planar bipartite directed acyclic graphs (DAGs), and that
SPP remains NP-hard on undirected bipartite graphs. When parameterized by the natural parameter
“number of paths”, both SPP and IPP are shown to be W[1]-hard on DAGs. We also show that SPP
is in XP both for DAGs and undirected graphs for the same parameter, as well as for other special
subclasses of directed graphs (IPP is known to be NP-hard on undirected graphs, even for two paths).
On the positive side, we show that for undirected graphs, both problems are in FPT, parameterized by
neighborhood diversity. We also give an explicit algorithm for the vertex cover parameterization of PP.
When considering the dual parameterization (graph order minus number of paths), all three variants, IPP,
SPP and PP, are shown to be in FPT for undirected graphs. We also lift the mentioned neighborhood
diversity and dual parameterization results to directed graphs; here, we need to define a proper novel
notion of directed neighborhood diversity. As we also show, most of our results also transfer to the case
of covering by edge-disjoint paths, and purely covering.

Keywords: Path Partitions, NP-hardness, Parameterized Complexity, Neighborhood Diversity, Vertex
Cover Parameterization

1. Introduction

Graph partitioning and graph covering problems are among the most studied problems in graph theory
and algorithms. There are several types of graph partitioning and covering problems including covering
the vertex set by stars (Dominating Set), covering the vertex set by cliques (Clique Covering),
partitioning the vertex set by independent sets (Coloring), and covering the vertex set by paths or
cycles [49]. In recent years, partitioning and covering problems by paths have received considerable
attention in the literature because of their connections with well-known graph-theoretic theorems and
conjectures like the Gallai-Milgram theorem and Berge’s path partition conjecture [8, 39]. These studies
are motivated by applications in diverse areas such as code optimization [10], machine learning / AI [66],
transportation networks [68], parallel computing [60], and program testing [56]. There are several types
of paths that can be considered: unrestricted paths, induced paths, shortest paths, or directed paths (in a
directed graph). A path P is an induced path in G if the subgraph induced by the vertices of P is a path.
An induced path is also called a chordless path; isometric path and geodesic are other names for shortest
path. Various questions related to the complexity of these path problems, even in standard graph classes,
remained open for a long time (even though they have uses in various fields), a good motivation for this
project.

In this paper, we mainly study the problem of partitioning the vertex set of a graph (undirected
or directed) into the minimum number of disjoint paths, focusing on three problems, Path Partition

∗Corresponding author; Tel. +49 651 201 2827.
Email addresses: fernau@uni-trier.de (Henning Fernau), florent.foucaud@uca.fr (Florent Foucaud),

mann@uni-trier.de (Kevin Mann), utkarsh.prafulchandra@iiitb.ac.in (Utkarsh Padariya), rajath.rao@iiitb.ac.in
(Rajath Rao K.N.)

Preprint submitted to Elsevier September 6, 2023

http://arxiv.org/abs/2212.11653v2

(PP), Induced Path Partition (IPP) and Shortest Path Partition (SPP) — formal definitions
are given in section 2. A path partition (pp) of a (directed) raph G is a partitioning of the vertex set into
unrestricted (directed) paths. The path partition number of G is the smallest size of a pp of G. Similar
definitions apply to ipp and spp. PP is studied extensively under the names of Path Cover and also
Hamiltonian Completion on many graph classes [16, 19, 37].

We give a wide range of results in this paper including complexity (NP- or W[1]-hardness) and al-
gorithms (polynomial time or FPT); see Table 1 for a summary of our results. The types of graphs we
consider are general directed, directed acyclic (DAG), general undirected and bipartite undirected graphs.
We also consider some structural parameters like the neighborhood diversity and vertex cover number.

The three problems considered are all NP-hard. They are mostly studied on undirected graphs,
and unless stated otherwise, the following references are for undirected graphs. PP can be seen as an
extension of Hamiltonian Path and is thus NP-hard, even for one path (while for one path, SPP and
IPP are very easy, as it suffices to check whether the whole graph is a path). Similarly, IPP is NP-
hard, even for two paths [47]. Recently, SPP was proved to be NP-hard [50], but note that, as opposed
to the two other problems, it is polynomial-time solvable for any constant number of paths by an XP

algorithm [23]. On trees, the three problems are equivalent, and are solvable in polynomial time (as
shown in the 1970s in [37, 9, 45], see also [28] for a recent improved algorithm). As a special case of
Hamiltonian Path, it is known that PP is NP-hard for many graph classes such as planar graphs [34]
or chordal bipartite graphs [55]. On the other hand, it can be solved in polynomial time for some graph
classes, such as cographs [13], cocomparability graphs [16] or graphs whose blocks are cycles, complete
graphs or complete bipartite graphs [58] (this includes trees, cactii and block graphs). We refer to [58]
for further references. IPP can also be solved in linear time for graphs whose blocks are cycles, complete
graphs or complete bipartite graphs [59], but no further results for special graph classes seem to be known.
For directed graphs, it is known that PP can be solved in polynomial time for DAGs [15, Probl. 26-2].

For a detailed survey on these types of problems (both partitioning and covering versions), see [49],
and also [2].

Although every shortest path is an induced path and every induced path is a path, the reverse are
not true. In this sense, induced paths can be seen as an intermediate notion between shortest paths and
unrestricted paths. However, this intuition may fail in certain contexts. Indeed, some seemingly simple
problems related to paths are easy for unrestricted or shortest paths, but become hard for induced paths.
For example, given a graph G and three vertices x, y, z, determining whether there is an induced path
from vertex x to vertex y going through vertex z is NP-complete [53], while this task is polynomial-time
both for unrestricted paths and for shortest paths.

Further related work. As sketched in [28], the PP problem is equivalent to the Hamiltonian Com-
pletion problem, asking to add at most k edges/arcs to a (directed) graph to guarantee the existence of
a Hamiltonian path. Besides Hamiltonian Path, PP is also directly connected to other graph problems
such as L(2, 1)-labelings [35] or the metric dimension [3]. It is the object of the Gallai-Milgram theorem,
stating that for any minimal path partition of a directed graph, there is an independent set intersecting
each path [32], see also [20, Section 2.5].

Variations of PP and IPP where the paths must have a prescribed length are also studied, see for
example [64] and [54], respectively.

The covering versions of PP and IPP (where the paths need not necessarily be disjoint) seem to be
very little studied [49], however we can mention some works for PP on DAGs, which is polynomial-time
solvable and has numerous practical applications (see [11] and references therein). On the other hand, the
covering version of SPP was recently studied (often under the name Isometric Path Cover, see [57]
for a linear-time algorithm on block graphs, [23] for an XP algorithm, [12] for NP-hardness on chordal
graphs and approximation algorithms for chordal graphs and other classes, and [66] for a log n-factor
approximation algorithm. This problem is connected to the Cops and Robber game, where a robber and
a set of cops alternatively move in a graph (a move is to reach a neighboring vertex); the robber tries to
evade the cops indefinitely, while they try to reach (catch) the robber. As shown in [1, 26], if we are given
a set of shortest paths covering all the vertices, we can assign a cop to each path and let him patrol along
it (while staying as close as possible to the robber). Eventually, they will catch the robber, and thus the
smallest size of such a shortest path cover is an upper bound to the smallest number of cops required to
catch the robber. This problem is also connected to decomposition results in structural graph theory [22]
and to machine learning applications [66, 67].

The versions of PP and SPP where, on the other hand, covering is not required (and the endpoints of
the solution paths, called terminals, are prescribed in the input) are widely studied as Disjoint Paths
(DP) [61] (sometimes also called Linkage) and Disjoint Shortest Paths (DSP) [6, 48]. Both these

2

problems are NP-complete and have applications in network routing problems and VLSI design [62]. DP
in particular has been extensively studied, due to its deep connections with structural graph theory: as
part of the celebrated Graph Minor project, Robertson and Seymour showed that for undirected graphs,
DP is in FPT, parameterized by the number of paths [61], contrasting PP. An improved FPT algorithm
was given in [42]. Algorithms were also designed for planar directed graphs [27] (FPT) and graphs of
bounded directed treewidth [41] (XP). Recently, DSP on undirected graphs, which has applications in
artificial intelligence [38], was shown to have an XP algorithm and to be W[1]-hard when parameterized
by the number of paths [48]; an improved algorithm was given in [6], and the directed graph case is
studied in [7].

A strengthening of the DP problem (motivated by the task of detecting induced subgraphs or induced
subdivisions of graphs) is studied under the name Induced Disjoint Paths [36, 40, 51]: here, given the
terminals, one is looking for disjoint unrestricted paths connecting the terminals, but moreover, no edge
should connect two vertices on different paths. This problem is NP-hard even for two paths [40].

Some further restricted variations around disjoint paths are studied for example in [5] (for unrestricted
paths) and in [4] (for induced paths).

parameter PP SPP IPP

none (UG and DG) NP-c. [33] NP-c. [50] NP-c. [47]
none (bipartite UG) NP-c. [44, 47] NP-c. open
solution size k (UG) paraNP-h. [33] in XP paraNP-h. [47]

solution size k (DG) paraNP-h. [33]
open

in XP (SG)
paraNP-h. [47]

solution size k (DAG)
polynomial

[15, Probl. 26-2]

NP-c.
W[1]-h.
in XP

NP-c.
W[1]-h.

neighborhood div. (UG) FPT [30] FPT FPT

neighborhood div. (DG) open FPT FPT

dual n− k (UG) FPT FPT FPT

dual n− k (DG) open FPT FPT

Table 1: Summary of known results concerning path partitioning problems. The abbreviations c. and h. refer to com-
pleteness and hardness, respectively. In parentheses, we put further input specifications, with UG, DG and SG referring to
undirected graphs, directed graphs and special graph classes, respectively. Our results are highlighted in bold face.

Our contribution. Table 1 summarizes known results about the three problems, with our results are
highlighted in bold. We fill in most of the hiterto open questions concerning variations of PP, SPP and
IPP, e.g., we show that SPP has a poly-time algorithm for a fixed number of paths (on undirected graphs,
DAGs, planar directed graphs and directed graphs of bounded directed treewidth). This is surprising
as both PP and IPP are NP-hard on undirected graphs for k = 1 and for k = 2, respectively, see [33]
and [47]. To prove this, we use existing XP (or faster) algorithms for the related Disjoint (Shortest)
Paths problem. Many of our results concern our problems restricted to DAGs. Notice that PP has a
polynomial-time algorithm when restricted to DAGs (using Maximum Matching [15, Probl. 26-2]), but
the complexity for IPP and SPP was open for such inputs. We show that IPP and SPP are NP-hard
even when restricted to planar DAGs whose underlying graph is bipartite and have maximum degree 4.1

We strengthen this result using a similar construction as in the classic proof of DP being W[1]-hard on
DAGs by Slivkins [63], to show that IPP and SPP are W[1]-hard on DAGs. As mentioned above, Manuel
recently showed that SPP is NP-hard on undirected graphs [50]. We extend this result to show that SPP
is NP-hard even when restricted to bipartite graphs that are sparse (they have degeneracy at most 5).
The complexity of these problems has not yet been studied when parameterized by structural parameters.
We show that IPP and SPP both belong to FPT when parameterized by standard structural parameters
like vertex cover and neighborhood diversity using the technique of Integer Linear Programming.
Also, we lift these considerations to directed graphs. To this end, we introduce the notion of directed
neighborhood diversity in this paper, which may be useful for other problems on directed graphs. We
also obtain a non-trivial direct FPT algorithm for UPP when parameterized by the vertex cover number
vc(G) of the input graph G, with running time O∗

(

2O(vc(G) log(vc(G)))
)

. Moreover, when considering the

1We remark that in the conference version of this paper [25], this result was stated by mistake for graphs of maximum
degree 3, but the proof is the same here and the statement is corrected.

3

dual parameterization (graph order minus number of paths), we show that all three variants, PP, IPP,
and SPP, are in FPT for undirected graphs. This is also the case for directed graphs (except for PP,
which is left open). Finally, we also remark that many of our results apply to the purely “vertex covering”
versions of PP, IPP, and SPP, and to their intermediate “vertex covering using edge-disjoint paths”
versions.

It is interesting to note the differences in the complexities of the three problems on different input
classes. For example, SPP can be solved in XP-time on undirected graphs, while this is not possible
for the other two problems. For DAGs, PP is polynomial-time solvable, but the other two problems are
NP-hard. In a way, as any shortest path is induced, IPP can be seen as an intermediate problem between
PP and SPP. Thus it is not too surprising that, when the complexity of the three problems differs, IPP
sometimes behaves like PP, and sometimes, like SPP. It would be interesting to find a situation in which
all three problems behave differently.

Organization of the paper. We start with formally defining the studied problems in section 2. Then
we focus our attention on NP-hardness results in section 3, showing that IPP and SPP are NP-hard when
the input graph is a DAG, and that SPP is NP-hard when the input graph is a bipartite graph. Our
main result showing that IPP and SPP are W[1]-hard for the standard parameter k (number of paths)
is found in section 4. We give an XP algorithm for SPP in section 5. We then give an FPT algorithm
for IPP and SPP when parameterized by neighborhood diversity in section 6, as well as a non-trivial
direct FPT algorithm for PP, parameterized by vertex cover. These results are then applied in section 7
to prove FPT results for the dual parameterization. In section 8, we discuss the (edge-disjoint) covering
versions of the problems, and argue that most of our results translate to this setting as well. We conclude
in section 9.

