
Maximum Flows in Parametric Graph Templates

Tal Ben-Nun1[0000−0002−3657−6568], Lukas Gianinazzi (�)1[0000−0001−5975−4526],
Torsten Hoefler1[0000−0002−1333−9797], and Yishai Oltchik2

1 ETH Zurich, Universitätstrasse 6, Zürich
{talbn,glukas,htor}@inf.ethz.ch
2 NVIDIA yoltchik@nvidia.com

Abstract. Execution graphs of parallel loop programs exhibit a nested,
repeating structure. We show how such graphs that are the result of
nested repetition can be represented by succinct parametric structures.
This parametric graph template representation allows us to reason about
the execution graph of a parallel program at a cost that only depends on
the program size. We develop structurally-parametric polynomial-time
algorithm variants of maximum flows. When the graph models a par-
allel loop program, the maximum flow provides a bound on the data
movement during an execution of the program. By reasoning about the
structure of the repeating subgraphs, we avoid explicit construction of
the instantiation (e.g., the execution graph), potentially saving an ex-
ponential amount of memory and computation. Hence, our approach
enables graph-based dataflow analysis in previously intractable settings.

Keywords: Graph algorithms · Graph theory · Maximum flow

1 Introduction

Parallel program analysis approaches to optimize data movement and program
transformation commonly rely on graph algorithms [8, 24, 25, 29]. These prob-
lems concern an execution graph, where vertices model computation and edges

a

b

e

c

f

g

d

i

(a) Param. Graph Template G. (b) Template tree of G.

a

b

e

c

f

g

d

i

b
e

e
e

c
d

e

e

(c) Instantiation of G.

Fig. 1: Illustration of the parametric graph template G with templates T0 =
{a, b, c, d, e, f, g, i}, T1 = {b}, T2 = {c, d, e}, T3 = {e}; parameters P0 = 1, P1 =
2, P2 = 2, P3 = 3; and h = 2.

ar
X

iv
:2

30
7.

08
42

0v
1

 [
cs

.D
S]

 1
7

Ju
l 2

02
3

model data movement. Maximum flows provide an algorithmic measure of the
overall data movement. Such execution graphs contain highly repetitive substruc-
tures. Other application areas also face repeating graph structures, for example,
computational biology [19] and network topology [6, 23, 30].

The naive approach is to directly work on the graphs and apply classic algo-
rithms. However, this is prohibitively slow. For example, execution graphs can
have billions of vertices or have a parametric size. Another approach is to design
domain-specific representations and solutions [17, 31]. Having a more general-
purpose framework would allow sharing progress across domains.

We observe that many application-relevant graphs follow a model of nested
repetition, where a small template graph is repeated a parametric number of
times [5]. In this work, we propose a representation of such hierarchically repeat-
ing graphs, which we call parametric graph templates, and provide algorithms
for extensions to the classical graph problem of maximum s-t flow.

The main challenge lies in avoiding the naive solution of materializing the full
graph (which we call instantiation) and using a classic algorithm, which would
negate any time savings. Instead, we carefully study the structural relation-
ship between the template and the potentially exponentially larger instantiated
graph. We discover and exploit symmetries in the instantiation process. This
allows us to answer graph problems with a runtime that only depends on the
size of the succinct representation, enabling asymptotic time and space savings
compared to a naive approach that explicitly performs the nested repetition.

1.1 Parametric Graph Templates

Next, we introduce our model and give some examples. Our goal is to represent
graphs with a hierarchically repeating structure, where the number of repeti-
tions depends on some parameters. This will allows us to represent parallel loop
programs and their executions. A parametric graph template with k parameters
G = (G, T ,P) contains a (potentially weighted) and directed template graph
G = (V,E) with n vertices V , m edges E and edge weights w : E 7→ R, a list of
templates T = T0, T2, . . . , Tk−1, each with ∅ ≠ Ti ⊆ V , and a list of positive inte-
ger parameters P = P0, . . . , Pk−1 (see Figure 1a). The templates follow a nested
structure, meaning that for every pair of templates they are either disjoint or
one of them is strictly contained in the other one (for all i ̸= j, Ti ∩ Tj = ∅ or
Ti ⊂ Tj or Tj ⊂ Ti). In particular, the templates form a laminar set family [7].

We assume that there is a root template T0 = V . Hence, the subset relation
on the templates induces a template tree (see Figure 1b). We denote its height
by h. If a template T is contained in another template T ′ (i.e., T ⊂ T ′), then T
is a descendant of T ′ (and T ′ is an ancestor of T). A template T is a parent of
T ′ (and T ′ is a child of T) if T ′ is the direct descendant of T .

To create an instantiation of a parametric graph template G, repeatedly
rewrite it as follows (see Figure 1c). As long as there is more than one template,
pick a leaf template Ti. For each vertex v in Ti create Pi copies v1, . . . , vPi

called
instances of v, replacing v in V . The set of vertices with the same subscript are
called an instance of Ti. For each edge e = (u, v) with both endpoints in Ti, create

Pi instances e1 = (u1, v1), . . . , ePi
= (uPi

, vPi
), replacing e in E. For each edge

e = (u, v) with one endpoint u in Ti, create Pi instances e1 = (u1, v), . . . , ePi
=

(uPi , v), replacing e in E. Proceed symmetrically for each edge e = (u, v) with
one endpoint v in Ti. Then, remove the template Ti and its parameter Pi.

In Section 3 we will represent nested parallel loop programs as parametric
graph templates. In such a representation, cuts and flows correspond to data
movement in a parallel execution.

1.2 Related Work

Graph Grammars [4, 10, 14, 15, 27] describe a (possibly infinite) language
of graphs compactly with a set of construction rules. There is a wide variety
of such ways of constructing a graph, differing in expressive power. A classic
problem for graph grammars is to decide whether a graph can be constructed
from a given grammar (parsing). In contrast to graph grammars, we are not
primarily concerned with expressing an infinite set of graphs, but instead with
a succinct representation of a graph and algorithmic aspects of solving graph
problems efficiently on this succinct representation.

Hierarchical Graphs [13] model graphs where edges expand to other, pos-
sibly hierarchical graphs. They are a variant of context-free hyperedge replace-
ment grammars that incorporate a notion of hierarchy. The authors consider
graph transformations (i.e., replacing subgraphs within other subgraphs). How-
ever, their method does not include parametric replication. This makes it un-
suitable for modeling variably-sized execution graphs.

Nested graphs [28] allow “hypernodes” to represent other nested graphs.
The authors focus on the case where a node represents a fixed nested graph. This
precludes nested graphs from effectively representing graphs of a parametric size.

Edge-Weight Parametric Problems Several graph problems have been
generalized to the edge-weight parametric case, where edge weights are functions
of one or several parameters µi. This includes maximum s-t flow / minimum
s-t cut [3, 18, 20], (global) minimum cut [2, 21] and shortest paths [16, 22].
The solution is then a piecewise characterization of the solution space. Usually,
only linear (or otherwise heavily restricted) dependency of the edge weights
on the parameters have been solved. For edge-weight parametric minimum s-t
cuts, the problem can be solved in polynomial time when each edge e has weight
min(c(e), µ) for constants c(e) and a single parameter µ [3]. Granot, McCormick,
Queyranne, and Tardella explore other tractability conditions [20].

1.3 Problem Statement

We approach parametric graph templates from an algorithmic perspective. The
goal is to solve classical graph problems for fixed parameters, but in time that is
strongly polynomial in the size of the parametric graph template. We focus on
the classic problem of maximum s-t flow, which has an interpretation in terms of
data movement for program-derived graphs and operations research [1]. For an

execution graph, a maximum s-t flow corresponds to a upper bound on the data
movement between vertices s and t when they are placed on different processors.

An s-t flow f assigns every edge e a nonnegative real flow f(e) ≤ w(e). The
sum

∑
e=(u,v) f(e)−

∑
e=(v,w) f(e) is the net flow of the vertex v. A flow has to

have net flow 0 for all vertices except s and t. The value of the flow is the net
flow of the source. A maximum flow is a flow of maximum value.

The maximum s-t flow problem has a natural generalization to parametric
graph templates when s and t are vertices in the root template: Instantiate the
graph and compute a maximum flow between the only instance of s and the
only instance of t. There are multiple possibilities for how to interpret the case
when s and t have multiple instances. One interpretation is as a multiple-source
and multiple-target flow problem, where all instances of s are treated as sources
and all instances of t as sinks. We call this a maximum all-s-t flow. Another
interpretation considers the maximum flow between a fixed instance of s and a
fixed instance of t. We call this a maximum single-s-t flow.

1.4 Our Results

We show how to efficiently represent a class of parallel loop programs as para-
metric graph templates and how properties of data movement in the parallel
loop programs relates to cuts and flows in the parametric graph templates.

Then, we demonstrate that maximum s-t flow can be solved asymptotically
faster than instantiating the parametric graph template. In particular, it is pos-
sible to obtain a runtime that is similar to the runtime on the template graph.

For maximum all-s-t flow, our algorithms match the runtime of a maximum
s-t algorithm such as Orlin’s O(mn) time algorithm [26]. We solve this problem
using a technique called Edge Reweighting. It observes that scaling the edge
weights in the graph template solves the problem. For maximum single-s-t flow
and minimum cuts, there is an overhead proportional to the height h of the
template tree. In addition to Edge Reweighting, we use a technique called Partial
Instantiation. We observe that a carefully chosen part of the instantiated graph
can give sufficient information to extrapolate the result to the rest of the graph.
How this part is chosen depends on the problem.

2 Preliminaries

We proceed to introduce definitions, notation, and assumptions that we use
throughout this work.

Template a vertex belongs to. If a vertex v is in a template Ti and v is in
no other template that is a descendant of Ti, then v belongs to Ti. We denote
the unique template that v belongs to by T (v).

Template an edge belongs to. If both endpoints of an edge belong to a
template Ti, then this edge belongs to template Ti. We denote the number of
vertices and edges that belong to a template Ti by ni and mi, respectively.

Cross-template edges. An edge (u, v) where u and v belong to different tem-
plates is cross-template.

No Jumping. We assume there are no edges that ‘jump’ layers in the template
hierarchy. Specifically, if (u, v) is a cross-template edge, then T (u) is a parent
or child of T (v). This rule ensures that a path in the graph corresponds to a
walk in the template tree. It comes without loss of generality for cut and flow
problems, as an edge that jumps layers can be split into multiple edges (all of
weight ∞ except the edge connected to the vertex that belongs to the deeper
template in the template tree). For graphs that model programs, this assumption
corresponds to disallowing jumps to arbitrary program locations.

Boundary Vertices. Consider a vertex u and v where T (v) is a parent of T (u).
If there is an edge from u to v or from v to u in the template graph, then v is a
boundary vertex of T (u).

Template graph of a template. The subgraph of the template graph G in-
duced by a template Ti is called the template graph of Ti.

Instance tree. We extend the nomenclature of templates to instances. The
template hierarchy can be transferred onto the instances, where an instance I
is a descendant of an instance I ′ if the template T that instantiated I is a
descendant of the template T ′ that instantiated I ′. Similarly, we extend the
notions of ancestor, parent, and child to the instances, creating an instance tree.
Two instances that have the same parent instance are siblings. If a vertex v is
contained in an instance I, but it is not contained in any other descendant of I,
the vertex v belongs to the instance I. If bi is an instance of a boundary vertex
b of a template T , then bi is a boundary vertex of the instance that bi belongs
to. The instance of the root template is the root instance. For a vertex v in the
instantiation, we write T (v) for the template of the instance that v belongs to.

Isomorphism. Two parametric graph templates G1 and G2 are isomorphic if
they instantiate isomorphic graphs. Two isomorphic G1 and G2 can have different
parameters, templates, and their template graphs need not be isomorphic.

Cycles. Acyclic graphs are easier to handle for many algorithmic problems. In
parametric graph templates, we consider two different notions of what consti-
tutes a cycle. The simplest notion of cycles comes from considering cycles in the
template graph. If it does not contain any cycles, then the instantiation does
neither (and vice versa). A path p1, . . . pk in the template graph that contains
three vertices pi, pj , pk with i < j < k and T (i) = T (k) but T (i) ̸= T (j) is a
template-cycle. We say a parametric graph template is template-acyclic if it does
not contain a template-cycle. This notion is incomparable to the notion of acyclic
parametric graph templates. There are acyclic parametric graph templates that
are not template-acyclic (consider a path whose nodes alternate between belong-
ing to some template and its child). Note that a template-acyclic graph can have
cycles (consider a cycle whose vertices belong to the same template).

3 Templates of Parallel Loop Programs

We show that a broad class of parallel programs can be modeled as parametric
graph templates, such that the parametric graph template corresponds to the
source code of the program and an instantiation of the parametric graph template
corresponds to an execution of the program. This allows us to analyze properties
of the execution of a program by considering a parametric graph template of a
size comparable to the source of the program.

The parametric graph templates we consider can model nested loop pro-
grams, for example Projective Nested Loops [12] and Simple Overlap Access
Programs [24]. The program receives a set of multi-dimensional input arrays
A1, . . . , Ak. The goal is to output a multi-dimensional array B. The program
can use several multi-dimensional temporary arrays C1, . . . Ck′ . For any array
D, its size in the i-th dimension is sizei(D).

Roughly speaking, we allow any composition of elementary operations and
parallel nested loops where the loop bounds only depend on the sizes of the input
arrays. We allow parallel reduction to aggregate the results of a loop. We do not
allow data-dependent control flow, but we allow the locations of memory accesses
to be data-dependent. Examples of algorithms that can be represented this way
include matrix multiplication, convolution, and cross-correlation. See Figure 2a
for a parametric graph template of matrix multiplication and Figure 2b for a
parametric graph template of cross-correlation.

We call the resulting parametric graph templates parallel loop graph tem-
plates. Next, we describe their syntax. Then, we describe a semantic for these
parametric graph templates. Finally, we relate the data movement of the parallel
loop programs with their templates’ instantiations.

3.1 Syntax

The vertices of the template graph are annotated with types corresponding to
their function in the program. Each template graph contains the input memory
vertices A1, . . . , Ak, the output memory vertex B, and the temporary memory
vertices C1, . . . , Ck′ . The memory vertices can have arbitrary in-degree and out-
degree and belong to the root template. Other vertices have out-degree 1, except
if stated otherwise. The outgoing edge is called the output edge. To disambiguate
the inputs to a vertex, the incoming edges are numbered consecutively. We refer
to inputs in this input order. We consider the following control flow constructs.
These are boundary vertices.
Parfor. A Parfor (parallel for loop) vertex has no input edge. Its output edge
leads to a vertex in a child template.
Reduce(Op), where Op is an associative and commutative operator. Has a
single input edge from a vertex in a child template. The output edge leads to a
non-memory vertex.
Copy. A Copy vertex v has arbitrary outdegree. For each of its output edges
(v, u), the template T (u) is not a parent of T (v) and u is not a memory vertex.

We consider the following memory constructs, which are boundary vertices.

‘→’. A (pass-through) → vertex has in-degree and out-degree 1. At most one
of the two neighbors can be a memory vertex.

Read. A Read vertex has a first input edge from a memory vertex or a → vertex
and one or more other input edges from a non-memory vertex. Its output edge
leads to a non-memory vertex.

Write. A Write vertex has two or more input edges from non-memory vertices.
Its output edge leads to a memory or → vertex.

We consider the following types of operator vertices. They cannot be con-
nected to memory vertices and are not boundary vertices.

(Op), for Op ∈ {+,−, ∗,÷}, which has in-degree 2.

[c], for any representable constant c.

3.2 Semantics

A well-formed program has an acyclic template graph. For a well-formed pro-
gram, a serial execution is any topological order of the instantiation of the para-
metric graph template. Each d-dimensional input array Ai initially contains some
current value Ai[j1]....[jd] at each position (j1, . . . , jd), where the d-th dimension
of Ai has size sized(Ai). All other arrays contains 0 at each of their positions.
The arrays do not alias each other.

The semantics of a serial execution is given by applying the following rules
to each vertex in the serial execution. Before evaluating the rules, contract all

A A

B

(a) Multiplication of an n × k matrix A1 and
a k ×m matrix A2.

A

B

A

(b) 1-D cross-correlation of a size n
array A1 and a size k array A2.

Fig. 2: Example parametric graph templates for execution graphs. The edges are
drawn in their input order left-to right.

edges which have at least one → vertex neighbor (these exist to transfer values
from inside the template hierarchy to the memory vertices in the root template).
Parfor. A Parfor vertex with k children outputs one value of the permutation
of {0, . . . , k − 1} to each child in an injective way.
Copy. Given input x, Copy outputs x to all its children.
Reduce(Op), for Op ∈ {+, ∗}. Given the inputs x1, . . . , xk, Reduce(Op) out-
puts the result of applying Op repeatedly in an arbitrary order to the inputs.
Read. Given inputsAi, j1, . . . , jd, ifAi has dimension d and for all jk ∈ {j1, . . . , jd}
we have 0 ≤ jk < sizek(Ai), a Read vertex outputs the current value of
Ai[j1]....[jd]. Otherwise, the result of the serial execution is undefined.
Write. Given inputs x, j1, . . . , jd, a Write vertex outputs x. This has the side
effect of updating the current value of the array into which the output edge leads:
Say it leads to Ai. Then, if Ai has dimension d and for all jk ∈ {j1, . . . , jd} we
have 0 ≤ jk < sizek(Ai), the current value of Ai[j1]....[jd] becomes x. Otherwise,
the result of the serial execution is undefined.
(Op), for Op ∈ {+,−, ∗,÷}. Given x, y, outputs x Op y.
[c] outputs the constant c.

In a serial execution, we say that two reads or writes u, v are totally ordered
if there is a path from u to v or from v to u in the instantiation. A data race
occurs if there are two writes W1,W2 with the same right input (i.e., index) that
connect to the same memory vertex and W1 and W2 are not totally ordered. The
output of a well-formed program is well-defined if none of its serial executions
has an undefined result or contains a data race.

3.3 Applications of Flows and Cuts

To model dataflow in the parallel loop programs, we set the weight of the Parfor
edges to 0 and the weight of the other edges to 1. Loop indices can be recomputed
and thus do not cause data movement. The parallel loop graph template encodes
all the data movement in its edges. However, it cannot resolve the aliasing of
array locations. Hence, the weight of the edges going across a partition of the
vertices provides an upperbound on the data movement:

Observation 1 Consider a partition (V0, , . . . , Vp) of the vertices in an instan-
tiation of a parallel loop graph template. The value total weight of the edges
with endpoints in different partitions is an upper bound on the data movement
incurred when the partitions are allocated to distinct processors.

Note that in our formulation of parallel loop graph templates, vertices corre-
sponding to arrays are placed on a single processor. Thus, to model the distri-
bution of an array across multiple processors, a vertex must be created for each
processor that holds its subarray (this subarray can be discontiguous though).

Since a maximum s-t flow equals the value of a minimum s-t cut, the maxflow
provides a partition of the loop program with small data movement:

Observation 2 If a parallel loop graph template has a maximum all-s-t flow
of value x, then there is a partition of the parallel loop program which incurs at

most x data movement and in which all instances of s are executed on a different
processor as all instances of t.

We can get a similar statement for maximum single-s-t flows.

4 Template Maximum Flows

Next, we turn to the first algorithmic question on parametric graph templates.
Our goal here is to solve the maximum s-t flows problem on a parametric graph
template without explicitly instantiating it. Instead, the goal is to get a runtime
that is polynomial in the size of the graph template. Our algorithms use a se-
ries of observations on the structure of maximum flows in parametric graphs
which allow us to produce transformed parametric graph templates, on which
the answer can be efficiently computed.

We will approach the problem by considering the case where s and t are in
the root template first. Then, we show how to reduce both the maximum all-s-t
flow and the maximum single-s-t flow problem to an instance of this simpler
problem. Throughout, we assume that all vertices are reachable from s and can
reach t, as otherwise they cannot carry flow.

In the template-acyclic case, the maximum single-s-t flow is trivially zero
except when s and t are in the same instance of the least common ancestor of
T (s) and T (t) in the template tree. Therefore, in the acyclic case it makes sense
to restrict our attention to this case where the flow is not trivially zero. In the
case where there are template-cycles, it matters which instances of s and t are
picked. These can be identified by numbering the instances they belong to.

4.1 Edge-Reweighting

a

b

e

c

f

g

d

i

a

b

e

c

f

g

d

i

Fig. 3: Edge Reweighting turns a parametric graph template G into a graph G′

by scaling the weights of each edge in its template graph by all the parameters
of the templates that contain an endpoint of the edge.

An efficient way to solve a problem on parametric graph templates is to show
how it relates to a problem on the template graph with scaled weights. The idea

is that an edge that intersects template Ti can be used Pi times and can therefore
be used to carry Pi times the amount of flow. We will see that this observation
holds as long as s and t are in the root template or if we consider the maximum
all-s-t flow problem. We call this approach Edge-Reweighting. See Figure 3 for
an example of Edge Reweighting.
Algorithm: Edge-Reweighting. Transform the parametric graph template
G = (G, T ,P) with edge weights w into a graph G′ with edge weights w′. The
reweighted graph G′ has the same vertex and edge set as the template graph
G, but the weights are scaled as follows: Multiply the weight of an edge in the
template graph by the product of the parameters of the templates that contain at
least one endpoint of the edge. That is, let I(e) be the index set of all templates
that contain at least one of the endpoints of e. Then, the weight of w′(e) is
w(e)

∏
i∈I(e) Pi. To implement this in linear time O(m), precompute in a pre-

order traversal of the template tree for each template the product of all the
ancestors’ parameters.

4.2 Source & Sink Belong to the Root Template

Our goal is to show that when the source s and sink t belong to the root template,
then a maximum s-t flow in the reweighted graph equals the value of a maximum
all-s-t flow. If s and t belong to the root template (which is instantiated once),
then a maximum single-s-t flow equals a maximum all-s-t flow and we call it a
maximum s-t flow for short.

The linear programming dual of a maximum s-t flow is a minimum s-t
cut [11]. We will use strong duality [9] in our proof, which means that it suffices
to identify an s-t flow and a minimum s-t cut of equal value to prove that they
are optimal. We argue that Edge Reweighting preserves the value of the dual
minimum all-s-t cut. Hence, it also preserves the maximum all-s-t flow value.

The following shows us how to construct an s-t cut C ′ in the transformed
graph G′ from an s-t cut C in G of the same value. Together with the other
(easier) direction of the proof, this shows that the transformed graph G′ has the
same maximum s-t flow.

Lemma 1. In a parametric graph template G = (G, T ,P), if s and t are in the
root template, there is a minimum s-t cut of the instantiation of G where every
instance of every vertex is on the same side of the cut.

Proof. The proof is by induction on the number of templates in the parametric
graph template. If the parametric graph template has only a single template,
then (since s and t must be in this template) the claim is trivial because the
root is repeated only once, by assumption.

Otherwise, let C = (Vs, Vt) be a minimum all-s-t cut of the parametric graph
template G (i.e., Vs contains the vertices assigned to s and Vt those assigned to
t). Consider an arbitrary template Ti that is a child of the root template and its
graph template Gi. The sets Bs and Bt contain the boundary vertices of Ti that
are in Vs and Vt, respectively.

If either of the sets Bs or Bt is empty, then it follows immediately that all
instances of the vertices that are in Ti are in the same part of the cut C (i.e., on
the side of s if the set Bt is empty and vice versa).

Otherwise, merging all vertices in Bs into a vertex s′ and merging all vertices
in Bt into a vertex t′ does not change the value of the minimum s-t cut in G.
Moreover, if the merged parametric graph template has a minimum s-t cut that
puts every instance of every vertex on the same side of the cut, then so does the
original parametric graph template (because Bs and Bt contain only vertices
that belong to the root template and we can “undo” the merging). We thus
further assume w.l.o.g. that Bs and Bt contain a single vertex named s′ and
t′, respectively. Note that since these vertices belong to the root template, the
vertices s′ and t′ coincide with their only instances.

Every minimum s-t cut must separate s′ from t′ in the subgraph H given by
the instances of Ti and the vertices s′ and t′ (but without a potential edge from
s′ and t′). We use our induction hypothesis to show there is a minimum s′-t′ cut
in this subgraph that puts all instances of a vertex on the same side of the cut.

We construct a parametric graph template G′′ such that a maximum s′-t′

flow in G′′ can be extended to a flow for the graph H. The parametric graph
template G′′ has the following template graph: take the subgraph of G induced
by Ti together with its boundary vertices, then delete any edges going between
s′ and t′. The boundary vertices s′ and t′ and all vertices that belong to Ti are
put into the root template of G′′ (which has parameter 1). Moreover, G′′ has the
templates and parameters of the descendants of Ti in G. The parametric graph
template G′′ contains at least one template less than G. Hence, by induction,
there is a minimum s′-t′ cut C ′′ of G′′ that puts all instances of the same vertex
into the same partition.

Let f ′′ be the dual maximum s′-t′ flow corresponding to C ′′ in G′′ of value
µ. Now, we construct a s′-t′ flow f in H and show it is maximum. Along each
instance of each edge e that intersects Ti we send f ′′(e) flow. The capacity
constraint on the flow is trivially satisfied. The conservation constraint on the
flow is satisfied because in the instantiated graph, the total flow going in and
out of an instance of v is the same as for vertex v for f ′′ in G′′. The value of
the flow f is Pi · µ. Now, consider the cut C ′ where we put every instance of
a vertex v in Ti on the same side as v is in C ′′. The value of this cut is Pi · µ.
By strong duality, this shows that C ′ is a minimum s′-t′ cut in the graph H.
By construction, this cut puts every instance of every vertex on the same side
of the cut. We conclude that all children of the root template can be cut such
that every instance of the same vertex is in the same part of the cut. Because
the root has a single instance, the statement follows for the root as well. ⊓⊔

Lemma 2. If a parametric graph template G has a minimum s-t cut of value
µ and s and t are in the root template, then the graph G′ constructed by edge
reweighting has a minimum s-t cut of value µ.

Proof. Any cut in the reweighted graph G′ corresponds to a cut of the same
value in the parametric graph template G = (G, T ,P): Put every instance of a

vertex into the partition that it has in the cut of G′. Since every edge e is cut
exactly

∏
i∈I(e) Pi times, this shows that the value of the minimum s-t cut of

the graph G′ is at least the value of the minimum all-s-t cut of the parametric
graph template (G, T ,P). It remains to show that the minimum s-t cut of the
reweighted graphG′ is at most the value of the minimum s-t cut of the parametric
graph template G. By Lemma 1, there is a minimum s-t cut C of G that puts
every instance of every vertex on the same side of the cut. Now, we construct a
cut C ′ of G′ from this cut C by putting every vertex v in G′ on the same side
of the cut as all the instances of v are in C. The cut C ′ has the same value µ
because every instance of an edge e in G is crossing

∏
i∈I(e) Pi times, which is

the amount by which we scaled the weight of edge e in G′. ⊓⊔

4.3 Instance Merging

We show how to merge all instances of a vertex v in a parametric graph template
by transforming it into parametric graph template of almost the same size (the
overhead is an additive O(nh)). We will use this technique to reduce the general
case for maximum all-s-t flow to the case where s and t are in the root.

The idea is that merging all instances of a vertex s is akin to moving the
vertex from the template T (s) it belongs to into the root template (so that it
belongs to the root template). The no jumping rule only allows edges to go from
parent templates to children templates (or vice versa), we need to introduce
dummy edges and dummy vertices along the way. The dummy edges have ∞
weight. An original edge (u, s) will be transformed into a path u, d1, . . . , dk, s
for dummies d1, . . . , dk (symmetrically for an edge (s, u)). See Figure 4 for an
example.
Algorithm: Instance-Merging. Given a parametric graph template G and a
vertex s, repeat the following until s is in the root template:

1. For any cross-template edge (u, s), introduce a dummy vertex d in the tem-
plate T (s) that s belongs to. Replace the edge (u, s) by two edges e1 = (u, d)
and e2 = (d, s). The weight of the edge e1 is the same as the weight of the
edge e, but the weight of the edge e2 is set to ∞. Proceed symmetrically for
any cross-template edge (s, u).

2. Move the vertex s from the template T (s) to the parent of the template T (s)
(i.e., remove s from the set T (s)).

Observation 3 Instance Merging(G, s) produces a parametric graph template
G′ whose instantiation is, after merging all instances of dummy edges of weight
∞, isomorphic to the graph that we get by instantiating the original parametric
graph template G and merging all instances of s. Instance Merging(G, s) adds at
most d(s) · h vertices and edges, where d(s) is the degree of the vertex s in the
template graph.

Proof. In the template graph of G′, there is a path consisting of ∞-weight edges
from s to every neighbor of s in the template graph G of G. There are no other

a

bc

f

g

d

i

e

Fig. 4: Instance Merging on the graph G from Figure 1a with vertex e pushes
the vertex e is into the root template. This introduces dummy nodes (drawn
without labels) and ∞-weight dummy edges. After contracting all dummy edges,
the instantiation of the transformed parametric graph template is isomorphic to
the graph we get by merging all instances of e in the instantiation of G.

∞ weight edges. Hence, there also is such an ∞-weight path in the instantiation
of G′ to every instance of every vertex that is a neighbor of s in G. Contracting
these paths gives a graph where the vertex s has an edge to all instances of
neighbors of s in G, which is the same graph that we get by instantiating the
original parametric graph template G and merging all instances of s. ⊓⊔

4.4 Maximum All-s-t Flow

To solve maximum all s-t Flow, all we would need to do is use Instance Merging
on s and then on t to ensure that they are both in the root template. Then, we
could use the edge reweighing Lemma 2. This approach would cost O(nm+n2h)
time. We can avoid this overhead by observing that edge reweighting works di-
rectly for maximum all-s-t Flow (even when s and t are not in the root template).

Lemma 3. Edge reweighting of a parametric graph template G produces a re-
weighted graph G′ where the value of the maximum s-t flow of G′ equals the value
of the maximum all-s-t flow of G.

Proof. Instance Merge s and then t in G to produce a parametric graph template
G′. By definition, all instances of s (and t respectively) must be on the same
side of a minimum all-s-t cut, this parametric graph template G′ has the same
minimum all-s-t cut value as the original parametric graph template G. Edge
reweighting G′ gives us a graph Ĝ. From Lemma 2 we know that a minimum s-t

a

bc

f

g

d

i

c
d

e

e
e

Fig. 5: After running Upwards Partial Instantiation from e on the parametric
graph template G from Figure 1a, the vertex e is in the root template. The
transformed parametric graph template instantiates the same graph.

cut of Ĝ corresponds to the minimum all-s-t cut of G′ (which puts all instances
of the same vertex on the same side of the cut).

An ∞-weight edge never crosses a minimum s-t cut and therefore such
dummy edges (introduced by the instance merging) from Ĝ can be contracted,
yielding a graph G′. This graph G′ is the same graph that we get from edge
reweighting the original parametric graph template G. ⊓⊔

Now, the results follows:

Theorem 1. Computing a maximum all-s-t flow in parametric graph template
takes O(mn) time.

4.5 Partial Instantiation

The technique of partial instantiation revolves around instantiating only part of
the parametric graph template, depending on the problem at hand. The goal is
to choose the partial instantiation such that the remaining problem is solvable by
using the symmetry of the problem (e.g., using edge-reweighting). Partial instan-
tiation can be seen as an example of the more general technique of retemplating.
The intuition of retemplating is that in certain cases, it suffices to change the
representation of the parametric graph template into another isomorphic para-
metric graph template to significantly simplify the problem at hand.

Next, show how to move a single vertex s from deep in the template tree to
the root, without changing the instantiated graph. This solves the maximum s-t
problems when s (or t) belongs to a template that is deep in the template tree
(See Section 4.6). We call this technique Upwards Partial Instantiation from s.
For simplicity, let us start with the special case of template-acyclic graphs.

In a template-acyclic parametric graph template, once a path goes from an
instance of a template Ti to its parent, it never enters another instance of Ti

again. This property implies that, when considering the reachable subgraph from
a vertex that is an instance of s, we can simply “merge” T (s) and all the tem-
plates that are ancestors of the template T (s) in the template tree. Formally,

this corresponds to deleting T (s) and all the templates that are ancestors of T (s)
(except the root) from the parametric graph templates’ list of templates.

If the parametric graph template has template-cycles, our goal remains to
transform the parametric graph template into an equivalent graph where a par-
ticular instance of a vertex s is in the root template. See Figure 5 for an illus-
tration of Upwards Partial Instantiation.

Algorithm: Partial Instantiation. Repeat the following until all templates
from T (s) to the root have parameter 1:

1. Consider the topmost template T that contains s and has parameter greater
than 1. Let Ps be the number of instances of the template T .

2. Instantiate the template T twice. Create a new parametric graph template
that has the two instances as templates, where the first template has param-
eter 1 and the second template has parameter Ps − 1. The vertices in the
second template are relabeled (s is in the one with parameter 1).

Now, merge T (s) and all the templates that are ancestors of T (s), leaving s in
the root template.

Because this process performs the same rewriting of the parametric graph
template as instantiation, just in a different order and stopping early, this process
creates an isomorphic parametric graph template. Every iteration adds at most
n vertices and m edges and there are at most h iterations. We conclude that:

Observation 4 Upwards Partial Instantiation from s produces an isomorphic
parametric graph template with at most h additional templates and O(nh) ver-
tices and O(mh) edges in the template graph.

4.6 Maximum Single-s-t Flow

We give a partial instantiation and edge reweighting approach to maximum
single-s-t flow. For there to be a flow through some instance, it must lie along an
s-t path. Hence, we can use Upwards Partial Instantiation twice to ensure that
s and t lie in the root template. Then, we use Edge Reweighting.

Algorithm: Single-s-t Flow. We solve maximum single-s-t flow as follows:

1. Perform upwards partial instantiation from s.

2. Perform upwards partial instantiation from t.

3. Construct an edge-reweighted graph G′.

4. Run a maximum s-t flow algorithm on the partially instantiated and reweighted
graph G′.

Theorem 2. Computing a maximum single-s-t flow in parametric graph tem-
plate takes O(mnh) time.

N
...

3
2

(a) Tree

(b) Parametric-Width DAG

∞

(c) 1-Dimensional Convolution

+1-1

... ...

... ...

(d) Pipeline

M

+1 ...

Fig. 6: Graph Templates and their expanded/instiantiated counterparts. An edge
e labelled with ±∆ indicates a sibling edge e with sibling function fe(x) = x+∆

5 Allowing Edges Between Sibling Templates

So far, we have disallowed any edges between instances of the same template.
This limits the types of graphs which have a small template graph. For example,
a path of length n requires a template graph with n nodes. We can extend the
model by allowing an instance to have edges to another instance of the same
template. These edges can, for example, more efficiently model sequential chains
(paths), convolutional networks, and grids. We call these edges sibling edges
(because they connect siblings). A sibling edge (u,v) of template Ti connects (in
the template graph of Ti) a vertex u that belongs to template Ti to a vertex v that
also belongs to Ti. Every sibling edge e = (u, v) of template Ti is associated with
a bijective (and computable) sibling function fe : {0, . . . , Pi−1} → {0, . . . , Pi−1}
which tells us that if the head of edge e is in instance j of the template Ti, then
the tail of edge e is in instance f(j) of the template Ti.

Note that in the model with sibling edges, a path of length n can be repre-
sented with two nodes instead of n nodes and a 1-dimensional cross-correlation
of two n-dimensional signal can be represented with 2 nodes.

The structural Lemma 1 for edge reweighting still holds with sibling edges.

Lemma 4. In a parametric graph template G = (G, T ,P) with sibling edges, if
s and t are in the root template, there is a minimum s-t cut of the instantiation
of G where every instance of every vertex is on the same side of the cut.

Proof (sketch of Lemma 1 with sibling edges). Extend the proof of Lemma 1
as follows: Proceed to construct the flow f as usual. Then, observe that the
conservation constraint on the flow f is satisfied because the sibling functions
are bijective: In the instantiated graph, the total flow going in and out of an
instance of v is the same as for vertex v for f ′′ in G′′. The value of the flow f is
Pi · v(f). ⊓⊔

Hence, the results on maximum all-s-t flow and maximum single-s-t flow hold
analogously in the presence of sibling edges within the same bounds.

6 Conclusion

In this work, we explored the notion of structural parameterization in graphs.
We show how graph templates correspond to the computation graphs of parallel
programs. Our model leads to a O(mn) time algorithm for a template version
of maximum s-t flow (and hence minimum s-t cuts). These flows provide upper
bounds on the data movement of partitions of certain parallel loop programs.

Other interesting problems would include partitions into multiple parts and
subgraph isomorphism. Moreover, future work could explore lower bounds for
parametric graph template algorithms.

Acknowledgements. This work received support from the PASC project DaCeMI
and from the European Research Council under the European Union’s Hori-
zon 2020 programme (Project PSAP, No. 101002047), as well as funding from
EuroHPC-JU under grant DEEP-SEA, No. 955606.

Bibliography

[1] Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algo-
rithms, and Applications. Prentice-Hall, Inc., USA (1993)

[2] Aissi, H., Mahjoub, A.R., McCormick, S.T., Queyranne, M.: Strongly poly-
nomial bounds for multiobjective and parametric global minimum cuts in
graphs and hypergraphs. Math. Program. 154(1-2), 3–28 (2015). https:
//doi.org/10.1007/s10107-015-0944-8

[3] Aneja, Y.P., Chandrasekaran, R., Nair, K.: Parametric min-cuts analysis in
a network. Discrete Applied Mathematics 127(3), 679–689 (2003). https:
//doi.org/10.1016/S0166-218X(02)00496-1

[4] Bauderon, M., Courcelle, B.: Graph expressions and graph rewritings.
Math. Syst. Theory 20(2-3), 83–127 (1987). https://doi.org/10.1007/
BF01692060

[5] Ben-Nun, T., de Fine Licht, J., Ziogas, A.N., Schneider, T., Hoefler, T.:
Stateful dataflow multigraphs: A data-centric model for performance porta-
bility on heterogeneous architectures. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis. SC ’19, Association for Computing Machinery, New York, NY,
USA (2019). https://doi.org/10.1145/3295500.3356173

[6] Besta, M., Hoefler, T.: Slim fly: A cost effective low-diameter network topol-
ogy. In: SC ’14: Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. pp. 348–359 (2014).
https://doi.org/10.1109/SC.2014.34

[7] Cheriyan, J., Jordán, T., Ravi, R.: On 2-coverings and 2-packings of lami-
nar families. In: Algorithms - ESA ’99, 7th Annual European Symposium,
Prague, Czech Republic, July 16-18, 1999, Proceedings. pp. 510–520 (1999).
https://doi.org/10.1007/3-540-48481-7_44

[8] Chu, W.W., Holloway, L.J., Lan, M., Efe, K.: Task allocation in distributed
data processing. Computer 13(11), 57–69 (1980). https://doi.org/10.
1109/MC.1980.1653419

https://doi.org/10.1007/s10107-015-0944-8
https://doi.org/10.1007/s10107-015-0944-8
https://doi.org/10.1007/s10107-015-0944-8
https://doi.org/10.1007/s10107-015-0944-8
https://doi.org/10.1016/S0166-218X(02)00496-1
https://doi.org/10.1016/S0166-218X(02)00496-1
https://doi.org/10.1016/S0166-218X(02)00496-1
https://doi.org/10.1016/S0166-218X(02)00496-1
https://doi.org/10.1007/BF01692060
https://doi.org/10.1007/BF01692060
https://doi.org/10.1007/BF01692060
https://doi.org/10.1007/BF01692060
https://doi.org/10.1145/3295500.3356173
https://doi.org/10.1145/3295500.3356173
https://doi.org/10.1109/SC.2014.34
https://doi.org/10.1109/SC.2014.34
https://doi.org/10.1007/3-540-48481-7_44
https://doi.org/10.1007/3-540-48481-7_44
https://doi.org/10.1109/MC.1980.1653419
https://doi.org/10.1109/MC.1980.1653419
https://doi.org/10.1109/MC.1980.1653419
https://doi.org/10.1109/MC.1980.1653419

[9] Chvátal, V.: Linear Programming. Series of books in the mathematical sci-
ences, W. H. Freeman (1983)

[10] Courcelle, B.: An axiomatic definition of context-free rewriting and its ap-
plication to NLC graph grammars. In: STACS 88, 5th Annual Symposium
on Theoretical Aspects of Computer Science, Bordeaux, France, February
11-13, 1988, Proceedings. pp. 237–247 (1988). https://doi.org/10.1007/
BFb0035848

[11] Dantzig, G.B., Fulkerson, D.R.: On the Max Flow Min Cut Theorem of
Networks. RAND Corporation, Santa Monica, CA (1955)

[12] Dinh, G., Demmel, J.: Communication-optimal tilings for projective nested
loops with arbitrary bounds. In: Scheideler, C., Spear, M. (eds.) SPAA ’20:
32nd ACM Symposium on Parallelism in Algorithms and Architectures,
Virtual Event, USA, July 15-17, 2020. pp. 523–525. ACM (2020). https:
//doi.org/10.1145/3350755.3400275

[13] Drewes, F., Hoffmann, B., Plump, D.: Hierarchical graph transformation.
J. Comput. Syst. Sci. 64(2), 249–283 (2002). https://doi.org/10.1006/
jcss.2001.1790

[14] Ehrig, H., Pfender, M., Schneider, H.J.: Graph-grammars: An algebraic
approach. In: 14th Annual Symposium on Switching and Automata The-
ory, Iowa City, Iowa, USA, October 15-17, 1973. pp. 167–180 (1973).
https://doi.org/10.1109/SWAT.1973.11

[15] Engelfriet, J.: Context-free NCE graph grammars. In: Fundamentals of
Computation Theory, International Conference FCT’89, Szeged, Hungary,
August 21-25, 1989, Proceedings. pp. 148–161 (1989). https://doi.org/
10.1007/3-540-51498-8_15

[16] Erickson, J.: Maximum flows and parametric shortest paths in planar
graphs. In: Proceedings of the Twenty-First Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2010, Austin, Texas, USA, Jan-
uary 17-19, 2010. pp. 794–804 (2010). https://doi.org/10.1137/1.

9781611973075.65

[17] Feautrier, P.: Some efficient solutions to the affine scheduling problem.
i. one-dimensional time. Int. J. Parallel Program. 21(5), 313–347 (1992).
https://doi.org/10.1007/BF01407835

[18] Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum
flow algorithm and applications. SIAM J. Comput. 18(1), 30–55 (1989).
https://doi.org/10.1137/0218003

[19] Ginsburg, A., Ben-Nun, T., Asor, R., Shemesh, A., Ringel, I., Raviv, U.:
Reciprocal grids: A hierarchical algorithm for computing solution x-ray scat-
tering curves from supramolecular complexes at high resolution. Journal of
Chemical Information and Modeling 56(8), 1518–1527 (Aug 2016)

[20] Granot, F., McCormick, S.T., Queyranne, M., Tardella, F.: Struc-
tural and algorithmic properties for parametric minimum cuts. Math.
Program. 135(1-2), 337–367 (2012). https://doi.org/10.1007/

s10107-011-0463-1

[21] Karger, D.R.: Enumerating parametric global minimum cuts by random
interleaving. In: Proceedings of the 48th Annual ACM SIGACT Symposium

https://doi.org/10.1007/BFb0035848
https://doi.org/10.1007/BFb0035848
https://doi.org/10.1007/BFb0035848
https://doi.org/10.1007/BFb0035848
https://doi.org/10.1145/3350755.3400275
https://doi.org/10.1145/3350755.3400275
https://doi.org/10.1145/3350755.3400275
https://doi.org/10.1145/3350755.3400275
https://doi.org/10.1006/jcss.2001.1790
https://doi.org/10.1006/jcss.2001.1790
https://doi.org/10.1006/jcss.2001.1790
https://doi.org/10.1006/jcss.2001.1790
https://doi.org/10.1109/SWAT.1973.11
https://doi.org/10.1109/SWAT.1973.11
https://doi.org/10.1007/3-540-51498-8_15
https://doi.org/10.1007/3-540-51498-8_15
https://doi.org/10.1007/3-540-51498-8_15
https://doi.org/10.1007/3-540-51498-8_15
https://doi.org/10.1137/1.9781611973075.65
https://doi.org/10.1137/1.9781611973075.65
https://doi.org/10.1137/1.9781611973075.65
https://doi.org/10.1137/1.9781611973075.65
https://doi.org/10.1007/BF01407835
https://doi.org/10.1007/BF01407835
https://doi.org/10.1137/0218003
https://doi.org/10.1137/0218003
https://doi.org/10.1007/s10107-011-0463-1
https://doi.org/10.1007/s10107-011-0463-1
https://doi.org/10.1007/s10107-011-0463-1
https://doi.org/10.1007/s10107-011-0463-1

on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21,
2016. pp. 542–555 (2016). https://doi.org/10.1145/2897518.2897578

[22] Karp, R.M., Orlin, J.B.: Parametric shortest path algorithms with an appli-
cation to cyclic staffing. Discrete Applied Mathematics 3(1), 37–45 (1981).
https://doi.org/10.1016/0166-218X(81)90026-3

[23] Kim, J., Dally, W.J., Scott, S., Abts, D.: Technology-driven, highly-scalable
dragonfly topology. In: 2008 International Symposium on Computer Archi-
tecture. pp. 77–88 (2008). https://doi.org/10.1109/ISCA.2008.19

[24] Kwasniewski, G., Ben-Nun, T., Gianinazzi, L., Calotoiu, A., Schneider, T.,
Ziogas, A.N., Besta, M., Hoefler, T.: Pebbles, graphs, and a pinch of combi-
natorics: Towards tight I/O lower bounds for statically analyzable programs.
In: Agrawal, K., Azar, Y. (eds.) SPAA ’21: 33rd ACM Symposium on Paral-
lelism in Algorithms and Architectures, Virtual Event, USA, 6-8 July, 2021.
pp. 328–339. ACM (2021). https://doi.org/10.1145/3409964.3461796

[25] Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program
analysis transformation. In: International Symposium on Code Generation
and Optimization, 2004. CGO 2004. pp. 75–86 (2004). https://doi.org/
10.1109/CGO.2004.1281665

[26] Orlin, J.B.: Max flows in o(nm) time, or better. In: Symposium on Theory
of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013.
pp. 765–774 (2013). https://doi.org/10.1145/2488608.2488705

[27] Pavlidis, T.: Linear and context-free graph grammars. J. ACM 19(1), 11–22
(1972). https://doi.org/10.1145/321679.321682

[28] Poulovassilis, A., Levene, M.: A nested-graph model for the representation
and manipulation of complex objects. ACM Trans. Inf. Syst. 12(1), 35–68
(1994). https://doi.org/10.1145/174608.174610

[29] Shen, C., Tsai, W.: A graph matching approach to optimal task assignment
in distributed computing systems using a minimax criterion. IEEE Trans.
Computers 34(3), 197–203 (1985). https://doi.org/10.1109/TC.1985.
1676563

[30] Valadarsky, A., Shahaf, G., Dinitz, M., Schapira, M.: Xpander: Towards
optimal-performance datacenters. In: Proceedings of the 12th International
on Conference on Emerging Networking EXperiments and Technologies. p.
205–219. CoNEXT ’16, Association for Computing Machinery, New York,
NY, USA (2016). https://doi.org/10.1145/2999572.2999580

[31] Vasilache, N., Zinenko, O., Theodoridis, T., Goyal, P., DeVito, Z.,
Moses, W.S., Verdoolaege, S., Adams, A., Cohen, A.: Tensor comprehen-
sions: Framework-agnostic high-performance machine learning abstractions.
CoRR abs/1802.04730 (2018)

https://doi.org/10.1145/2897518.2897578
https://doi.org/10.1145/2897518.2897578
https://doi.org/10.1016/0166-218X(81)90026-3
https://doi.org/10.1016/0166-218X(81)90026-3
https://doi.org/10.1109/ISCA.2008.19
https://doi.org/10.1109/ISCA.2008.19
https://doi.org/10.1145/3409964.3461796
https://doi.org/10.1145/3409964.3461796
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/2488608.2488705
https://doi.org/10.1145/2488608.2488705
https://doi.org/10.1145/321679.321682
https://doi.org/10.1145/321679.321682
https://doi.org/10.1145/174608.174610
https://doi.org/10.1145/174608.174610
https://doi.org/10.1109/TC.1985.1676563
https://doi.org/10.1109/TC.1985.1676563
https://doi.org/10.1109/TC.1985.1676563
https://doi.org/10.1109/TC.1985.1676563
https://doi.org/10.1145/2999572.2999580
https://doi.org/10.1145/2999572.2999580

	Maximum Flows in Parametric Graph Templates

