Skip to main content

Fast Cauchy Sum Algorithms for Polynomial Zeros and Matrix Eigenvalues

  • Conference paper
  • First Online:
Algorithms and Complexity (CIAC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13898))

Included in the following conference series:

Abstract

Given a black box oracle that evaluates a univariate polynomial p(x) of a degree d, we seek its zeros, aka the roots of the equation \(p(x)=0\). At FOCS 2016, Louis and Vempala approximated within \(1/2^b\) an absolutely largest zero of such a real-rooted polynomial at the cost of the evaluation of Newton’s ratio \(\frac{p(x)}{p'(x)}\) at \(O(b\log (d))\) points x and then extended this algorithm to approximation of an absolutely largest eigenvalue of a symmetric matrix at a record Boolean cost. By applying distinct approach and techniques we obtain much more general results at the same computational cost. Our use of Cauchy integrals and randomization is non-trivial and pioneering in this field. Somewhat surprisingly, the Boolean complexity of the accelerated versions of our algorithms in [25, 26] reached below the known lower bounds on the Boolean complexity of polynomial root-finding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Hereafter we frequently refer to them just as roots or zeros.

  2. 2.

    The current records are about 2.7734 for feasible exponent of MM [4, 10], unbeaten since 1982, and about 2.37 for unfeasible one [2].

  3. 3.

    We count roots with their multiplicities and can readily extend our study to various other convex domains on the complex plane such as a disc or a polygon.

  4. 4.

    Up to small poly-logarithmic factors these estimates reach lower bound for approximation of even a single zero of p(x), but as we specify in Sect. 7, the algorithms of [25, 26] greatly accelerate those of [18, 21] for approximation of all \(m=o(d)\) zeros of p that lie in a disc reasonably well isolated from the \(d-m\) external zeros.

  5. 5.

    The complexity of a subdivision root-finder is proportional to the number of roots in a region, while MPSolve is about as fast and slow for all roots as for their fixed subset. MPSolve implements Ehrlich-Aberth’s root-finding iterations, which empirically converge to all d roots very fast right from the start but with no formal support and so far only under an initialization that operates with the coefficients of p (see [28]).

  6. 6.

    Both bounds \(r_{d-\ell +1}\le \sigma \) and \(r_{d-\ell +1}>1\) can hold simultaneously, but as soon as an \(\ell \)-test verifies any of them, it stops without checking if the other bound also holds.

  7. 7.

    [30] proved this corollary directly; [24] and then [6] deduced it from Theorem 5.

  8. 8.

    Given the coefficients of p(x) one can fix \(q:=2^k\) for \(k=\lceil \log _2\lfloor \log _{\theta }(4d+2)\rfloor \rceil \) and then evaluate p(x) and \(p'(x)\) at all qth roots of unity by applying FFT.

  9. 9.

    Actually, [6, 8] tested the assumption that \(|s_{h,q}|\) were small for \(h=0,1,2\), but this follows if v is small because \(v\ge |s_{h,q}|\) for \(h=0,1,\dots ,q-1\).

  10. 10.

    We call a complex point c a tame root for a fixed error tolerance \(\epsilon \) if it is covered by an isolated disc \(D(c,\epsilon )\). Given such a disc \(D(c,\rho )\), we can readily compute \(\#(D(c,\rho ))\) by applying Corollary 6.

  11. 11.

    This recipe detects output errors of any root-finder at the very end of computations. In the case of subdivision root-finders we can detect the loss of a root earlier – whenever we notice that at a subdivision step the indices of all suspect squares sum to less than m.

  12. 12.

    We can also replace d by m in Theorem 23 if we only seek approximation of NIR(x) for \(|x|=1\) within \(1/d^{O(1)}\); actually we need such approximations within relative error \(1/d^{O(1)}\), which implies an absolute error bound \(1/d^{O(1)}\) if \(1/\textrm{NIR}(x)=1/d^{O(1)}\).

  13. 13.

    [3] claims reaching optimal estimates of [18, 21] but actually requires separation of the zeros of p, both pairwise and from the origin. Neither of [18, 21, 25, 26] imposes such restrictions.