2. Definitions

We are using standard terminology concerning graphs, classical and parameterized complexity and we
will not iterate this standard terminology here. In particular, a path P can be described by a sequence
of non-repeated vertices such that there is an edge between vertices that are neighbors in this sequence.
Sometimes, it is convenient to consider P as a set of vertices. We are next defining the problems considered
in this paper. All problems can be considered on undirected or directed graphs, or also on directed acyclic
graphs (DAG). We will specify this by prefixing U, D, or DAG to our problem name abbreviations.

We say that a sub-graph G′ of G = (V,E) spans G if its vertex set is V . In other words, G′ is a
partial graph of G.

Path Partition (PP for short)

Input: A graph G, a non-negative integer k

Problem: Are there pairwise vertex-disjoint paths P1, . . . , Pk′ , with k′ ≤ k, such that, together,
these paths span G ?

A path P is an induced path in G if the induced graph G[P] is a path; here, P is considered as a
vertex set.

Induced Path Partition (IPP for short)

Input: A graph G, a non-negative integer k

Problem: Are there pairwise vertex-disjoint paths P1, . . . , Pk′ , with k′ ≤ k, that are induced
paths, and such that, together, these paths span G ?

A shortest path is a path with end-points u, v that is shortest among all paths from u to v. The
greatest length of any shortest path in a graph G is also known as its diameter, written as diam(G).

Shortest Path Partition (SPP for short)

Input: A graph G, a non-negative integer k

Problem: Are there pairwise vertex-disjoint paths P1, . . . , Pk′ , with k′ ≤ k, that are shortest
paths, and such that, together, these paths span G ?

Remark 2.1. The following known combinatorial properties are helpful to connect the different yet related
problems:

4

1. Every shortest path is also an induced path.

2. Every induced path of length at most two is also a shortest path.

3. In bipartite graphs, an induced path of length three is a shortest path.

4. If G = (V,E) is a subgraph of H and p is a shortest path in H with only vertices of V , then p is
also a shortest path in G.

Omitting the vertex-disjointness condition, we arrive at three covering versions instead:

Path Cover (PC for short)

Input: A graph G, a non-negative integer k
Problem: Are there paths P1, . . . , Pk′ , with k′ ≤ k, such that, together, these paths span G ?

Induced Path Cover (IPC for short)

Input: A graph G, a non-negative integer k

Problem: Are there paths P1, . . . , Pk′ , with k′ ≤ k, that are induced paths and such that,
together, these paths span G ?

Shortest Path Cover (SPC for short)

Input: A graph G, a non-negative integer k

Problem: Are there paths P1, . . . , Pk′ , with k′ ≤ k, that are shortest paths and such that,
together, these paths span G ?

For clarity, we again prefix these abbreviations with D, DAG, or U to stress the type of graph we are
talking about.

Let us also define the non-covering versions of PP, IPP and SPP, that will be used in the paper.

Disjoint Paths (DP for short)

Input: A graph G, pairs of terminal vertices {(s1, t1), . . . , (sk, tk)}

Problem: Are there pairwise vertex-disjoint paths P1, . . . , Pk such that, for 1 ≤ i ≤ k, the
end-points of Pi are si and ti?

Analogously to DP, we can define the problems Disjoint Induced Paths2 and Disjoint Shortest
Paths as follows.

Disjoint Induced Paths (DIP for short)

Input: A graph G, pairs of terminal vertices {(s1, t1), . . . , (sk, tk)}

Problem: Are there pairwise vertex-disjoint induced paths P1, . . . , Pk such that, for 1 ≤ i ≤ k,
the end-points of Pi are si and ti?

Disjoint Shortest Paths (DSP for short)

Input: A graph G, pairs of terminal vertices {(s1, t1), . . . , (sk, tk)}
Problem: Are there pairwise vertex-disjoint shortest paths P1, . . . , Pk such that, for 1 ≤ i ≤ k,

the end-points of Pi are si and ti?

Remark 2.2. The problems DIP and DP are equivalent when the inputs are undirected graphs or DAGs,
but not for general directed graphs.

Proof. Namely, if an input is a Yes-instance of DIP, then trivially it is also a Yes-instance of DP. But also
if an input is a Yes-instance of UDP or DAGDP, then it is also a Yes-instance of UDIP or DAGDIP,
as we could take each path P in the solution P of UDP or DAGDP and find a path P ′ induced by some
subset of vertices of P ; this can be done by starting a breadth-first search at one endpoint of the path P

2This problem should not be confused with Induced Disjoint Path, see [36, 40, 51], where it is required that any two
(unrestricted) solution paths have no adjacent vertices.

5

to reach the other endpoint and choosing a shortest path. This way, we get a set P′ of induced paths
as a solution to UDIP or DAGDIP. This does not hold true for general directed graphs, as a solution
to DDP does not imply a solution to DDIP. For example, consider a directed graph with three vertices
a1, a2, a3 and arcs (a1, a2), (a2, a3), (a3, a1) with (s1, t1) = (a1, a3) as the prescribed path endpoints.

Interestingly, and contrasting Remark 2.2, we will see that the complexities of DAGPP and DAGIPP
differ drastically, see Table 1.

2.1. Graph notions

A graph is d-degenerate if every induced subgraph has a vertex of degree at most d. The vertex cover
number of a graph G is the smallest size of a vertex cover of G, that is, a set S of vertices of G such
that each edge of G intersects S. The neighborhood diversity [46] of a graph G (or just nd(G)) is the
number of equivalency classes of the following equivalence: two vertices u, v ∈ V are equivalent (we also
say that they have the same type) if they have the same neighborhoods except for possibly themselves,
i.e., if N(v) \ {u} = N(u) \ {v}. The equivalence classes form either cliques or independent sets. More
information on this parameter can be found in [43]. Notice that V can be partitioned into vertices of the
same type in linear time using fast modular decomposition [65].

3. NP-hardness results

This section contains several NP-hardness reductions for the studied problems.

3.1. SPP and IPP on DAGs

A well-known result related to PC in DAGs is Dilworth’s theorem: the minimal size of a directed
path cover equals the maximal cardinality of an independent set (or, in the original language of posets,
the minimum size of a chain cover is equal to the maximum size of an antichain) [21]. Fulkerson [29] gave
a constructive proof of this theorem, see also [11] for further information. Hence, the DAGPC problem
can be reduced to a maximum matching problem in a bipartite graph. Even DAGPP can be solved in
polynomial time by reducing it to a matching problem in a bipartite graph [15, Problem 26-2]. We show
that, in contrast, DAGSPP and DAGIPP are NP-hard even when restricted to planar bipartite DAGs.

Theorem 3.1. DAGSPP and DAGIPP are NP-hard even when the inputs are restricted to planar
bipartite DAGs of maximum degree 4.

Proof. Our reduction is adapted from [54, 64]. We reduce from the Planar 3-Dimensional Matching
problem, or Planar 3-DM, which is NP-complete (see [24]), even when each element occurs in either
two or three triples. A 3-DM instance consists of three disjoint sets X,Y, Z of equal cardinality p and
a set T of triples from X × Y × Z. Let q = |T |. The question is if there are p triples which contain all
elements of X , Y and Z. We associate a bipartite graph with this instance. We assume that the four
sets T , X , Y and Z are pairwise disjoint. We also assume that each element of X ∪ Y ∪ Z belongs to at
most three triples. We have a vertex for each element in X,Y, Z and each triple in T . There is an edge
connecting triples to elements if and only if the element belongs to the triple. This graph G is bipartite
with vertex bipartition of T,X ∪ Y ∪ Z, and has maximum degree 3. We say the instance is planar if G
is planar. Given an instance of Planar 3-DM, G = (T,X ∪ Y ∪ Z,E), and a planar embedding of it,3

we build an instance G′ = (V ′, E′) of DAGSPP.

Construction: We replace each vi = (x, y, z) ∈ T , where x ∈ X , y ∈ Y , z ∈ Z, with a gadget H(vi) that
consists of 9 vertices named lijk where 1 ≤ j, k ≤ 3 and with edges as shown in Figure 1; if the planar

embedding has x, y, z in clockwise order seen as neighbors of vi, then we add the arcs (li12, x), (l
i
22, z) and

(li32, y), otherwise, we add the arcs (li12, x), (l
i
22, y) and (li32, z).

We observe the following two properties of G′.

Claim 3.2. G′ is a planar DAG with maximum degree 4 in which every shortest/induced path is of length
at most 3, and the underlying undirected graph of G′ is bipartite.

3This planar embedding can be computed in linear time if necessary.

6

x y z

li11 li12

li13

li21li22

li23

li31li32

li33

Figure 1: The vertex gadget, replacing vi in G with nine vertices in G′,

as defined in the proof of Theorem 3.1.

x y z

li11 li12

li13

li21 li22

li23

li31 li32

li33

x y z

li11 li12

li13

li21 li22

li23

li31 li32

li33

(1) (2)

Figure 2: Two different vertex partitions of a H(vi) gadget into 3-vertex paths, corresponding to different triple selections
in the construction of Theorem 3.1.

Proof. The first four conditions are easy to see in the given construction. We will prove the bipartiteness
claim by giving a proper 2-coloring. We will color all vertices which represent the elements of sets X and
Z with color 1, and all vertices which represent elements of set Y with color 2. Then we observe that
within the gadget H(vi), the vertices l12, l23, l21, l32 have color 2, and the remaining vertices have color 1.
This coloring is a proper 2-coloring of G′. ♦

Claim 3.3. The Planar 3-DM instance has a solution if and only if G′ can be partitioned into p+ 3q
shortest/induced paths.

Proof. We claim that t Since |V (G′)| = 3p + 9q, if G′ can be partitioned into p + 3q shortest/induced
paths, we observe that the average path length has to be 2. Observe also that none of the paths can
contain more than one of the original elements of X ∪ Y ∪ Z.

The only possible shortest/induced paths of length 3 are of the form pi = li12l
i
13l

i
23l

i
33, but if one takes

this path into the solution, to cover vertex li11, one has to include this vertex as a single vertex path,
hence the average path length of such a solution would be strictly less than 2. We can also eliminate
paths pi1 = li11l

i
23l

i
33 and pi2 = li22l

i
23l

i
33 from the solution of G′ by similar arguments. More precisely,

taking pi1 would force us to also take the path li12l
i
13, and taking pi2 even makes us select the singe vertex

path li21. Again, the average path length of such a solution would be strictly less than 2.
In summary, each shortest or induced path in the solution contains exactly three vertices, and each

gadget H(vi) is partitioned into P3-paths in one of the two ways shown in Figure 2.
We now describe how to read off a solution of the original Planar 3-DM instance as described by G

from a shortest/induced path partition of G′ into p + 3q shortest/induced paths. If a gadget H(vi) is
partitioned as in (2) in Figure 2, we select that triple vi = (x, y, z) ∈ T into the solution S of G, else
we do not select the triple into the solution. Since the solution covers all vertices of G′, it will cover
in particular all vertices from X ∪ Y ∪ Z; thus, the selected set S of triples will form a Planar 3-DM
solution.

Conversely, if S is a solution of the Planar 3-DM instance specified by G, then for vi = (x, y, z) ∈ S,
partition the corresponding H(vi) as described in (2) of Figure 2, and partition every other H(vj) as
shown in (1) of Figure 2. This provides a shortest/induced path partition of G′ into p + 3q shortest
paths. ♦

This completes our proof of the theorem.

7

3.2. SPP for bipartite undirected graphs

Next, we prove that USPP is NP-hard even when the input graph is restricted to bipartite 5-degenerate
graphs with diameter at most 4. To prove this, we reduce from 4-USPP on bipartite graphs to USPP
on bipartite graphs. 4-USPP asks, given G = (V,E), if there exists a partition P of V such that each
set in P induces a shortest path of length 3 in G. First, we show that 4-USPP is NP-hard on bipartite
graphs (Lemma 3.5) by a reduction from 4-UIPP (also known as Induced P4-Partition) on bipartite
graphs. 4-UIPP asks if there exists a partition P of V such that each set in P induces a path of length 3
in G.

Lemma 3.4 ([54]). 4-UIPP is NP-hard for bipartite graphs of maximum degree 3.

Lemma 3.5. 4-USPP is NP-hard for bipartite graphs of maximum degree 3.

Proof. This follows from Lemma 3.4 and the fact that, in a bipartite graph, a path of length three is an
induced path iff it is a shortest path, see Remark 2.1.

Theorem 3.6. USPP is NP-hard, even for bipartite 5-degenerate graphs with diameter 4.

Proof. To prove this claim, we use Lemma 3.5. Given an instance of 4-USPP, say, G = (V,E), with
bipartition V = A ∪ B and |V | = 4k, as the number of vertices must be divisible by 4, we create an
instance G′ = (V ′, E′) of USPP.

Construction: We add 10 new vertices to G, getting

V ′ = V ∪ {x1, x2, x3, x4, x5, y1, y2, y3, y4, y5} .

We add edges from x2 and x4 to all vertices of B∪{y2, y4}. Also, add edges from y2 and y4 to all vertices
of A, add further edges to form paths x1x2x3x4x5 and y1y2y3y4y5. The remaining edges all stem from G.
See Figure 3 for an illustration. This describes E′ of G′.

Claim 3.7. G′ = (V ′, E′) is bipartite and 5-degenerate.

Proof. We can make the claimed bipartition explicit by writing V ′ = A′∪B′, where A′ = A∪{x2, x4, y1, y3, y5}
and B′ = B ∪ {x1, x3, x5, y2, y4} (see Figure 3).

x1

x2

x3

x4

x5

y1

y2

y3

y4

y5

B A

Figure 3: A sketch of G′ = (V ′, E′); thick lines mean that all the edges across two sets are present. The thick dashed line
represents all edges that have been present between A and B already in G.

Hence, G′ is bipartite. Now we prove that G′ is 5-degenerate. As the maximum degree of G is three
and as the construction of G′ will add two more neighbors to each vertex of A ∪B, vertices from A ∪B
have maximum degree 5 within G′. Hence, we can remove them one-by-one in a first phase. Now, observe
that the induced graph G′[X ∪ Y] remains, with X = {xi | i ∈ [5]} and Y = {yi | i ∈ [5]}, and this graph
again has maximum degree 4. Hence, we can remove all vertices of X ∪ Y one-by-one in a second phase,
this way completely exhausting V ′. ♦

Claim 3.8. Any shortest path of G′, except for the six paths
x1x2x3x4x5, x1x2y2x4x5, x1x2y4x4x5 and y1y2y3y4y5, y1y2x2y4y5, y1y2x4y4y5,

contains at most four vertices. Hence, G′ has a diameter at most 4.

8

Proof. First, observe (∗) that by construction, the two complete bipartite graphs G1 = (A1∪B1, A1×B1)
and G2 = (A2 ∪B2, A2 ×B2), formed with the two sets A1 = A ∪ {x2, x4} and B1 = {y2, y4}, as well as
A2 = {x2, x4} and B2 = B ∪ {y2, y4} are subgraphs of G′.

Let us consider a shortest path p = v1v2v3v4v5 in G′, with more than four vertices. If the starting
vertex v1 lies in A′, then v2 ∈ B′, v3 ∈ A′, v4 ∈ B′ and v5 ∈ A′, as G′ is bipartite. If v1, v5 ∈ A1, then
by our observation (∗), there is a shorter path from v1 to v5, namely v1y2v5. Similar arguments work if
v1, v5 ∈ B2. Now, we will show for a shortest path p, if the starting vertex is v1 = y1 ∈ A′, then p must
be like p = y1y2y3y4y5 or p = y1y2x4y4y5. As noted above, v5 ∈ A′. We observe that v1 = y1 enforces
v2 = y2. We find that v5 /∈ A ∪ {y3, x2, x4}, as there is a shorter path y1y2v5, i.e., v5 = y5, which also
enforces v4 = y4 and finally v3 = y3, v3 = x2 or v3 = x4 as claimed. Similar arguments work when the
starting vertex v1 lies in {x1, x5, y5}. ♦

The arguments leading to the previous claim also give raise to the following one.

Claim 3.9. The only two shortest paths in G′ that have five vertices and that can simultaneously exist
in a path partition are x1x2x3x4x5 and y1y2y3y4y5. ♦

Notice that Claim 3.7 and Claim 8.3 together guarantee the additional properties of the constructed
graph G′ that have been claimed in Theorem 3.6.

Claim 3.10. Let u, v ∈ V have distance d < 3 in G. Then, they also have distance d in G′. Hence, if p
is a shortest path on at most three vertices in G, then p is also a shortest path in G′.

Proof. This observation is trivial if d = 0, 1, and it follows for d = 2 as (also) the graph G′ is bipartite
by Claim 3.7. ♦

Now, we claim that G is a Yes-instance of 4-USPP if and only if G′ has a shortest path partitioning
of cardinality k′ = k + 2, where |V | = 4k. For the forward direction, let D be any solution of 4-USPP
for G, containing k shortest paths. To construct a solution D′ of USPP for the instance (G′, k′), we just
need to add the two paths x1x2x3x4x5 and y1y2y3y4y5 to D. By Claim 3.10, every path p ∈ D is in fact
a shortest path in G′. Hence, D′ is a set of shortest paths with cardinality k′ = k + 2 that covers all
vertices of G′.

For the backward direction, assume G′ has a solution D′, where |D′| = k′ = k + 2. As |V ′| = 4k+ 10
by construction, we know by Claim 8.3 that D′ contains k paths of length three and two paths of length
four. By Claim 8.4, {x1x2x3x4x5, y1y2y3y4y5} ⊆ D′ and the rest of the paths of D′ are of length three
and consists of vertices from V only. Let D = D′ \ {x1x2x3x4x5, y1y2y3y4y5}. As the k paths of D are
each of length three also in G (by Remark 2.1) and as they cover V completely, D provides a solution to
the 4-USPP instance G.

4. W[1]-hardness for DAGSPP and DAGIPP

The natural or standard parameterization of a parameterized problem stemming from an optimization
problem is its solution size. We will study this type of parameterization in this section for path partitioning
problems. More technically speaking, we are parameterizing these problems by an upper bound on the
number of paths in the partitioning. Unfortunately, our results show that for none of the variations that
we consider, we can expect FPT-results.

Theorem 4.1. DAGSPP and DAGIPP are W[1]-hard when parameterized by solution size.

The following reduction is non-trivially adapted from [63].

Proof. We define a parameterized reduction from Clique to DAGSPP/DAGIPP (all parameterized by
solution size). We focus on DAGSPP, but all the arguments work for DAGIPP as well. Let (G, k) be
an instance of Clique, where k ∈ N and G = (V,E). We construct an equivalent instance (G′, k′) of the

DAGSPP problem, where G′ is a DAG and k′ = k·(k−1)
2 + 3k. Let V = [n].

Overview of the construction: We create an array of k × n identical gadgets for the construction,
with each gadget representing a vertex in the original graph. We can visualize this array as having k
rows and n columns. If the DAGSPP instance (G′, k′) is a Yes-instance, then we show that each row
has a so-called selector in the solution. Here, a selector is a path that traverses all but one gadget in a
row, hence skipping exactly one of the gadgets. The vertices in G corresponding to the skipped gadgets
form a clique of size k in G. To ensure that all selected vertices form a clique in G, we have so-called

9

a1 a2 ai−1

si,i+1

ai+1 ak

si,k

b1

t1,i

b2

t2,i

bi−1

ti−1,i

bi+1 bk

Figure 4: Gadget Gi,u, 0 < u ≤ n, i ∈ [k]

a1 aj ak

b1 bj

bk

Gi,u

a1 ai ak

b1 bi bk

Gj,v

Figure 5: Gi,u connected to Gj,v, i < j

verifiers in DAGSPP. Verifiers are the paths that are used for each pair of rows to ensure that the
vertices corresponding to the selected gadgets in these rows are adjacent in G. This way, we also do not
have to check separately that the selected vertices are distinct.

Construction details: The array of gadgets is drawn with row numbers increasing downward and
column numbers increasing to the right. Arcs between columns go down and arcs within the same row
go to the right. To each row i, with i ∈ [k], we add a start terminal, an arc (si, s

′
i), and an end terminal,

an arc (t′i, ti). Next, add arcs starting from si, s
′
i to tl and t′l, with l > i. Also, for each row, we have

k − i column start terminals, arcs (si,j , s
′
i,j) with i < j, and i − 1 column end terminals, arcs (tj,i, t

′
j,i)

with j ∈ [i− 1]. Also, add arcs from vertices si,j and s′i,j to all vertices t′j,p with p < j if j > i, and to tl,
t′l if l ≥ i.

Gadgets are denoted by Gi,u, i ∈ [k], corresponding to u ∈ V . Each gadget Gi,u consists of k − 1
arcs (ai,ur , bi,ur), with r ∈ [k] \ {i}. To each row i ∈ [k], we also add dummy gadgets Gi,0 and Gi,n+1.

Gi,0 consists of two arcs, (ai,01 , ai,02) and (bi,01 , bi,02), also add arcs from bi,01 and bi,02 to tm, t′m and tm,h

where m < h and i ≤ h. Gi,n+1 consists of a directed Pk+2 and an arc (bi,n+1
1 , bi,n+1

2) ; the Pk+2-

vertices are named ai,n+1
j , with j ∈ [k + 2], where ai,n+1

k+2 has out-degree zero. We can speak of T i,u :=

{ai,ur | r ∈ [k] \ {i}} ∪ {ai,01 , ai,02 , ai,n+1
j | j ∈ [k + 2]} as being on the top level, while the vertices

Bi,u := {bi,ur | r ∈ [k] \ {i}} ∪ {bi,01 , bi,02 , bi,n+1
1 , bi,n+1

2 } form the bottom level of gadget Gi,u.
Due to the natural ordering of the wires within a gadget, we can also speak of the first vertex on the

top level of a gadget or that last vertex on the bottom level of a gadget. On both levels, the vertices
are connected following their natural wire ordering. More technically speaking, this means that within
gadget Gi,u, with u ∈ V , there is an arc from the first vertex of the upper level to the second vertex of
the upper level, from the second vertex of the upper level to the third vertex of the upper level etc., up
to an arc from the penultimate vertex of the upper level to the last vertex of the upper level. Moreover,
there is an arc from the last vertex of the upper level of Gi,u−1 to the first vertex of the upper level of
Gi,u and from the last vertex of the upper level of Gi,u to the first vertex of the upper level of Gi,u+1.
Analogously, the vertices of the lower level of the gadgets are connected. These notions are illustrated in
Figure 4. In the figure, we omit the superscripts (ar, br) = (ai,ur , bi,ur), where r ∈ [k − i].

si s
′

i

a1 a2 a1 ak a1 ak a1 ak a1 ak+2

b1 b2 b1 bk b1 bk b1 bk b1 b2

t
′

i ti

Gi,0 Gi,1 Gi,2 Gi,3 Gi,n+1

Figure 6: The ith row (only the first two skipping arcs are shown), the dashed line indicates arcs from si, s
′

i to a
i,n+1

j , with

j ∈ [k + 2]

A selector is a path that starts at si, enters its row at the top level, and exits it at the bottom level,
ending at ti and skipping exactly one gadget Gi,u, with i ∈ [k] and u ∈ V . In order to implement this,

we add the arcs (s′i, a
i,0
1) and (bi,n+1

2 , t′i) for row i, as well as skipping arcs that allow to skip a gadget

10

Gi,u for u ∈ V . These connect the top level of the last wire of Gi,u−1 to the bottom level of the first wire
of Gi,u+1.
A verifier is a path that routes through one of the wires of the skipped gadget and connects column
terminals si,j to ti,j . In order to implement this, we add the arcs (s′i,j , a

i,u
j) and (bi,ui , t′i,j) to every gadget

in rows i and j. To connect the gadget in row i and j, for every edge uv in G, we add an arc between
the wires (bi,uj , aj,vi) for each i < j, see Figure 5.

To force the start and end vertices of paths in the spp of G′ of size k′, we add the following arcs,
called shortest paths enforcers. For every row i, from all the vertices of gadget Gj,u, where j < i and
0 ≤ u ≤ n, from every vertex sl and s′l of a start terminal and from every vertex sl,m, s′l,m of a column

start terminal, where l ≤ i and l < m, add arcs to ai,n+1
j , with j ∈ [k + 2].

We are now going to show a number of properties of our construction.

Observe that G′ is a DAG because all arcs either go from left to right or from top to bottom. Next, using
Claim 4.2 and Claim 4.3, we can deduce that, if G′ has an spp of size k′, then the start vertex and end
vertex of each path in the solution has the following properties.

Claim 4.2. G′ has k′ − k vertices with in-degree zero and out-degree zero.

Proof. First, recall that k′ = k·(k−1)
2 +3k. Hence, we have to show that we have k·(k−1)

2 +2k many vertices
with in-degree zero. Namely, for each row i, with i ∈ [k], we have one such vertex as it’s start terminal si,

k− i column start terminals and one vertex of the dummy gadget bi,01 . We also have k·(k−1)
2 +2k vertices

with out-degree zero, for each row i, i ∈ [k], one as the row’s end terminal ti, i − 1 as its column end
terminals and as a vertex of the dummy gadget ai,n+1

k+2 , where |V | = n. ♦

Hence, we know k′ − k start and end vertices of the solution are fixed. The next claim shows that each
row i has one more start vertex of some path, hence fixing all the starting vertex of all the paths in the
solution.

Claim 4.3. If a solution P of the created DAGSPP instance G′ is of size k′ then, for each row i ∈ [k],
there is a path in P starting from v ∈ T i,u which covers at least the vertex ai,n+1

1 .

Proof. We will prove this claim by contradiction. Let there be an spp P such that there exists a row i,
with i ∈ [k] such that there is no shortest path starting from v, where v ∈ T i,u which covers at least
ai,n+1
1 . Then, to cover the vertices ai,n+1

j , with j ∈ [k + 2], P needs k + 2 arcs, as every vertex that can

reach ai,n+1
l , where l ∈ [k+2], is connected to all the vertices ai,n+1

j , where j ∈ [k+2]. Hence, we require

k+2 paths to just cover ai,n+1
j for j ∈ [k+2], but this leaves G′ with k′ − k− 1 out-degree zero vertices.

This contradicts that P is of size k′. ♦

Hence, if G′ has an spp of size k′, then the paths in the solution must start at: for i ∈ [k], si, b
i,0
1 ,

v, v ∈ T i,u and si,j , with i < j. Next, we will show observations about these paths’ ending vertices.

Claim 4.4. If G′ has an spp of size k′, then a path (in this DAGSPP solution) starting at si has to end
at ti, with i ∈ [k].

Proof. Let P be a DAGSPP solution of size k′. The shortest path from P that covers ti cannot have
started at sj , where j < i, as this path, would be an arc due to the edge (sj , ti) and hence P would also
contain a path starting at s′j , which is a contradiction to its small size. Similar arguments work if the

path would start at any column start terminal(sl,m) or any bl,01 , with l < m, l ≤ i. Also, the path does

not start at v ∈ Tm,u,m ≤ i, as this has to go through am,n+1
1 and there is no path from am,n+1

1 to ti.
Hence, the path should start at vertex si. ♦

With arguments along similar lines, we can show:

Claim 4.5. If G′ has an spp of size k′, then any path in this partition starting at si,j has to end at
ti,j , i < j.

Claim 4.6. If G′ has an spp of size k′, then any path in this partition starting at v ∈ T i,u has to end at
ai,n+1
i , i ∈ [k].

11

Also, if G′ has an spp of size k′, then for each row i, with i ∈ [k], any path starting at si has to skip
exactly one gadget and end at ti. If we do not skip any gadget, si,j cannot be connected to ti,j , j > i.
Once we skip a gadget, we are at the bottom level of the row and hence we cannot skip again. To conclude
if G has a shortest path partition of size k′ (then in the solution) the path starting at si has to end at ti
and this path has to skip exactly one gadget. Through this skipped gadget, si,j is connected to ti,j . The
bottom of the row is covered by a path starting from bi,0 and the top of the row is covered by a path
starting at v ∈ T i,u after the skipped gadget and ending at ai,n+1

k+2 .
Finally, we have the following claim about G′ that follows by construction.

Claim 4.7. There exists a path between si,j and ti,j through two gadgets Gi,u and Gj,v where i > j if
and only if there is an edge uv in the graph G.

Claim 4.8. G has a k-clique if and only if G′ has a shortest path partition of size k′.

Proof. If vertices v1, v2, . . . , vk form a clique in G, then we construct an spp of size k′ in G′ as follows:
for each row i, with i ∈ [k], we take a path starting at si and leading to ti while skipping gadget Gi,vi ; we

cover all the vertices on the left of the skipped gadget with a single path starting at bi,01 , and similarly,

we cover all the vertices on the right of the skipped gadget with a single path ending at ai,n+1
k+2 . Then, we

connect si,j to ti,j , with i < j, through the skipped gadget (this is possible because of Claim 4.7).
For the other direction, assume we have an spp P of size k′ in G′: include the vertices corresponding

to any gadget which was skipped by a path which connects si to ti for i ∈ [k] into the k-element set C.
This forms a clique in G, as any two vertices of {vi, vj} ∈ C, are distinct and have an edge between them
because of the verifiers. ♦

As the construction is polynomial-time, W[1]-hardness follows.

5. XP Algorithms for SPP

We now present our XP algorithms to prove the following result. We note that the result for USPP
was also proved in [23] (with a different method: they first give an upper-bound on the treewidth of the
graph, and then they apply Courcelle’s theorem).

The basic idea is to use existing algorithmic results for Disjoint (Shortest) Paths from the liter-
ature.

Theorem 5.1. USPP, DAGSPP, and DSPP but only on planar directed graphs and on directed graphs
of bounded directed treewidth4 are in XP when parameterized by the number of paths.

For our XP algorithms, the following combinatorial result is crucial, that allows us to reduce the problem
to DP (without the shortest path requirement).

Lemma 5.2. Let G = (V,E) be a graph (directed or undirected). Then, V can be partitioned into k
vertex-disjoint shortest paths if and only if there are k vertex-disjoint paths between some si and ti, for
1 ≤ i ≤ k, such that

∑k

i=1 d(si, ti) = |V | − k.

Proof. Let G = (V,E) be a directed or an undirected graph. If V can be partitioned into k vertex-disjoint
shortest paths Pi, for 1 ≤ i ≤ k, then we can take their endpoints as si and ti. As the paths are shortest
and form a partition,

∑k

i=1 d(si, ti) = |V | − k must hold. Conversely, if there are k vertex-disjoint paths

in G, connecting, say, si and ti, for 1 ≤ i ≤ k, then the condition
∑k

i=1 d(si, ti) = |V | − k can only be
satisfied if each vertex of the graph belongs to exactly one of the paths and if all the paths are shortest
paths. Hence, V can be partitioned into k vertex-disjoint shortest paths.

Lemma 5.2 allows us to prove Theorem 5.1 by cycling through all possible X := {(s1, t1), . . . , (sk, tk)},
resulting in an instance of DSP. Now, we can either apply known algorithms with XP running time (or
better), for either DP or DSP. We give details of this proof strategy in the following.

Proof of Theorem 5.1. Let G = (V,E), together with an integer k, be an instance of SPP (i.e., DSPP,
DAGSPP or USPP, the arguments are complete analogous for these cases). By Lemma 5.2, given an
instance (G, k) of SPP, with G = (V,E), it is sufficient to iterate (in XP time) through all possible

X := {(s1, t1), . . . , (sk, tk)} where si, ti ∈ V and
∑i=k

i=1(d(si, ti) + 1) = |V |. The latter can be checked

4as defined in [41]

12

in polynomial time using standard algorithms for computing the distance. Then, for each such X we
form an instance (G,X) of the version of DP (or DSP) corresponding to our initial instance (i.e., DDP,
DAGDP or UDP, or alternatively, DDSP, DAGDSP or UDSP). Now, (G, k) is a Yes-instance of SPP,
respectively, if and only if some constructed (G,X) instance is a Yes-instance of DP (or of DSP).

We next see in which cases DP or DSP can be solved in XP time by known algorithms.
For DAGs, Fortune et al. [27, Theorem 3] showed that, for arbitrary fixed directed pattern graphs,

subgraphs homeomorphic to them can be detected in DAGs in polynomial time (even when the node-
mapping is fixed). Hence, taking as a pattern graph a collection of k isolated directed edges and as
node-mapping the chosen terminals, the according homeomorphism problem is identical to DAGDP
(with fixed k). Hence, the instance (G,X) can be solved in time O(|V |f(|X|)) = O(|V |f(k)) for some
function f . Alternatively, an XP algorithm for DAGDSP is also given in [7].

For planar (directed) graphs, we refer to [18] for an FPT algorithm for DDP, or to [7] for an XP

algorithm for DDSP. An XP algorithm is given for DDP on graphs of bounded directed treewidth [41].
For the undirected case, we can refer to the seminal paper of Robertson and Seymour [61], yielding

a cubic-time algorithm on input (G,X) for UDP, an algorithm that was later improved to be quadratic
in [42], yielding again the XP-claim. Alternatively, an XP algorithm for UDSP was also given in [6, 48].

These results establish the statement.

Notice that these algorithmic results rule out paraNP-hardness results (in contrast to those existing
for PP and IPP) for the corresponding problems.

6. Neighborhood Diversity and Vertex CoverParameterizations

One of the standard structural parameters studied within parameterized complexity is the vertex cover
number, i.e., the size of the smallest vertex cover that a graph has. As graphs with bounded vertex cover
number are highly restricted, less restrictive parameters that generalize vertex cover are interesting, as
neighborhood diversity is, introduced by Lampis [46].

6.1. Neighborhood diversity for USPP and UIPP

Crucial to our FPT-results is the following interesting combinatorial fact.

Proposition 6.1. If G is connected, then diam(G) ≤ nd(G).

Proof. Let G = (V,E) be a graph with d = nd(G), with equivalence classes C1, . . . , Cd ⊆ V . We will
prove our claim by contradiction. Hence, assume P = {v1, v2, . . . , vd+2} be a shortest path of length
d+ 1.

For d = 1, all vertices of G are of the same type. As v1, v3 are not isolates, there exists an edge
between the first vertex v1 and the last vertex v3 on P . This contradicts the assumption that P is a
shortest path.

Now for d > 1, we claim that for every Cj , where j ∈ [d], |P ∩ Cj | < 2. We will prove this by
contradiction, assuming that there are two distinct vertices u, v with {u, v} ∈ Ci ∩ P , for some i ∈ [d].
By definition, as u and v are of the same type, any vertex v′ ∈ P which is adjacent to u or v is adjacent
to both (∗). As P has at least four vertices, we can find a contradiction to the assumption that P is
a shortest path by the following case distinction. (1) If u and v are adjacent, then as there must be a
vertex v′ ∈ P that is neighbor of u or v, it is neighbor of both u and v, so that there is a shorter path
between the two endpoints of P . More precisely, if u−v−v′ is a sub-path of P , then this can be shortcut
as u − v′, while the sub-path v′ − u − v of P can be shortcut as v′ − v. (2) If u and v are not adjacent,
then there must be a vertex w ∈ P that is the first vertex when moving from u to v on the path P .
But then (∗) implies that w ∈ N(v) must hold, so that u− w − v is a sub-path of P . As P has at least
four vertices, there exists one more vertex z ∈ P which is adjacent to u or v. As P is a shortest path,
z /∈ N(w). Hence, the vertices u,w, v, z, in this order, form an induced cycle in G, so that the path P
cannot be a shortest path. Namely, as z is adjacent to u, v, a sub-path u−w− v− z of P can be shortcut
as u− z, while a sub-path z − u − w − v of P can be shortcut as z − v. Hence, P contains at most one
vertex from each Cj , 1 ≤ j ≤ d. Therefore, any shortest path cannot be of length greater than d.

Similar arguments show that the number of neighborhood diversity equivalence classes that a shortest
path P intersects equals its number of vertices if P contains at least four vertices. In shortest paths on
two or three vertices, however, their endpoints might have the same type. Now, call two shortest paths
Pi and Pj (viewed as sets of vertices) equivalent, denoted by Pi ≡ Pj , in a graph G with d = nd(G) if

13

|Pi ∩Cl| = |Pj ∩Cl| for all l with 1 ≤ l ≤ d, where C1, . . . , Cd denote the nd-equivalence classes. Any two
equivalent shortest paths have the same length. Proposition 6.1 and our discussions imply that there are
O(2nd(G)) many equivalence classes of shortest paths (+).

Theorem 6.2. USPP is FPT when parameterized by neighborhood diversity.

Proof. As we can solve USPP separately on each connected component, we can assume in the following
that the input graph is connected.

Given that the neighborhood diversity of a graph G = (V,E) is bounded by an integer d, then there
exists a partition of V into d nd-classes C1, . . . , Cd. Hence, each Ci for i ∈ [d] either induces a clique
or an independent set. Such a partition can be found in linear time with a fast modular decomposition
algorithm [65].

Compute the set of all shortest path equivalence classes; this can be represented by a set P of shortest
paths, in which any two shortest paths are not equivalent. By (+), we know that |P| ∈ O(2nd(G)).
Construct and solve the following Integer Linear Program (ILP), with variables zp ≥ 0 corresponding to
p ∈ P . Each p ∈ P is characterized by a vector (p1, . . . , pd) with pj = |Cj ∩ p|.

minimize
∑

p∈P

zp

subject to
∑

p∈P

zp · p
j = |Cj | for all j ∈ [d]

The variable zp encodes how many shortest paths equivalent to p are taken into the solution. Hence,
the objective function expresses minimizing the number of shortest paths used in the partition. The
constraints ensure the path partitioning.

Claim 6.3. There exists a spp of G with k shortest paths if and only if the objective function attains the
value k in the ILP described above.

Proof. For the forward direction, consider the paths P = {P1, P2, . . . , Pk} as a solution for the spp of G.
To construct a solution of the ILP, for every p ∈ P , zp equals the number of paths in P that are equivalent
to p. Clearly,

∑

p∈P zp = k. The constraint is satisfied as every vertex is covered exactly once by P.
For the other direction, suppose that there exist integers {zp | p ∈ P} which satisfy the ILP and

∑

p∈P zp = k. We can produce a spp of G with k paths as follows: as long as there exists a set p ∈ P

with zp > 0, construct a path by arbitrarily picking exactly pj vertices from each Cj . Remove these
vertices from G, and set zp := zp − 1. This algorithm produces exactly k paths which form a shortest
path collection that covers all vertices exactly once. ♦

Notice that the number of variables of the ILP is exactly |P|, which is O(2d), as observed above. Now,
we apply [17, Theorem 6.5] to prove our FPT claim.

The arguments leading to Proposition 6.1 and the subsequent discussions are all proofs by contradic-
tion that show shortcuts in shortest paths that are ‘too long’. This also works for induced paths instead
of shortest paths, leading to the following result.

Proposition 6.4. The length of a longest induced path in a graph G is upper-bounded by the neighborhood
diversity nd(G).

Theorem 6.5. UIPP is FPT when parameterized by neighborhood diversity.

It is worth mentioning that the time consumption of the proposed algorithms is at worst double-

exponential in the parameter (more precisely, ignoring lower-order terms, the growth is like
(

22.5d
)2d

),
while the space consumption is rather single-exponential, like 2d. In practice, however, the number of
shortest path equivalence classes of a graph (that determines that number of variables of the derived ILP)
need not be exponential in the neighborhood diversity, which would immediately improve the running time
estimates for the proposed algorithm. Nonetheless, it would be interesting to give better parameterized
algorithms for these path partitioning problems.

Moreover, using the mentioned estimates of Lampis [46], we can immediately infer the following
results, where the dependence on the parameter is even worse than that for neighborhood diversity.

Corollary 6.6. USPP and UIPP are FPT when parameterized by vertex cover number.

14

We have a similar result for UPP, either by a more general approach in [30], or based on a more
direct and simpler reasoning, as shown below in Proposition 6.16.

6.2. Neighborhood diversity of directed graphs for DSPP and DIPP

Now we want to try to adapt these neighborhood diversity results for the directed case. For this reason
we want to introduce the new notion of directed neighborhood diversity (dnd for short). To this end, let
N−(v) := {x ∈ V | (x, v) ∈ E} and N+(v) := {x ∈ V | (v, x) ∈ E} be the in- and out-neighborhood of v,
respectively. For two vertices v, u ∈ V , we define v ∼dnd u to hold if the following three conditions are
satisfied:

1. N−(v) \ {u} = N−(u) \ {v},

2. N+(v) \ {u} = N+(u) \ {v}, and

3. (v, u) ∈ E ⇔ (u, v) ∈ E.

Lemma 6.7. For any directed graph G = (V,E), ∼dnd is an equivalence relation.

Proof. Trivially, ∼dnd is reflexive and symmetric. We are left to show transitivity. Let v, u, w ∈ V be
different vertices with v ∼dnd u and u ∼dnd w.

First assume that (v, u), (u, v) ∈ E. This implies v ∈ N−(u) \ {w} = N−(w) \ {u} and v ∈ N+(u) \
{w} = N+(w) \ {u}. Hence, (v, w), (w, v) ∈ E. As N−(u) \ {v} = N−(v) \ {u} , (u,w), (w, u) ∈ E. Thus,

N−(v) \ {w} = ((N−(v) \ {u}) ∪ {u}) \ {w} = ((N−(u) \ {v}) ∪ {u}) \ {w}

= ((N−(u) \ {w}) ∪ {u}) \ {v} = ((N−(w) \ {u}) ∪ {u}) \ {v}

= N−(w) \ {v}.

Analogously, N+(v) \ {w} = N+(w) \ {v}. Therefore, v ∼dnd w.
Now assume (v, u), (u, v) /∈ E. Then, v /∈ N−(u) \ {w} = N−(w) \ {u} and v /∈ N+(u) \ {w} =

N+(w) \ {u}. Thus, (v, w), (w, v) /∈ E. Since N−(u) \ {v} = N−(v) \ {u} , (u,w), (w, u) /∈ E. Hence,

N−(v) \ {w} = (N−(v) \ {u}) \ {w} = (N−(u) \ {v}) \ {w}

= (N−(u) \ {w}) \ {v} = (N−(w) \ {u}) \ {v}

= N−(w) \ {v}.

Therefore, ∼dnd is transitive and hence an equivalence relation.

Note that the third condition in the definition of relation ∼dnd is needed to obtain an equivalence
relation. To see this, consider for example the directed graph on vertices u, v, w consisting of a transitive
triangle, where u is the source and w is the sink. Without the third condition, we would have u ∼ v and
v ∼ w, but u 6∼ w, so ∼ would not be an equivalence relation.

Now we want to consider the equivalence classes. The previous proof provides an observation for
these:

Corollary 6.8. Let G = (V,E) be a directed graph and C1, . . . , Cd be the equivalence classes with respect
to ∼dnd. Then for each i ∈ {1, . . . , d}, Ci is either an independent set or a bidirected clique.

A similar result for the neighborhood diversity on undirected graphs is well-known. There, an equiv-
alence class is either an independent set or a clique. But this is not the only similarity, as we see next.

Remark 6.9. If we take an undirected graph G = (V,E) and build the directed graph G′ = (V,E′)
with E′ := {(v, u), (u, v) | {v, u} ∈ E}, then ∼nd = ∼dnd, where ∼nd is the underlying relation of the
undirected neighborhood diversity. This holds, since N(v) = N−(v) = N+(v) and {v, u} ∈ E if and only
if (v, u) ∈ E′ if and only if (u, v) ∈ E′, which is the case if and only if {u, v} ∈ E.

As we can see, the definition above is a natural way to generalize the neighborhood diversity relation
from undirected to directed graphs. Therefore, we define the directed neighborhood diversity of a graph
G = (V,E) (denoted by dnd(G)) as the number of equivalence classes under ∼dnd.

Lemma 6.10. Let G = (V,E) be directed graph with the directed neighborhood diversity classes C1, . . . , Cdnd(G).
For any induced path p = v1, . . . , vℓ in G, there is at most one i ∈ {1, . . . , dnd(G)} such that |Ci ∩ p| > 1.
In this case, {v1, vℓ} = Ci ∩ p.

15

Proof. Let p = v1 . . . vℓ be an induced path and Ci be a directed neighborhood diversity class with
{vj, vk} ⊆ Ci ∩ p and vj 6= vk. Without loss of generality, j < k. Assume j 6= 1. Then vj−1 ∈
N−(vj)\{vk} = N−(vk)\{vj}. This contradicts the fact that p is induced. Therefore, j = 1. Analogously,
k = ℓ (substitute vj−1 by vk+1 and N− by N+).

Corollary 6.11. Let G be a directed graph. Any induced path has length at most dnd(G).

This is a tight bound. Indeed, for any given d ∈ N, there exists a directed graphs Gd with diam(Gd) =
dnd(G): For d = 1, just use a path of two vertices. For the other cases, define Gd = (Vd, Ed) with
Vd := {v, v′, v1, . . . , vd−1} and Ed := {(vi, vi+1) | i ∈ {1, . . . , d−2}}∪{(vd−1, v), (vd−1, v

′), (v, v1), (v
′, v1)}.

The directed neighborhood diversity classes are Ci = {vi} for i ∈ {1, . . . , d − 1} and Cd = {v, v′}. The
only path between v and v′ is v, v1, . . . , vd−1, v

′.
By this corollary, we can define the equivalence of paths and show a result as Theorem 6.2 analogously.

We can do this as vertices in the same class can by reached from the same vertices and can reach the
same vertices.

Theorem 6.12. DSPP and DIPP are FPT when parameterized by the directed neighborhood diversity
of the input graph.

Let us compare dnd(G) with nd(U(G)) of the underlying undirected graph U(G). By the very defini-
tions, we observe:

Proposition 6.13. For every directed graph G, nd(U(G)) ≤ dnd(G).

Note that equality in Proposition 6.13 can be strict, consider for example any tournament G of order
n. Since there is exactly one arc between every pair u, v of vertices of G, the third condition for u ∼dnd v
is never satisfied, so dnd(G) = n. However, U(G) is a complete graph, so nd(U(G)) = 1.

Similarly to the undirected case, the directed neighborhood diversity number of the underlying graph
is upper-bounded by an exponential function of the vertex cover number of the underlying undirected
graph. However, the details are a bit different, as shown next.

Proposition 6.14. For every directed graph G, dnd(G) ≤ 4vc(U(G)) + vc(U(G)).

Proof. Namely, consider all (not necessarily proper) 4-colorings of the vertex cover set. They should come
with the following meaning (with respect to a vertex u in the independent set):

• 0: not touched by any edge incident to u,

• 1: in N+(u) \N−(u),

• 2: in N−(u) \N+(u),

• 3: in N+(u) ∩N−(u).

This idea already shows the claim. Namely, at worst each vertex in a minimum vertex cover forms its
own equivalence class, and two vertices u, u′ in the independent set (the complement of the vertex cover)
are equivalent if and only if they induce the same 4-coloring as defined above. As there are at most
4vc(U(G)) many such 4-colorings, this upper-bounds the number of equivalence classes with independent
set vertices only.

Corollary 6.15. DSPP and DIPP are FPT when parameterized by the vertex cover number of the
underlying undirected graph.

Proof. One only needs to recall that we can compute a minimum vertex cover of the underlying graph in
FPT time, see [14].

We could also define the directed neighborhood diversity by only in-arcs or out-arcs. But different
from the undirected case, we must specify if we consider the open or closed neighborhood for the diversity.
If we would define the relation ∼ for two vertices v, u ∈ V only by N−(v)\{u} = N−(u)\{v} (completely
in analogy to the undirected case), then the transitive triangle would again be a counter-example for the
required transitivity. As for ∼dnd, we could include the condition (u, v) ∈ E if and only if (v, u) ∈ E. But
even for this modification, there is a counter-example for transitivity of this relation ∼: G = ({u, v, w}, E)
with E := {(w, v), (u, v), (v, w)}. Here, v ∼ w and v ∼ u but w 6∼ u.

So either we try to discuss further adaptations of the notion of neighborhood diversity towards directed
graphs, or we can base a definition on the open or closed neighborhoods, e.g., u ∼open− v ⇐⇒ N−(u) =

16

N−(v). But we did not find a way such that these definitions help generalize our algorithms. For example,
consider for the open neighborhood (the closed one works analogously) G = ({v, u, w, x, y}, E) with
E := {(y, v), (y, u), (v, w), (v, x)}. The three ∼open−-classes are C1 := {y}, C2 := {v, u}, C3 := {w, x}. So
our algorithm would advise to use a path C1, C2, C3 and C2, C3. But this is not possible.

6.3. More on vertex cover parameterization

Proposition 6.16. UPP, USPP and UIPP are FPT when parameterized by vertex cover number, as
they admit single-exponential size kernels.

Proof. Assume that vc(G) is our problem parameter, given a graph G = (V,E), and let C ⊆ V be a
minimum vertex cover (which can be computed in FPT time by [14]). Now we claim that if there are more
than 2vc(G) many vertices in the independent set I = V \ C that have the same type, then at least one
of them must form a single-vertex path in a minimum pp of G. Implementing this reduction rule leaves
us with |I| ≤ 2vc(G) · 2vc(G), as the number of neighborhood diversity classes within I is clearly bounded
by 2vc(G). Hence, we can assume that the size of G is bounded by a function in vc(G) which shows that
UPP, UIPP and USPP parameterized by vertex cover, have a kernel and are hence in FPT.

In view of the results obtained in the preceding subsection on directed graphs, we can state and prove
similar single-exponential kernel results for vertex cover parameterization also in these cases. We can
also obtain a direct FPT algorithm for UPP, leading to the following result. It is not that clear how this
result can be adapted to the other path partition variants (UIPP and USPP) studied in this paper.

Proposition 6.17. UPP is FPT when parameterized by vertex cover number, testified by an algorithm
running in time O∗

(

vc(G)! · 2vc(G)
)

on input G.

Proof. The proposed algorithm runs as follows on the input graph G = (V,E):

(0) Compute a minimum vertex cover C of the input graph; this can be done in time O(cvc(G)) for some
c < 1.3, see [14]. We call the complement of C as I, being an independent set.
We also keep track of a ‘record partition’ P that we initialize with the path partition where each path is
consisting of one vertex.

(1) Iterate through all permutations of the vertices in C = {v1, . . . , vr}, where r = vc(G). The idea is
that each such permutation describes a sequence of vertices in the order in which each of the paths that
are considered in a partition traverse the C-vertices in this order.

(2) For each such permutation π, say, vπ(1), . . . , vπ(r), walk through all (r − 1)-dimensional bitvectors
b̄ = b1b2 · · · br−1. These bitvectors describe where the sequence vπ(1), . . . , vπ(r) is connected (or not)
on a path. More precisely, bj = 1 if and only if vπ(j) and vπ(j+1) are on the same path in the path
partition P(π, b̄) that we are constructing. Therefore, a bitvector with ℓ zeros will describe a collection
of paths with ℓ+1 paths that contain vertices of C. Also, if p ∈ P(π, b̄), then there exist i ≤ j such that,
if we view p as a set of vertices, p ∩ C = {vπ(i), . . . , vπ(j)} and for all indices ι ∈ [i, j − 1], bι = 1, while
bi−1 = 0 or i = 1 and bj = 0 or j − 1 = r.

Remark 6.18. Under the assumption that I = V \C might be much bigger than C, as suggested by the
exponential-size kernel obtained in Proposition 6.16, this does not relate ℓ to k, as then k must be rather
in the order of |C| than in the order of ℓ ≤ r. Yet, we can say that, given b̄ with ℓ zeros and assuming
that C is sufficiently big, we will obtain at least (ℓ + 1) + (|C| − 2(ℓ+ 1)) = |C| − (ℓ+ 1) many paths, a
number that should be smaller than k, as otherwise we can abort. Namely, by our construction, we have
ℓ + 1 paths containing vertices from C. In order to get as few paths as possible in our path partition,
as many vertices from I as possible should be integrated into these paths. In each of these paths, we can
integrate at most as many vertices as there are vertices belonging to C, plus one, because vertices from I
can occur only as ‘intermediate vertices’ between two vertices from C, or at the very ends of the paths,
because I is an independent set in G by assumption. Hence, at most 2(ℓ + 1) + r many vertices can be
integrated into these ℓ+ 1 many paths. Of these vertices, at most 2(ℓ+ 1) belong to I, but ‘the rest’ of I
must be covered by single-vertex-paths. However, we could possibly also get more paths in a solution that
is consistent with b̄, namely, if no vertices from I are integrated in the paths that contain vertices from C
in this extreme case, we are looking at a solution with |C| + (ℓ + 1) many paths. In order to integrate
as many vertices from I into paths that contain vertices from C, we will suggest to consider a maximum
matching in an auxiliary graph, as described in the following.

17

(3) For all π and b̄, create an auxiliary edge-weighted bipartite graph G′ = G′(π, b̄) with edge set E′ and
vertex set V ′ containing V , such that C is part of one set C′ of the bipartition. Similarly, let I ′ = V ′ \C′

contain I. Moreover, we will define a weight function w : E′ → {1, 2}. More precisely, to obtain C′, add
to C (always) the vertex v′

π(1) and further vertices v′
π(i+1) if bi = 0, and possibly add vertices ui into I if

bi = 1 to build I ′. For a worked-out example explaining our construction, we refer to Example 6.21.
First assume that bi = 1, i.e., vπ(i) and vπ(i+1) should lie on a path in P(π, b̄). Connect vπ(i) and x ∈ I

by an edge of weight 2 if vπ(i)x ∈ E and vπ(i+1)x ∈ E. Moreover, if there is no edge incident to vπ(i) so
far but vπ(i)vπ(i+1) ∈ E, then introduce a new vertex ui (as part of I ′) and the edge vπ(i)ui of weight 1.

Secondly, assume that bi = 0, i.e., vπ(i) and vπ(i+1) should not lie on a path in P(π, b̄). Still, the path
that ends at vπ(i) (concerning the C-vertices) could contain one more vertex (in I). Therefore, we also
connect vπ(i) and x ∈ I by an edge of weight 1 if vπ(i)x ∈ E. Similarly, connect vπ(r) and x ∈ I by an
edge of weight 1 if vπ(r)x ∈ E. Also the path that starts at vπ(i+1) (concerning the C-vertices) could
contain one more vertex (in I). To cover this case, we also connect vπ(i+1)′ and x ∈ I by an edge of
weight 1 if vπ(i+1)x ∈ E. Similarly, we connect vπ(1)′ and x ∈ I by an edge of weight 1 if vπ(1)x ∈ E.

This concludes the description of the auxiliary graph G′ = (V ′, E′) and the weight function w.
Now, compute a maximum weighted matching M in G′. If the vertices vπ(i), vπ(i+1), . . . , vπ(j) are

matched, then this clearly corresponds to a path within G that traverses vπ(i), vπ(i+1), . . . vπ(j) in that
order, possibly using vertices from I on its way, including possibly starting or ending in I. Let us make
this more precise.

First, we test if there is any edge v′
π(i+1)x in the matching, while vπ(i)x was also an edge in G′. This

would mean that we found a situation where we guessed (by the bitvector b̄, as bi = 0) that one path
ends at vπ(i) and the next path starts at vπ(i+1). Our matching proves that we could connect both paths,
i.e., the path partition P(π, b̄) would not be minimal. Also, there will be another setting of the bitvector
b̄ that covers this (better) case. Therefore, we need not consider this case any longer. Similarly, we can
skip the case when v′

π(1)x in the matching, while vπ(r)x was also an edge in G′.

Now, we describe P(π, b̄) more precisely. Our first path P1 should contain vπ(1). If vπ(1)′ is matched
with some x0 ∈ I, then P1 starts with x0, with the second vertex then being x1 = vπ(1), while otherwise
it starts with x1. If b1 = 0, then it might be the case that x1 is matched with x2 ∈ I, where P1 will then
end, or x1 is not matched, which means that P1 already ends with x1. If b1 = 1, then we expect that
x1 is matched with some vertex (otherwise, the guessed bitvector would be wrong and we can stop any
further computation of this case here). If x1 is matched with some x2 ∈ I, this means that (within G)
we find the edges x1x2 and x2x3, with x3 = vπ(2). Otherwise, x1 is matched with u1. By construction,
this means that there was no x ∈ I with x ∈ NG(x1) ∩ NG(vπ(2)), but x1 ∈ NG(vπ(2)). Hence, we can
take x2 = vπ(2) as the next vertex on P1. Continuing this way, we will construct the first path P1, whose
end is determined by the first j with bj = 0. Then, the second path P2 will start with vπ(j) if v′

π(j) is

unmatched and with some y ∈ V \ C if y is matched with v′
π(j) that is constructed in the very same

fashion.
Notice that all vertices of I outside the matching belong to paths of length zero. As the matching

was maximum, we see the minimum number of paths (respecting the choice of b̄) constructed in this way.
More precisely, we claim the following property.

Claim 6.19. Let M is a maximum weight matching of G′(π, b̄) = (V ′, E′) with weight function w as
defined above. Then, the path partition P(π, b̄) contains |V | − w(M) many paths.

Proof. It is best to think of this claim from the perspective of how many paths can be ‘saved’ within
P(π, b̄) in comparison to the solution that consists of single-vertex paths only. If a vertex in C ∪ I is not
matched, then it means that it forms a single-vertex path. If we find an edge e = vπ(i)x ∈ M with x ∈ I,
then this means that we see the sub-path vπ(i)xvπ(i+1) in P(π, b̄), somehow ‘merging’ three potential
single-vertex paths and therefore reducing the number of paths by 2, which is the weight of e. If we find
an edge e = vπ(i)x ∈ M where bi = 0, i.e., w(e) = 1, then the path does not continue to vπ(i+1) but will
end in x. Nonetheless, x does not form a single-vertex path, so again we reduce the number of paths
by the weight 1 of e. A similar observation can be made concerning edges between some v′

π(i) and some
x ∈ I, as they treat ’the other end’ of the paths. Finally, one can consider the edges e = vπ(i)ui ∈ M .
Again, w(e) = 1. They reflect the possibility to connect two paths that would otherwise end in vπ(i) and
start in vπ(i+1), respectively. Hence, also in this case we reduce the number of paths by the weight 1
of e. ♦

If the path partition P(π, b̄) contains less paths than the current record partition P, we will update P

accordingly. After cycling through all permutations and bitvectors, P should satisfy the following claim.

18

v1 v2 v3 v4 v5 v6 v7

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

(a) The original graph G

v1

v′1

v2

v′2

v3 v4

v′4

v5

v′5

v6 v7

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

u2 u5 u6

1 1

1 1 1 1

1

1 1 1

1 1

2
2

1
1

1

1

2

1

1

(b) The resulting bipartite graph G′

Figure 7: Drawings illustrating Example 6.21

Claim 6.20. The given graph G contains a path partition with at most k many paths if and only if our
algorithm outputs a record partition P with at most k many paths.

Proof. It should be clear by what we argued above that our algorithm only outputs valid path partitions.
Hence, if it outputs a record partition P with at most k many paths, then our graph contains such a pp.

Conversely, let P be a pp with the minimum number of paths. Let k be the number of these paths.
If P1, . . . , Pk are the paths in P ordered by decreasing length, then there is some smallest number k′ ≤ k
such that the paths Pk′+1, . . . , Pk contain only vertices from I. Then, by reading the vertices from
C = {v1, . . . , vr} on the paths P1, . . . , Pk′ ‘from left to right’, we can define a permutation π on {1, . . . , r}.
Moreover, we can define a bitvector b̄ that describes how many vertices of C belong to P1, . . . , Pk′ . This
bitvector has k′ − 1 many zeros. One can verify that this solution corresponds to a weighted maximum
matching in the auxiliary graph G′(π, b̄) of weight |V | − k. ♦

Notice that Step (0) is executed only once, so that for the running time, it is decisive that we cycle
through all permutations and through all settings of the bitvectors.

We are now illustrating the construction of the previous proof by an example.

Example 6.21. Consider G = (V,E), with V being decomposed as C ∪I, where C = {v1, v2, . . . , v7} and
I = {w1, w2, . . . , w10}. The set C is a vertex cover of G, with E containing the edges {v2v3, v4v6, v6v6, v6v7}
plus several edges connecting C and I, as shown in Figure 7.

Let us consider the identity as permutation and consider the bitvector b̄ = (0, 1, 0, 0, 1, 1). This lets
us consider the graph G′ as depicted in Figure 7. Notice that we use four layers for drawing G′. On
the topmost layer, we show the three vertices u2, u5, u6 that we have to introduce thanks to b̄. On the
second layer, we draw the vertices of C given in the ordering of our permutation, the identity. On the
third layer, we draw the vertices from I. Finally, our algorithm enforces us to introduce one more primed
vertex whenever a new path is started with respect to C. As b̄ contains three zeros, this means that we have
to introduce four vertices, which are v′1, v

′
2, v

′
4, v

′
5. All edges in this bipartite graph G′ that are incident to

vertices on the topmost or lowermost layer have weight 1. Only edges connecting the second and the third
layer may have either weight 1 or 2. In our example, one can find two distinctively different matchings
of maximum weight:

19

• M1 = {v1w1, v
′
1w2, v2u2, v

′
2w3, v3w5, v4w6, v

′
4w7, v

′
5w8, v5w9, v6w10}, and

• M2 = {v′1w1, v1w2, v2u2, v
′
2w3, v3w5, v

′
4w6, v4w7, v

′
5w8, v5w9, v6u6, v7w10}.

We find w(M1) = w(M2) = 12 and hence, both matchings should correspond to a collection of five paths in
the original graph G, as G has 17 vertices. More precisely, M1 corresponds to P1 = {w1v1w2, w3v2v3w5, w4, w6v4w7, w8v5w9

while M2 shows P2 = {w1v1w2, w3, w4v2v3w5, w6v4w7, w8v5w9v6v7w10}.
We could also consider a different bitvector, say, b̄′ = (0, 0, 0, 0, 1, 1). Although we would now have

one more path involving C-vertices, their overall number would not change. As the reader can verify, a
possible solution obtained by our matching approach is now

P ′
1 = {w1v1w2, w3v2w4, w5v3, w6v4w7, w8v5w9v6w10v7} .

Again, there would be a variation P ′
2 similar as before.

Observe that the edge v4v6 does not play a big role in our construction in this example. We can take
this to an extreme by considering the permutation π = (7, 1, 2, 6, 3, 5, 4). Then, there are no two vertices
vπ(i) and vπ(i+1) that are connected by an edge. Even worse, there is no vertex from I adjacent both to

vπ(i) and vπ(i+1). Therefore, the only reasonable bitvector is the all-zero-vector ~0. This means we have

seven paths containing C-vertices in any path partition of G′(π,~0). But in fact, our matching approach
also yields a matching with 10 edges in G′(π,~0), with each edge having weight 1. To realize this, we could
take a path partition that contains four paths of length one: v7w10, v6w9, v3w5, and v5w8, plus three
paths of length two: w1v1w2, w3v2w4, and w6v4w7.

But the first choice obviously gave a better result for our aim of minimizing the number of paths in a
path partition of G.

7. Duals and Distance to Triviality

Given a typical graph problem that is (as a standard) parameterized by solution size k, it takes as
input a graph G of order n and k, then its dual parameter is kd = n−k. This applies in particular to our
problems UPP, UIPP and USPP. As these problems always have as a trivial solution the number n of
vertices (i.e., n trivial paths), we can also interpret this dual parameterization as a parameterization led
by the idea of distance from triviality. Moreover, all our problems can be algorithmically solved for each
connected component separately, so that we can assume, without loss of generality, that we are dealing
with connected graphs. Namely, if (G, k) with G = (V,E) is a graph and C (V describes a connected
component, then we can solve (G[C], k′) and (G − C, k − k′) independently for all 1 ≤ k′ < k. We now
prove that our problems, with dual parameterizations, are in FPT by providing a kernelization algorithm.
The following combinatorial claims are crucial.

Lemma 7.1. Let G be an undirected graph of order n. If G has a matching that covers 2k vertices, then
(G,n− k) is a Yes-instance of UPP, UIPP and USPP.

Proof. Let M be a matching of G such that M covers 2k vertices. We construct a solution P of PP,
IPP and SPP as follows. For every edge (u, v) ∈ M , include the path {u, v} into P. Put the rest of the
vertices not yet covered by M as single-vertex paths into the solution P . We see that the path collection
P covers every vertex exactly once in G and has cardinality n− k.

The preceding lemma has the following interesting consequence.

Corollary 7.2. If G = (V,E) is a graph that possesses some X ⊆ V with |X | ≥ 2k such that deg(v) ≥ 2k
for every v ∈ X, then G has a matching of size k and hence (G,n− k) is a Yes-instance of UPP, UIPP

and USPP.

This consequence, as well as the following combinatorial observation, has no direct bearing on our
algorithmic result, but may be of independent interest.

Lemma 7.3. If G is a connected graph with diam(G) > k, then (G,n − k) is a Yes-instance of UPP,
UIPP and USPP.

More interestingly, Lemma 7.1 is also valid for directed graphs in the following form as we can observe
the directions of the matching edges as prescribed by the given directed graph.

Lemma 7.4. Let G be a directed graph of order n. If the underlying undirected graph U(G) has a
matching that covers 2k vertices, then (G,n− k) is a Yes-instance of DPP, DIPP and DSPP.

20

Our combinatorial thoughts, along with Corollary 6.6 and Proposition 6.16, allow us to show the
following algorithmic result, the main result of this section.

Theorem 7.5. UPP, UIPP and USPP, as well as DIPP and DSPP, can be solved in FPT time with
dual parameterization.

Proof. We first handle the undirected graph case. Let G = (V,E) and k together be an instance of UPP,
UIPP, or USPP, where |V | = n. As said above, we can assume that G is connected. Next, compute a
maximum matching M in G. If |M | > k, then Lemma 7.1 justifies why (G,n−k) is a Yes-instance. Hence,
we can assume that a graph that any matching has size at most k. This implies (as matchings provide
factor-2 approximations for Minimum Vertex Cover) that the vertex cover number vc(G) is at most
2k. This allows us to first compute vc(G) in FPT time; see [14]. Now, Corollary 6.6 and Proposition 6.16
show the claim in the case of UIPP and USPP, as well as for UPP.

For the case of directed graphs, we can first argue concerning the underlying undirected graph as in
Lemma 7.4. Then, we make us of Corollary 6.15.

8. Covering and Edge-Disjoint Variants

As we mentioned in the introduction, the variants PC, SPC and IPC of the problems, where the
paths cover the vertices but do not need to form a partition, are also studied. Many of our results do
apply to these problems as well.

Alternatively, in some applications, paths may be required to be edge-disjoint but not necessarily
vertex-disjoint, see for example [63], where the problem Edge-Disjoint Paths is studied. Thus, one
may define the problems Edge-Disjoint Path Cover (ED-PC), Edge-Disjoint Shortest Path
Cover (ED-SPC) and Edge-Disjoint Induced Path Cover (ED-IPC) (as before we include the
prefixes U, D, or DAG in the problem name abbreviations if we want to emphasize that the inputs are
undirected, directed, or directed acyclic). These can be thought of as intermediate problems between
the partition and the covering variants, indeed a (unrestricted, induced or shortest) path partition is
an (unrestricted, induced or shortest) edge-disjoint path cover, which is also a (unrestricted, induced or
shortest) path cover.

Some of our results apply to these three problems as well with slight modifications of the proofs.
Hence, we only exhibit these modifications in the following.

8.1. NP-completeness results for DAGs and bipartite undirected graphs

Theorem 8.1. DAGSPC, DAGIPC, ED-DAGSPC and ED-DAGIPC are NP-hard even when the
inputs are restricted to planar bipartite DAGs of maximum degree 4.

Proof. We follow the same construction as Theorem 3.1. Observe that each shortest or induced path in
any solution of (ED-)DAGSPC/(ED-)DAGIPC must contain exactly three vertices (and thus forms a
vertex-partition of the graph), and each gadget H(vi) is partitioned into P3-paths in one of the two ways
as shown in Figure 2. The rest of the argumentation is similar to Theorem 3.1.

Theorem 8.2. USPC and ED-USPC are NP-hard, even for bipartite 5-degenerate graphs with diameter
4.

Proof. We follow the same construction as Theorem 3.6 (also see Figure 3). We can observe that the
following claims hold for our problem.

Claim 8.3. Any shortest path of G′, except for the six paths
x1x2x3x4x5, x1x2y2x4x5, x1x2y4x4x5 and y1y2y3y4y5, y1y2x2y4y5, y1y2x4y4y5,

contains at most four vertices. Hence, G′ has a diameter at most 4. ♦

Claim 8.4. The only two shortest paths in G′ that have five vertices and that can simultaneously exist
in a path partition are x1x2x3x4x5 and y1y2y3y4y5. ♦

The rest of the proof is similar to Theorem 3.6.

8.2. W-hardness for DAGs

The following result is only adaptable (as far as we can see) for the edge-disjoint variants.

Theorem 8.5. ED-DAGSPC and ED-DAGIPC (parameterized by solution size) are W[1]-hard.

Proof. This is derived from the method of proving Theorem 4.1. We modify our gadgets Gi,u, 0 < u ≤ n,
i ∈ [k], in the construction as shown in Figure 8. The rest of the proof is similar to Theorem 4.1.

21

a1

a′1

a2

a′2

ai−1

si,i+1

ai+1

a′i+1

ak

a′k

si,k

b1

b′1

t1,i

b2

b′2

t2,i

bi−1

ti−1,i

bi+1

b′i+1

bk

b′k

Figure 8: New gadget Gi,u, 0 < u ≤ n, i ∈ [k].

8.3. XP algorithms

For our next result, we need the following theorem, indeed the techniques used in Section 5 are not
applicable since they are based on using (vertex-) disjoint path problems.

Theorem 8.6 ([12]). Let G be an undirected graph whose vertex set can be covered by at most k (not
necessarily disjoint) shortest paths. Then the pathwidth of G is in O(k · 3k).

The following corollary was already observed in [12] for the problems USPC and USPP. The same
argument shows the following.

Corollary 8.7. ED-USPC is in XP when parameterized by solution size.

Proof. Here we cannot use the technique of Theorem 5.1 based on DP and its variants. Corollary 8.7,
follows from the same proof used in [12] for USPC: first bound the pathwidth of the graph using
Theorem 8.6. Then, as for Theorem 5.1, guess the set X of endpoints of the solution paths (cycling
through the solutions is done in XP time). That way, one can compute the sum s of the pairwise dis-
tances between the endpoints in X . Then, one can use the counting version of Courcelle’s theorem by
expressing the problem in Counting Monadic Second Order Logic (CMSOL) and solve it in FPT time:
one expects a partition whose total size is equal to s.

8.4. Neighborhood diversity and vertex cover parameterizations

Theorem 8.8. USPC, UIPC, ED-USPC and ED-UIPC (as well as DSPC, DIPC, ED-DSPC and
ED-DIPC) are in FPT when parameterized by (directed) neighborhood diversity.

Proof. This can be obtained with the same proof as the one of Theorem 6.2 by modifying the ILP as
follows. Each p ∈ P is characterized by a vector (tp,1,1, . . . , tp,k,k) with tp,i,j = |Ei,j ∩ p|, i, j ≤ k. Here
Ei,j refers to the edges between the ith and jth equivalence class

For the covering versions we use:

minimize
∑

p∈P

zp

subject to
∑

p∈P

zp · p
j ≥ |Cj | for all j ∈ [d]

While for the edge-disjoint variants we write:

minimize
∑

p∈P

zp

subject to
∑

p∈P

zp · p
j ≥ |Cj | for all j ∈ [d]

and subject to
∑

p∈P

zp · tp,i,j ≤ |Ei,j | for all i, j ∈ [d]

For the directed cases, we refer to the arguments leading to Theorem 6.12.

22

Corollary 8.9. USPC, UIPC, ED-USPC and ED-UIPC (as well as DSPC, DIPC, ED-DSPC and
ED-DIPC) are in FPT when parameterized by the vertex cover number of the given (or of the underlying
undirected) graph.

8.5. Dual parameters

Theorem 8.10. UPC, ED-UPC, ED-USPC and ED-UIPC (as well as the directed counterparts ED-

DSPC, ED-DIPC, ED-DSPC and ED-DIPC) can be solved in FPT time with respect to the dual
parameterization.

Proof. These results are obtained using the technique of Theorem 7.5 in view of Corollary 8.9, using
Proposition 6.16 for (ED-)UPC and Theorem 8.8 for (ED-)USPC and (ED-)UIPC.

9. Conclusions

We have explored the algorithmic complexity of the three problems PP, IPP and SPP, and as wit-
nessed by Table 1, our results show some interesting algorithmic differences between these three problems.

Many interesting questions remain to be investigated. For example, what is the parameterized com-
plexity of SPP on undirected graphs, parameterized by the number of paths? Is it W[1]-hard, like for
DAGs? This was asked in [23], and our W[1]-hardness result for DAGs can be seen as a first step towards
an answer.

Another interesting question is whether SPP is XP on directed graphs? This is the case for undirected
graphs, for DAGs and for directed graphs that are planar or have bounded directed treewidth, but we do
not know about the general case. We also do not know if IPP is in XP for DAGs when parameterized
by solution size, or if it is paraNP-hard like in the general (and undirected) case.

We do not know whether IPP is NP-hard on undirected bipartite graphs. Other classes, like planar
graphs, could also be interesting to study in this regard.

We have seen that IPP and SPP admit FPT algorithms when parameterized by (directed) neighbor-
hood diversity. Can we obtain such algorithms for other (e.g., more general) parameters (as was done
for UPP and modular-width in [30])? In the case of PP, this holds for undirected graphs by [30]; we do
know if this is true for directed graphs (even for the vertex cover number of the underlying graph).

Regarding the parameterized algorithms that we obtained for vertex cover and neighborhood diversity,
can they be improved? For PP parameterized by vertex over, we managed to reduce the dependency
to O∗ (vc! · 2vc), which is O∗

(

2vc log vc
)

(Proposition 6.17). It is not clear if this can be improved to, say,
O∗ (2vc). Also, it would be interesting to obtain a similar running time (or better) for SPP and IPP as
well. Furthermore, we do not know whether polynomial kernelizations exist for these problems.

Similarly, in the light of our FPT algorithms for the dual parameterizations of PP, IPP and SPP,
we can ask whether they admit a polynomial kernel.

As we have indicated, some of our results also apply to the covering variants of the three problems
(where the paths need not be disjoint). On the other hand, approximation algorithms have been designed
for SPC, the covering version of SPP, in [66] (for general undirected graphs) and [12] (for chordal graphs
and related undirected graph classes). Are there such algorithms for SPP (and IPP) as well?

Another line of research is reconfiguration. In particular, shortest path reconfiguration in undirected
graphs has been extensively studied, see [31] for a recent piece of work that also gives a nice survey, but
directed graphs have attracted less attention. Also, the reconfiguration of path partitions as studied in
this paper has not been touched so far, although this has natural applications in reconfiguring supply
networks.

We also note that some of the techniques used in this paper for the IPP problem likely can be applied
to the Hole Partition problem (where we want to partition a graph into induced cycles). The packing
version of this problem was studied in [52].

Acknowledgments

This paper is an extended version of a paper presented at CIAC 2023 [25]. The research of the second
author was financed by the French government IDEX-ISITE initiative 16-IDEX-0001 (CAP 20-25) and
by the ANR project GRALMECO (ANR-21-CE48-0004). The research of the last author was funded by
a DAAD-WISE Scholarship 2022.

23

References

[1] M. Aigner and M. Fromme. A game of cops and robbers. Discrete Applied Mathematics, 8(1):1–12,
1984.

[2] G. Andreatta and F. Mason. Path covering problems and testing of printed circuits. Discrete Applied
Mathematics, 62(1-3):5–13, 1995.

[3] J. Araújo, J. Bensmail, V. Campos, F. Havet, A. K. Maia de Oliviera, N. Nisse, and A. Silva. On
finding the best and worst orientations for the metric dimension. Algorithmica, 2023. to appear.
URL: https://link.springer.com/article/10.1007/s00453-023-01132-0.

[4] J. Araújo, V. A. Campos, A. K. Maia, I. Sau, and A. Silva. On the complexity of finding internally
vertex-disjoint long directed paths. Algorithmica, 82(6):1616–1639, 2020.

[5] R. Belmonte, T. Hanaka, M. Kanzaki, M. Kiyomi, Y. Kobayashi, Y. Kobayashi, M. Lampis, H. Ono,
and Y. Otachi. Parameterized complexity of (A,ℓ)-path packing. Algorithmica, 84(4):871–895, 2022.

[6] M. Bentert, A. Nichterlein, M. Renken, and P. Zschoche. Using a geometric lens to find k-disjoint
shortest paths. SIAM Journal of Discrete Mathematics, 37(3):1674–1703, 2023.

[7] K. Bérczi and Y. Kobayashi. The directed disjoint shortest paths problem. In K. Pruhs and C. Sohler,
editors, 25th Annual European Symposium on Algorithms, ESA, volume 87 of LIPIcs, pages 13:1–
13:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[8] C. Berge. Path partitions in directed graphs. In North-Holland Mathematics Studies, volume 75,
pages 59–63. Elsevier, 1983.

[9] F. T. Boesch, S. Chen, and J. A. M. McHugh. On covering the points of a graph with point disjoint
paths. In Graphs and Combinatorics, pages 201–212. Springer, 1974.

[10] F. T. Boesch and J. F. Gimpel. Covering points of a digraph with point-disjoint paths and its
application to code optimization. Journal of the ACM, 24(2):192–198, 1977.

[11] M. Cáceres, M. Cairo, B. Mumey, R. Rizzi, and A. I. Tomescu. Sparsifying, shrinking and splic-
ing for minimum path cover in parameterized linear time. In ACM-SIAM Symposium on Discrete
Algorithms, SODA, pages 359–376. SIAM, 2022.

[12] D. Chakraborty, A. Dailly, S. Das, F. Foucaud, H. Gahlawat, and S. K. Ghosh. Complexity and
algorithms for isometric path cover on chordal graphs and beyond. In Proceedings of the 33rd
International Symposium on Algorithms and Computation, ISAAC, volume 248 of LIPIcs, pages
12:1–12:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[13] G. J. Chang and D. Kuo. The L(2,1)-labeling problem on graphs. SIAM Journal of Discrete
Mathematics, 9(2):309–316, 1996.

[14] J. Chen, I. A. Kanj, and G. Xia. Improved upper bounds for vertex cover. Theoretical Computer
Science, 411(40–42):3736–3756, 2010.

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, Third Edition.
The MIT Press, 3rd edition, 2009.

[16] D. G. Corneil, B. Dalton, and M. Habib. LDFS-based certifying algorithm for the minimum path
cover problem on cocomparability graphs. SIAM Journal on Computing, 42(3):792–807, 2013.

[17] M. Cygan, F. Fomin, Ł. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and
S. Saurabh. Parameterized Algorithms. Springer, 2015.

[18] M. Cygan, D. Marx, M. Pilipczuk, and M. Pilipczuk. The planar directed k-vertex-disjoint paths
problem is fixed-parameter tractable. In 54th Annual IEEE Symposium on Foundations of Computer
Science, FOCS, pages 197–206. IEEE Computer Society, 2013.

[19] P. Damaschke, J. S. Deogun, D. Kratsch, and G. Steiner. Finding Hamiltonian paths in cocompara-
bility graphs using the bump number algorithm. Order, 8(4):383–391, 1992.

24

https://link.springer.com/article/10.1007/s00453-023-01132-0

[20] R. Diestel. Graph Theory, 5th Edition, volume 173 of Graduate Texts in Mathematics. Springer,
2017.

[21] R. P. Dilworth. A decomposition theorem for partially ordered sets. In Classic Papers in Combina-
torics, pages 139–144. Springer, 2009.

[22] V. Dujmović, G. Joret, P. Micek, P. Morin, T. Ueckerdt, and D. R. Wood. Planar graphs have
bounded queue-number. Journal of the ACM, 67(4):1–38, 2020.

[23] M. Dumas, F. Foucaud, A. Perez, and I. Todinca. On graphs coverable by k shortest paths. In
Proceedings of the 33rd International Symposium on Algorithms and Computation, ISAAC, volume
248 of LIPIcs, pages 40:1–40:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[24] M. E. Dyer and A. M. Frieze. Planar 3DM is NP-complete. Journal of Algorithms, 7(2):174–184,
1986.

[25] H. Fernau, F. Foucaud, K. Mann, U. Padariya, and R. Rao K. N. Parameterizing path partitions. In
M. Mavronicolas, editor, Algorithms and Complexity - 13th International Conference, CIAC, volume
13898 of LNCS, pages 187–201. Springer, 2023.

[26] D. C. Fisher and S. L. Fitzpatrick. The isometric number of a graph. Journal of Combinatorial
Mathematics and Combinatorial Computing, 38(1):97–110, 2001.

[27] S. Fortune, J. E. Hopcroft, and J. Wyllie. The directed subgraph homeomorphism problem. Theo-
retical Computer Science, 10:111–121, 1980.

[28] D. S. Franzblau and A. Raychaudhuri. Optimal Hamiltonian completions and path covers for trees,
and a reduction to maximum flow. The ANZIAM Journal, 44(2):193–204, 2002.

[29] D. R. Fulkerson. Note on Dilworth’s decomposition theorem for partially ordered sets. Proceedings
of the American Mathemathical Society, 7(4):701–702, 1956.

[30] J. Gajarský, M. Lampis, and S. Ordyniak. Parameterized algorithms for modular-width. In G. Z.
Gutin and S. Szeider, editors, Parameterized and Exact Computation - 8th International Symposium,
IPEC, volume 8246 of LNCS, pages 163–176. Springer, 2013.

[31] K. Gajjar, A. V. Jha, M. Kumar, and A. Lahiri. Reconfiguring shortest paths in graphs. In Thirty-
Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Inno-
vative Applications of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational
Advances in Artificial Intelligence, EAAI 2022, pages 9758–9766. AAAI Press, 2022.

[32] T. Gallai and A. N. Milgram. Verallgemeinerung eines graphentheoretischen Satzes von Rédei. Acta
Scientiarum Mathematicarum, 21(3-4):181–186, 1960.

[33] M. R. Garey and D. S. Johnson. Computers and Intractability. Freeman, 1979.

[34] M. R. Garey, D. S. Johnson, and R. E. Tarjan. The planar Hamiltonian circuit problem is NP-
complete. SIAM Journal on Computing, 5(4):704–714, 1976.

[35] J. P. Georges, D. W. Mauro, and M. A. Whittlesey. Relating path coverings to vertex labellings
with a condition at distance two. Discrete Mathematics, 135(1-3):103–111, 1994.

[36] P. A. Golovach, D. Paulusma, and E. J. van Leeuwen. Induced disjoint paths in AT-free graphs.
Journal of Computer and System Sciences, 124:170–191, 2022.

[37] S. Goodman and S. Hedetniemi. On the Hamiltonian completion problem. In Graphs and Combi-
natorics, pages 262–272. Springer, 1974.

[38] L. Guo, Y. Deng, K. Liao, Q. He, T. Sellis, and Z. Hu. A fast algorithm for optimally finding
partially disjoint shortest paths. In J. Lang, editor, Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI, pages 1456–1462. ijcai.org, 2018.

[39] I B.-A. Hartman. Variations on the Gallai-Milgram theorem. Discrete Mathematics, 71(2):95–105,
1988.

25

[40] K. i. Kawarabayashi and Y. Kobayashi. A linear time algorithm for the induced disjoint paths
problem in planar graphs. Journal of Computer and System Sciences, 78(2):670–680, 2012.

[41] T. Johnson, N. Robertson, P. D. Seymour, and R. Thomas. Directed tree-width. Journal of Com-
binatorial Theory, Series B, 82(1):138–154, 2001.

[42] K.-i. Kawarabayashi, Y. Kobayashi, and B. Reed. The disjoint paths problem in quadratic time.
Journal of Combinatorial Theory, Series B, 102(2):424–435, 2012.

[43] M. Koutecký. Solving hard problems on neighborhood diversity. Master thesis, Charles University in
Prague, Chech Republic, Facultas Mathematica Physicaque, Department of Applied Mathematics,
April 2013.

[44] M. S. Krishnamoorthy. An NP-hard problem in bipartite graphs. ACM SIGACT News, 7(1):26–26,
1975.

[45] S. Kundu. A linear algorithm for the Hamiltonian completion number of a tree. Information
Processing Letters, 5(2):55–57, 1976.

[46] M. Lampis. Algorithmic meta-theorems for restrictions of treewidth. Algorithmica, 64(1):19–37,
2012.

[47] H.-O. Le, V. B. Le, and H. Müller. Splitting a graph into disjoint induced paths or cycles. Discrete
Applied Mathematics, 131(1):199–212, 2003.

[48] W. Lochet. A polynomial time algorithm for the k-disjoint shortest paths problem. In Proceedings
of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 169–178. SIAM, 2021.

[49] P. D. Manuel. Revisiting path-type covering and partitioning problems. CoRR ArXiv preprint,
arXiv:1807.10613, 2018.

[50] P. D. Manuel. On the isometric path partition problem. Discussiones Mathematicae Graph Theory,
41(4):1077–1089, 2021.

[51] B. Martin, D. Paulusma, S. Smith, and E. J. van Leeuwen. Few induced disjoint paths for H-free
graphs. Theoretical Computer Science, 939:182–193, 2023.

[52] D. Marx. Chordless Cycle Packing Is Fixed-Parameter Tractable. In F. Grandoni, G. Herman,
and P. Sanders, editors, 28th Annual European Symposium on Algorithms, ESA, volume 173 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 71:1–71:19, Dagstuhl, Germany,
2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

[53] M. Mezzini. On the complexity of finding chordless paths in bipartite graphs and some interval
operators in graphs and hypergraphs. Theoretical Computer Science, 411(7-9):1212–1220, 2010.

[54] J. Monnot and S. Toulouse. The path partition problem and related problems in bipartite graphs.
Operations Research Letters, 35(5):677–684, 2007.

[55] H. Müller. Hamiltonian circuits in chordal bipartite graphs. Discrete Mathematics, 156(1-3):291–298,
1996.

[56] S. C. Ntafos and S. L. Hakimi. On path cover problems in digraphs and applications to program
testing. IEEE Transactions on Software Engineering, SE-5(5):520–529, 1979.

[57] J.-J. Pan and G. J. Chang. Isometric-path numbers of block graphs. Information Processing Letters,
93(2):99–102, 2005.

[58] J.-J. Pan and G. J. Chang. Path partition for graphs with special blocks. Discrete Applied Mathe-
matics, 145(3):429–436, 2005.

[59] J.-J. Pan and G. J. Chang. Induced-path partition on graphs with special blocks. Theoretical
Computer Science, 370(1-3):121–130, 2007.

[60] S. S. Pinter and Y. Wolfstahl. On mapping processes to processors in distributed systems. Interna-
tional Journal of Parallel Programming, 16(1):1–15, 1987.

26

[61] N. Robertson and P. D. Seymour. Graph minors XIII. The disjoint paths problem. Journal of
Combinatorial Theory, Series B, 63(1):65–110, 1995.

[62] A. Schrijver, L. Lovasz, B. Korte, H. J. Promel, and R. L. Graham. Paths, Flows, and VLSI-Layout.
Springer-Verlag, Berlin, Heidelberg, 1990.

[63] A. Slivkins. Parameterized tractability of edge-disjoint paths on directed acyclic graphs. SIAM
Journal of Discrete Mathematics, 24(1):146–157, 2010.

[64] G. Steiner. On the k-path partition of graphs. Theoretical Computer Science, 290(3):2147–2155,
2003.

[65] M. Tedder, D. Corneil, M. Habib, and C. Paul. Simpler linear-time modular decomposition via
recursive factorizing permutations. In L. Aceto, I. Damgård, L. A. Goldberg, M. M. Halldórsson,
A. Ingólfsdóttir, and I. Walukiewicz, editors, International Colloquium on Automata, Languages,
and Programming, ICALP, Part I: Track A: Algorithms, Automata, Complexity, and Games, volume
5125 of LNCS, pages 634–645. Springer, 2008.

[66] M. Thiessen and T. Gaertner. Active learning of convex halfspaces on graphs. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Proceedings of the 35th
Conference on Neural Information Processing Systems, NeurIPS, volume 34, pages 23413–23425.
Curran Associates, Inc., 2021.

[67] M. Thiessen and T. Gärtner. Online learning of convex sets on graphs. In M.-R. Amini, S. Canu,
A. Fischer, T. Guns, P. Kralj Novak, and G. Tsoumakas, editors, Machine Learning and Knowledge
Discovery in Databases - European Conference, ECML PKDD, Proceedings, Part IV, volume 13716
of LNCS, pages 349–364. Springer, 2022.

[68] C. Wang, Y. Song, G. Fan, H. Jin, L. Su, F. Zhang, and X. Wang. Optimizing cross-line dispatching
for minimum electric bus fleet. IEEE Transactions on Mobile Computing, 22(4):2307–2322, 2023.

27

	Introduction
	Definitions
	Graph notions

	NP-hardness results
	SPP and IPP on DAGs
	SPP for bipartite undirected graphs

	W[1]-hardness for DAGSPP and DAGIPP
	XP Algorithms for SPP
	Neighborhood Diversity and Vertex CoverParameterizations
	Neighborhood diversity for USPP and UIPP
	Neighborhood diversity of directed graphs for DSPP and DIPP
	More on vertex cover parameterization

	Duals and Distance to Triviality
	Covering and Edge-Disjoint Variants
	NP-completeness results for DAGs and bipartite undirected graphs
	W-hardness for DAGs
	XP algorithms
	Neighborhood diversity and vertex cover parameterizations
	Dual parameters

	Conclusions