References

  1. Ahlfors, L.: Complex Analysis. McGraw-Hill Series in Mathematics. McGraw-Hill (2000). ISBN: 0-07-000657-1

    Google Scholar 

  2. Alman, J., Williams, V.V.: A refined laser method and faster matrix multiplication. In: ACM-SIAM SODA 2021, pp. 522–539. SIAM (2021)

    Google Scholar 

  3. Becker, R., Sagraloff, M., Sharma, V., Yap, C.: A near-optimal subdivision algorithm for complex root isolation based on the Pellet test and Newton iteration. J. Symbolic Comput. 86, 51–96 (2018). https://doi.org/10.1016/j.jsc.2017.03.009

    Article  MathSciNet  MATH  Google Scholar 

  4. Pan, V.Y.: Trilinear aggregating with implicit canceling for a new acceleration of matrix multiplication, computers and mathematics (with Applications), 8(1), 23–34 (1982)

    Google Scholar 

  5. Henrici, P.: Applied and Computational Complex Analysis. Volume 1: Power Series, Integration, Conformal Mapping, Location of Zeros. Wiley, New York (1974)

    Google Scholar 

  6. Imbach, R., Pan, V.Y.: New progress in univariate polynomial root-finding. In: Proceedings of ACM-SIGSAM ISSAC 2020, pp. 249–256, Kalamata, Greece, 20–23 July 2020. ACM Press (2020). ISBN: 978-1-4503-7100-1/20/07

    Google Scholar 

  7. Imbach, R., Pan, V.Y.: New practical advances in polynomial root clustering. In: Slamanig, D., Tsigaridas, E., Zafeirakopoulos, Z. (eds.) MACIS 2019. LNCS, vol. 11989, pp. 122–137. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43120-4_11

    Chapter  Google Scholar 

  8. Imbach, R., Pan, V.Y.: Accelerated subdivision for clustering roots of polynomials given by evaluation oracles. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2022. LNCS, vol. 13366, pp. 143–164. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14788-3_9

    Chapter  Google Scholar 

  9. Imbach, R., Pan, V.Y., Yap, C.: Implementation of a near-optimal complex root clustering algorithm. In: Davenport, J.H., Kauers, M., Labahn, G., Urban, J. (eds.) ICMS 2018. LNCS, vol. 10931, pp. 235–244. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96418-8_28

    Chapter  Google Scholar 

  10. Karstadt, E., Schwartz, O.: Matrix multiplication, a little faster. J. ACM 67(1), 1–31 (2020). MR 4061328, S2CID 211041916. https://doi.org/10.1145/3364504

  11. Kirrinnis, P.: Polynomial factorization and partial fraction decomposition by simultaneous Newton’s iteration. J. Complex. 14, 378–444 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Knuth, D.E.: The Art of Computer Programming, Volume 2. Addison-Wesley (1981) (2nd edn.) (1997) (3rd edn.)

    Google Scholar 

  13. Luan, Q., Pan, V.Y., Kim, W., Zaderman, V.: Faster numerical univariate polynomial root-finding by means of subdivision iterations. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2020. LNCS, vol. 12291, pp. 431–446. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60026-6_25

    Chapter  Google Scholar 

  14. Louis, A., Vempala, S.S.: Accelerated Newton iteration: roots of black box polynomials and matrix eigenvalues. In: IEEE FOCS 2016, vol. 1, pp. 732–740, January 2016. arXiv:1511.03186. https://doi.org/10.1109/FOCS.2016.83

  15. McNamee, J.M.: Numerical Methods for Roots of Polynomials, Part I, XIX+354 p. Elsevier (2007). ISBN: 044452729X, ISBN-13: 9780444527295

    Google Scholar 

  16. McNamee, J.M., Pan, V.Y.: Numerical Methods for Roots of Polynomials, Part II, XXI+728 p. Elsevier (2013). ISBN: 9780444527301

    Google Scholar 

  17. Merzbach, U.C., Boyer, C.B.: A History of Mathematics, 5th edn. Wiley, New York (2011). https://doi.org/10.1177/027046769201200316

    Book  MATH  Google Scholar 

  18. Pan, V.Y.: Optimal (up to polylog factors) sequential and parallel algorithms for approximating complex polynomial zeros. In: ACM STOC 1995, pp. 741–750 (1995)

    Google Scholar 

  19. Pan, V.Y.: Solving a polynomial equation: some history and recent progress. SIAM Rev. 39(2), 187–220 (1997). https://doi.org/10.1137/S0036144595288554

    Article  MathSciNet  MATH  Google Scholar 

  20. Pan, V.Y.: Approximation of complex polynomial zeros: modified quadtree (Weyl’s) construction and improved Newton’s iteration. J. Complex. 16(1), 213–264 (2000). https://doi.org/10.1006/jcom.1999

    Article  MATH  Google Scholar 

  21. Pan, V.Y.: Univariate polynomials: nearly optimal algorithms for factorization and rootfinding. J. Symb. Comput. 33(5), 701–733 (2002). Proceedings Version in ACM ISSAC 2001, pp. 253–267 (2001). https://doi.org/10.1006/jsco.2002.0531

  22. Pan, V.Y.: Old and new nearly optimal polynomial root-finders. In: England, M., Koepf, W., Sadykov, T.M., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2019. LNCS, vol. 11661, pp. 393–411. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26831-2_26

    Chapter  Google Scholar 

  23. Pan, V.Y.: Acceleration of subdivision root-finding for sparse polynomials. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2020. LNCS, vol. 12291, pp. 461–477. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60026-6_27

    Chapter  Google Scholar 

  24. Pan, V.Y.: New progress in polynomial root-finding. arXiv 1805.12042, 30 May 2018. Accessed 31 Aug 2022

    Google Scholar 

  25. Pan, V.Y., Fast subdivision root-finder for a black box polynomial and matrix eigen-solvers accelerated with compression. Preprint (2023)

    Google Scholar 

  26. Pan, V.Y.: Fast subdivision root-finders for a black box polynomial and matrix eigen-solvers with novel exclusion tests. Preprint (2023)

    Google Scholar 

  27. Pan, V.Y., Go, S., Luan, Q., Zhao, L.: Fast approximation of polynomial zeros and matrix eigenvalues. arXiv 2301.11268 (2022). Accessed 2023

    Google Scholar 

  28. Reinke, B.: Diverging orbits for the Ehrlich-Aberth and the Weierstrass root finders. arXiv 2011.01660, 20 November 2020

    Google Scholar 

  29. Renegar, J.: On the worst-case arithmetic complexity of approximating zeros of polynomials. J. Complex. 3(2), 90–113 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  30. Schönhage, A.: The fundamental theorem of algebra in terms of computational complexity. Math. Dept., University of Tübingen, Tübingen, Germany (1982)

    Google Scholar 

  31. Storjohann, A.: The shifted number system for fast linear algebra on integer matrices. J. Complex. 21(4), 609–650 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Strassen, V.: Some results in algebraic complexity theory. In: James, R.D. (ed.) Proceedings of the International Congress of Mathematicians, Vancouver, vol. 1, pp. 497–501. Canadian Mathematical Society (1974)

    Google Scholar 

  33. Weyl, H.: Randbemerkungen zu Hauptproblemen der Mathematik. II. Fundamentalsatz der Algebra und Grundlagen der Mathematik. Mathematische Zeitschrift 20, 131–150 (1924). https://doi.org/10.1007/BF01188076

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Y. Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pan, V.Y., Go, S., Luan, Q., Zhao, L. (2023). Fast Cauchy Sum Algorithms for Polynomial Zeros and Matrix Eigenvalues. In: Mavronicolas, M. (eds) Algorithms and Complexity. CIAC 2023. Lecture Notes in Computer Science, vol 13898. Springer, Cham. https://doi.org/10.1007/978-3-031-30448-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30448-4_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30447-7

  • Online ISBN: 978-3-031-30448-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics