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Abstract. MEGA is a large-scale cloud storage and communication
platform that aims to provide end-to-end encryption for stored data. A
recent analysis by Backendal, Haller and Paterson (IEEE S&P 2023)
invalidated these security claims by presenting practical attacks against
MEGA that could be mounted by the MEGA service provider. In response,
the MEGA developers added lightweight sanity checks on the user RSA
private keys used in MEGA, sufficient to prevent the previous attacks.

We analyse these new sanity checks and show how they themselves can
be exploited to mount novel attacks on MEGA that recover a target
user’s RSA private key with only slightly higher attack complexity than
the original attacks. We identify the presence of an ECB encryption
oracle under a target user’s master key in the MEGA system; this oracle
provides our adversary with the ability to partially overwrite a target
user’s RSA private key with chosen data, a powerful capability that we
use in our attacks. We then present two distinct types of attack, each type
exploiting different error conditions arising in the sanity checks and in
subsequent cryptographic processing during MEGA’s user authentication
procedure. The first type appears to be novel and exploits the manner
in which the MEGA code handles modular inversion when recomputing
u = q−1 mod p. The second can be viewed as a small subgroup attack
(van Oorschot and Wiener, EUROCRYPT 1996, Lim and Lee, CRYPTO
1998). We prototype the attacks and show that they work in practice.

As a side contribution, we show how to improve the RSA key recovery
attack of Backendal-Haller-Paterson against the unpatched version of
MEGA to require only 2 logins instead of the original 512.

We conclude by discussing wider lessons about secure implementation of
cryptography that our work surfaces.
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1 Introduction

MEGA is a cloud storage and communication platform with over 265 million
user accounts and more than 10 million daily users [15], advertising itself as
secure and private by design. The platform distinguishes itself from other major
providers by offering end-to-end encryption for stored data. On MEGA, user
files should remain confidential even if the storage provider is malicious or has
been compromised through a breach, implying security in a strong threat model.
The security of MEGA in this setting was recently analysed in detail by [2],
which describes five attacks on the cryptographic protocol used by MEGA to
authenticate users and encrypt user data. The first two of these attacks completely
broke the confidentiality of user files. Shortly after, [31] significantly improved
the first attack in [2], reducing its requirement of 512 user logins to just 6.

At their heart, the attacks in [2] exploit the lack of both key separation and
integrity protection for stored keys in the MEGA design: a single user master key is
used to encrypt both the user’s RSA private key (used during user authentication)
and the user’s file encryption keys themselves; meanwhile AES in ECB mode is
used for the encryption. This allowed the authors of [2] to corrupt the RSA private
key in certain ways that leaked useful information during the authentication
protocol, as well as to “cut and paste” AES-ECB blocks from file encryption keys
into the RSA private key.

The authors of [2] proposed an immediate and non-invasive mitigation step in the
form of adding a MAC to the existing construction.4 In response, MEGA chose
to not implement this or any of the other originally suggested countermeasures.
Instead, MEGA added extra sanity checks in the client software to do more
validation of payloads during or after decryption [18]. These checks were sufficient
to prevent the specific attacks of [2, 31].

Shortly after MEGA released their patch addressing the attacks of [2], they made
one other change which (as we will show below) further increased the attack
surface of their code: they added detailed error reporting during the decryption
and sanity checking processes done by the client as part of the authentication
protocol [19]. The errors produced during these steps are mostly distinguishable
from one another and the error messages are sent to the server in place of the
usual authentication response. A malicious storage provider can exploit this
verbose behaviour, triggering the errors by supplying specially crafted inputs in
an attempt to learn something about the decrypted data.

4 This by itself does not suffice for authenticated encryption security, but presents
the “immediate” level of countermeasures, i.e. the most easily achievable solution
in the short term. [2] outlines further levels of countermeasures termed “minimal”
and “recommended”, which provide better guarantees but require more fundamental
changes to the MEGA platform.
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1.1 Contributions

In the MEGA infrastructure, each user has a master key kM that is used with
AES-ECB mode to encrypt multiple items, including the user’s RSA private
key and individual file encryption keys (in a special obfuscated format). In this
work we describe two new attacks on the patched MEGA infrastructure in the
malicious server setting which achieve an AES-ECB decryption capability under
kM. These attacks can be used to recover individual 128-bit blocks of a target
user’s RSA private key. Combining this with lattice techniques, we can efficiently
recover the entirety of the target user’s RSA private key after recovering four
specific blocks. Once this private key is recovered, the adversary can trivially
decrypt the RSA ciphertexts appearing in file sharing messages to recover the
keys needed to decrypt any files shared with the target user. The attacks can
also be used to recover individual file encryption keys directly. As with [2], these
attacks exploit the lack of key separation and integrity protection in the MEGA
design, showing that the patch and further changes made by MEGA in response
to [2] were not only insufficient but actively harmful.

Both attacks make use of an ECB encryption oracle that is present in the
MEGAdrop feature, a part of the MEGA system that is supposed to be inde-
pendent of the authentication protocol, yet uses the same master key kM. This
feature enables the receiving of shared files from unregistered users. In short,
MEGAdrop encrypts a newly shared file’s encryption key to a user’s public RSA
key, but the user’s client then silently re-encrypts that file encryption key under
kM using AES-ECB whenever the user is logged in. Since a malicious server can
arbitrarily choose the file encryption key when sharing files with the user and
then observe the resulting AES-ECB ciphertext, this provides the ECB encryp-
tion oracle that we need. For technical reasons explained later, we obtain two
AES-ECB encrypted 128-bit blocks for each use of the oracle. Notably, the ECB
encryption oracle can be realised without any user interaction. Details can be
found in Section 2.

The attacks also exploit the distinguishable errors arising during user authentica-
tion. We describe the individual errors in detail in Section 2. Both attacks can
be seen as key overwriting attacks, since they rely on manipulating the values
that are interpreted as the RSA private key by the client, and on including the
target AES-ECB ciphertext block in a particular position in the encoded and
encrypted RSA private key. This causes the errors that are triggered during
client-side cryptographic processing to depend on the target plaintext block. User
interaction is formally required for these attacks, which is why we measure their
cost in terms of the number of login attempts they need (they are otherwise
computationally inexpensive). As a secondary measure of attack complexity, we
account for the number of ECB encryption oracle calls needed.

The first attack, described in Section 3, exploits an implicit error in the com-
putation of modular inverses when sanity checking the RSA private key. It is
an (un)fortunate consequence of an otherwise harmless bug in the code (not
checking whether an inverse exists) which is caught by the client and reported
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to the server. The malicious server can use this oracle repeatedly to learn the
value of the target AES-ECB plaintext block modulo a number of small primes,
which enables recovery of the full block using the CRT. The attack requires on
average 29.29 login attempts per recovered AES-ECB plaintext block and 66 ECB
encryption oracle queries per attacked user.

The second attack, described in Section 4, relies on how RSA decryption is carried
out by the client during user authentication. It exploits a legacy artefact in the
code that changes the resulting RSA plaintext length if a certain byte condition
on the plaintext does not hold, in combination with an explicit error arising
from a plaintext length check that is again reported to the server. The core idea
is as follows. Because the user’s RSA private key is encrypted as a sequence
of AES-ECB blocks, we can use the ECB encryption oracle to overwrite parts
of that key – including p, q , and d – on the granularity of 128-bit blocks. The
attack exploits this capability to mount a small order subgroup attack [12,36] by
overwriting the RSA primes p, q with values such that (p − 1)(q − 1) has known
small prime factors. The attack also overwrites d with a value that is completely
known except in the target plaintext block. By also choosing the RSA ciphertext,
the server can force the client’s RSA decryption to take place in any one of the
small subgroups corresponding to each of the small prime factors of (p−1)(q−1).
Then, the malicious server can use the length check oracle repeatedly to learn
the overwritten value of d, and hence the target plaintext block, modulo each of
the small primes. The final step again combines these values using the CRT to
recover the target block.

We present two main versions of the second attack: one that is simpler but which
requires a large amount of precomputation and one that is more complex but
only requires negligible precomputation. On average, these versions require 211.24

and 211.63 login attempts per block, respectively. In both versions, this second
attack requires a smaller number (up to 15) of ECB encryption oracle queries
per attacked user than our first attack does. Further, this second attack exploits
different errors from the first one and also relies on behaviours resulting from the
“legacy” check on the second byte of plaintext. We include this attack to showcase
that the existence of such checks and differentiated error reporting increases the
attack surface.

Since the two attacks work on a per-block basis, we discuss how best to recover
the entire RSA private key of the target user with the help of lattice techniques
in Section 5. This reduces the number of blocks that need to be recovered using
either of the two attacks to 4 instead of the 9 that would be required if the attacks
were used directly to e.g. recover all of p. The attack complexity of recovering
the full RSA private key using our first attack is then 211.29 login attempts on
average.

As a side contribution, we show in Section 6 how to combine the ECB encryption
oracle obtained from the MEGAdrop feature with the second attack in [2] to
recover a target user’s RSA private key from an unpatched MEGA client using
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only 2 logins (compared to the 512 logins needed in [2] and the 6 needed in [31]).
This shows that the original, unpatched MEGA system was even weaker than
previously thought.

We conclude by briefly discussing attack mitigation in Section 7, noting the
problematic nature of relying on easy-to-implement countermeasures that do not
properly address the core security vulnerabilities. In that section, we also draw
wider lessons from our work.

1.2 Related work

The work of [2] provided a detailed overview of the MEGA infrastructure as well
as attacks on confidentiality and integrity of user data stored on the platform.
The follow-up work [31] significantly reduced the amount of user interaction
required by the first attack of [2] but was already prevented by MEGA’s patches.
The attacks in this work draw inspiration from the small-order subgroup attacks
on DH [12, 36] and the key overwriting attacks on OpenPGP [5, 10]. The use
of a plaintext checking oracle is reminiscent of Bleichenbacher’s attack on RSA
with PKCS#1 v1.5 encoding [4] but we target private key recovery rather than
plaintext recovery.

1.3 Validation

We have verified the presence of the ECB encryption oracle, implemented the
attacks and verified them in practice on test account data, using a TLS-MitM
setup with mitmproxy [35] to minimise interaction with the real MEGA servers
and a locally-run MEGA web client (version 4.21.4) [16]. We made a single
modification to the web client to automatically simulate repeated client login
attempts after one initial manual login. The attacks were able to recover arbitrary
AES-ECB-encrypted blocks of the test user’s RSA private key with query costs
consistent with our analysis (averaging 29.30 login attempts for the first attack).
We also implemented a proof of concept for recovering the entire RSA private
key given four known blocks using lattice techniques. The code is available as
supplementary material.5

1.4 Disclosure

We contacted MEGA to inform them of the vulnerabilities in their system
on 29.09.2022. We suggested a 90-day disclosure period. We also suggested
mitigations, stressing the importance of providing proper cryptographic integrity
for data stored under users’ master keys. MEGA acknowledged receipt of our
disclosure on 30.09.2022. They said they would begin working on fixes and liaise
with us before deploying them. On 28.11.2022, MEGA informed us that they
were working on hardening their client software, which would include changing
5 Available at https://github.com/MEGA-caveat/mega-caveat-poc.

https://github.com/MEGA-caveat/mega-caveat-poc
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how private keys are stored, removing the ECB encryption oracle as well as
replacing the asmcrypto.js library. We provided high-level feedback on the
proposed changes. The upgrade should mitigate against our specific attacks
as well as potential future attacks, though we have not reviewed the changes
in detail. Given the scale of the changes, we agreed to move the disclosure to
06.03.2023 to coincide with the rolling-out of the upgraded client software and
the publication of this paper. The upgrade was implemented in version 4.32.4 of
the web client [30]. MEGA awarded a bug bounty.

2 Oracles

2.1 Notation

We begin by establishing some notation that we use throughout. Concatenation
is denoted by ∥ . [m]k denotes an encryption of m under the key k , where
the algorithm is determined by the context. B denotes bytes, and for x , |x |B
denotes the length of x in bytes and |x |b denotes the length of x in bits.6
For a tuple X = (x0 , . . . , xn−1 ), |X | = n denotes its size. For a byte string
m = b0 ∥ b1 ∥ . . . ∥ bn−1 of length n and s, t ∈ N, we define m[s] := bs , and
m[s : t ] := bs ∥ . . . ∥ bt−1 for s < t . An empty object is denoted by null, and a
zero byte by 00. ZeroPad(m, n) := 00 ∥ 00 ∥ . . . ∥ m such that |m|B = n, i.e. left-pad
m with zero bytes. If it is necessary to distinguish between a byte representation
and other types, m (as opposed to m) denotes a byte string. Conversion between
byte strings and integers remains implicit, so we may write m ← m and vice-versa.
(Z/nZ)× denotes the multiplicative group of integers modulo n. By x ←$ S we
denote x sampled uniformly at random from S . In our attacks, B denotes a target
plaintext block, which is a byte string with |B |b = 128. To differentiate it from a
value computed while attempting to recover this block (which could be different
if the attack is not correct), we denote the computed value by B∗.

2.2 ECB encryption oracle

MEGA’s webclient exposes an ECB encryption oracle under a user’s master
key kM. This oracle allows MEGA, or anyone controlling their infrastructure, to
encrypt 32 bytes of chosen plaintext in AES-ECB mode under the target user’s
master key kM in a single query. Since AES-ECB without any additional measures
does not provide any integrity protection, ciphertexts containing blocks that the
adversary queried to the oracle cannot be distinguished without additional tests
on the expected structure of the plaintext.

The oracle stems from code related to the MEGAdrop feature as shown in Fig. 1.
MEGAdrop enables anyone to upload files to a folder in the cloud storage of

6 For x ∈ Z, the value of |x |b as understood by the MEGA client implementations is
not always exact. In the big integer representation used by the web client, |x |b is
normally rounded up to the closest multiple of 8 or 32.
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the recipient without needing an account on MEGA. The recipient activates
MEGAdrop for one of their folders and obtains a link that they can share with
others. Unlike shared folders, senders do not see any file stored in the MEGAdrop
upload folder.

, , 
MEGAdrop folder 

of  at link 

User 

- choose 
- construct file 

MEGA



- reencrypt
  

Fig. 1. Overview of the ECB encryption oracle under a user’s master key kM.

The left algorithm of Fig. 2 describes the upload feature of MEGAdrop. The
adversary can pick some file key kF, nonce NF, and file F during the upload process
for the MEGAdrop folder at the link L. The upload feature locally encrypts the
file with AES-CCM using kF and some nonce NF picked by the client. Backendal
et al. describe MEGA’s encryption in more detail7 on lines 2-11 of Fig. 2 in [2].

MEGAdrop.upload(kF, NF,F ,L)

1 : [F ]kF , Tcond ← File.enc(kF, NF,F )

2 : k
obf
F ← ObfKey(kF, NF, Tcond)

3 : pk ← Server.lookup(L)

4 :
[
k
obf
F

]
pk
← RSA.Enc(pk , kobfF )

5 : Server.upload([F ]kF ,
[
k
obf
F

]
pk
)

Webclient.update()

1 : while true do

2 : τ ← Server.fetch_update(kM, sk)

3 : if τ ̸= ⊥ then

4 : [F ]kF ,
[
k
obf
F

]
pk
← τ

5 : k
obf
F ← RSA.Dec(sk ,

[
k
obf
F

]
pk
)

6 :
[
k
obf
F

]
kM
← AES-ECB.Enc(kM, k

obf
F )

7 : Server.upload(
[
k
obf
F

]
kM
)

8 : endif

9 : endwhile

Fig. 2. MEGAdrop pseudocode. MEGAdrop.upload encrypts a file F with key kF and
nonce NF, uploaded to the MEGAdrop folder with link L. Webclient.update shows how
active clients regularly poll for updates and re-encrypt node keys immediately.

To instantiate an ECB encryption oracle, the adversary sets kobfF to 32 bytes of its
choosing. Since kobfF = (kF⊕ x) ∥ x for x = NF ∥ Tcond , the obfuscated key defines
the values for kF, NF, and Tcond used in the file encryption (cf. Fig. 4 in [2]). The
adversary can use the file reconstruction part of the framing attack described in [2]
to obtain a file F that, when encrypted with kF and NF, produces the MAC tag

7 For instance, we omit the file attributes in our description for simplicity.
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value Tcond . Consequently, the adversary can run MEGAdrop.upload(kF, NF,F ,L)
to upload kobfF , encrypted under the receiver’s public RSA key, to the server.

Section 9.12 of MEGA’s security white paper [17] states that to “conserve CPU
cycles, RSA-encrypted keys are transformed into AES-encrypted keys when
encountered”. Indeed, the webclient regularly polls for new files in the background
and, when encountering an RSA-encrypted key [kobfF ]pk , re-encrypts kobfF with kM

and AES-ECB to produce an AES-ECB ciphertext that we denote by [kobfF ]kM .
It then uploads this updated key to the server (cf. [25]) as shown in the right
half of Fig. 2. Therefore, the malicious server can learn the AES-ECB plaintext-
ciphertext pair (kobfF , [kobfF ]kM).

While testing this oracle in mitmproxy [35], we noticed that the server can pretend
that a new file was uploaded to a MEGAdrop folder. The webclient re-encrypts
the key as described in Fig. 2 even if the recipient does not use MEGAdrop and
the file has an invalid path. Thus, we have an efficient ECB encryption oracle
that does not require any user interaction and leaves no persistent traces in the
user’s cloud storage. It encrypts 32 B per query and can be accessed repeatedly.

2.3 Oracles from decoding and decryption error reports

Consider the authentication and session ID exchange that takes place every time
a user logs into their account, summarized in Fig. 3 and described in more detail
in [2]. Let ke be the user’s 128-bit symmetric encryption key derived from their
password, kM the user’s 128-bit symmetric master key and (pk , sk) the user’s
2048-bit RSA keypair.

login request( )

 or 

MEGA



pick  s.t. 

check 








or throw 

Fig. 3. Simplified overview of the MEGA login procedure.

Here, we focus on one part of this exchange, namely when the server responds to
the user’s request with the tuple ([kM]ke , [privk]kM , [m]pk , uh), where [kM]ke and
[privk]kM are AES-ECB-encrypted, [m]pk is RSA-encrypted and uh is in plaintext.
Then, privk encodes the secret key sk for RSA-CRT as shown in Fig. 4, m encodes
the session ID sid and uh is an 11-byte user handle string. The exact alignments
of the fields in privk with respect to the AES-ECB block boundaries will be
important in our attacks. The processing done by the client after it decrypts
[kM]ke is shown in Fig. 5. This is the updated behaviour resulting from the patches
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described in Section 1 and converted into pseudocode as faithfully as possible,
i.e. in some cases surfacing lower-level processing if it is relevant.

Fig. 4. Encoding of the RSA secret key together with the block boundaries marking
the start of different 16-byte AES-ECB blocks. Each length encoding field consists of 2
bytes, meaning that data fields start progressively further into AES-ECB blocks.

In Fig. 5, we adopt the notation “require condition else error” to mean that
the client checks the condition and if it is not satisfied, it aborts and outputs
the error to the server. Decoding between base64-strings, bytes and integers is
left implicit unless relevant to some error. Computation of a−1 mod b should be
understood to return null if gcd(a, b) ̸= 1.

In DecodePrivk(privk), the function Parse(privk) sequentially reads through the
bytes of privk whose expected form, shown in Fig. 4, is len(q) ∥ q ∥ len(p) ∥ p
∥ len(d) ∥ d ∥ len(u) ∥ u ∥ pad where len(x) denotes the two-byte big-endian
length encoding of the byte-length of x and pad is padding, and returns the
tuple of integers P = (q , p, d , u). If DecPrivkAndSid(·) returns successfully, then
sid is sent to the server in the requests that follow. Notice that in addition to
DecPrivkAndSid(·) returning a range of different error messages depending on
the processing of secret values, it also modifies the resulting plaintext depending
on whether the second byte of the RSA-decrypted value is 00 or not (line 9
of DecryptSid(·, ·)), a quirk that is explained in the original code only with the
comment “Old bogus padding workaround” [24].

Caught and uncaught exceptions. Some of the errors shown in Fig. 5 are
implicit, i.e. they are a result of lower-level exceptions caught at a higher level
(the ones corresponding to ⊥5 and ⊥6). In all cases, they are shown at the exact
place where the code aborts.

Further, due to some lower-level bugs in asmcrypto.js [20], the bigint and crypto
library used by the web client, there are cases where the implementation never
terminates:

– In DecodePrivk(privk) during Parse(privk), if one of q , p, d , u is 0.

– In DecodePrivk(privk) during the computation of q−1 mod p [22], if q mod
p = 0. We observed that this is because the implementation of gcd(0, p) never
terminates. The same issue arises during the computation of d−1 mod (p −
1)(q − 1) if d mod (p − 1)(q − 1) = 0.

Similarly, there are cases when the implementation returns incorrect output:
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DecPrivkAndSid(kM, [privk]kM , [m]pk , uh):

1 : require |uh|B = 11 else ⊥1

2 : privk← AES-ECB.Dec(kM, [privk]kM)

3 : sk ← DecodePrivk(privk)

4 : m← DecryptSid(sk , [m]pk )

5 : require |m|B = 255 else (⊥2, |m|B)
6 : require m[16 : 27] = uh else ⊥3

7 : sid← m[0 : 43]

8 : return sid

DecryptSid(sk , [m]pk ):

1 : N , e, d , p, q , dp , dq , u ← sk

2 : c ← [m]pk

3 : require c < N else ⊥7

4 : x ← cdp mod p; y ← cdq mod q

5 : t ← x − y mod p

6 : h ← u · t mod p

7 : m ← h · q + y mod 2|N |b

8 : m← ZeroPad(m, |N |B)
9 : if m[1] ̸= 00 then

10 : m
′ ← 00 ∥ m

11 : else

12 : m
′ ← m

13 : return m
′[2 :

∣∣m′∣∣
B
]

DecodePrivk(privk):

1 : P , pad← Parse(privk)

2 : require |P | = 4 ∧ |pad|B < 16 else ⊥4

3 : q , p, d , u ← P

4 : N ← p · q

5 : e ← d−1 mod (p − 1)(q − 1)

6 : dp ← d mod p; dq ← d mod q

7 : u ′ ← q−1 mod p

8 : require u ′ ̸= null else ⊥5

9 : cond ← |p|b, |q |b, |u|b > 1000 ∧ |d |b > 2000

10 : require cond ∧ (u ′ = u) else ⊥4

11 : sk ← N , e, d , p, q , dp , dq , u

12 : require e ̸= null else ⊥6

13 : return sk

Fig. 5. Client decoding and decryption to process the session ID, derived from [24,26–28].

– In DecryptSid(sk , c) during the computation of x ← cdp mod p (and likewise
y ← cdq mod q), there are several issues.

• If p is even, the code computes x = 0 regardless of the other input values,
because modular power computations were not implemented for even
moduli [21].

• If |p|b > 1024, the implementation of Montgomery reduction [23] does
not return correct values, and so the output x is also incorrect.
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We were forced to work around some of these implementation errors in our
attacks.

3 Attack based on modular inverse computation

Our first attack enables block-by-block plaintext recovery of AES-ECB blocks
encrypted under kM. In particular, this enables RSA private key recovery, i.e. the
recovery of privk. Let [B ]kM be such a target ciphertext block with unknown
target plaintext block B , for example corresponding to an unknown block of q
from privk.

This attack is in the malicious server setting, or equivalently the TLS-MitM
setting, and makes use of the ECB encryption oracle described in Section 2.2. It
exploits the error type ⊥5, which arises on line 7 and line 8 of DecodePrivk(privk)
in Fig. 5 when gcd(p, q) ̸= 1. To get to this point, the server must submit inputs
such that none of the previous error types are triggered. The server will only
replace the [privk]kM value and expect to abort before executing DecryptSid(·, ·),
so the only condition that must be satisfied is the one on line 2, which requires
that the decrypted privk parses into 4 values without too much extra padding.
Then, error ⊥5 can be distinguished from any of the errors that could follow,
though with overwhelming probability this will be error ⊥4 from line 10 due to
the server overwriting parts of privk.

The main idea behind this attack rests in the observation that if the server
can construct [privk∗]kM such that the decrypted and decoded p is divisible
by a small prime r , and the decrypted and decoded q contains the target
block B in its least-significant position, then the outputting of error ⊥5 leaks
that gcd(p, q) ̸= 1 and thus (if some further conditions are satisfied), that
q mod r = 0. From this, the server can learn the value of B mod r . Repeating
this for a sufficient number of different primes ri and combining the values
using the Chinese Remainder Theorem (CRT), the server can learn the value of
B mod r0 · . . . · rn−1. If |r0 · . . . · rn−1|b ≥ 128, the server recovers B .

In the following subsections, we describe two versions of the attack in more
detail, starting with the simple, block-aligned version and then describing an
attack that is more general and resistant to simple fixes. Both versions have been
implemented and verified using our TLS-MitM setup described in Section 1.3.

3.1 Block-aligned, small-length version

The attack proceeds in two distinct phases. The first phase calls the ECB
encryption oracle to obtain a set of chosen-plaintext blocks, which are then
combined with a target block to form the ciphertexts submitted to the client
as part of the second phase. The second phase relies on the client making a
number of online login attempts. The ECB encryption oracle calls are shown as
[x]kM ← OECBkM(x) (if x consists of 2ℓ blocks, this call will involve ℓ uses of the
actual oracle described in Section 2.2). The content of the modified ciphertexts
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that will be submitted to the client is shown in Fig. 6. Note that we aim to reduce
the number of OECBkM() calls by ensuring most of the content consists of all-zero
blocks (or blocks containing the value 1), which only need to be queried once.

Fig. 6. The plaintext content of cti,t , where the all-zero blocks are light green, the
blocks containing 1 are dark green and the placement of the target block B is in red.

Precomputation using the ECB encryption oracle. Take {r0, . . . , rn−1} =
{7, 11, . . . , 103}, n = 24 small odd primes such that their product R =

∏n−1
i=0 ri

has |R|b ≥ 128. Let [B ]kM be the target ciphertext block and denote by B∗ the
plaintext block computed as part of this attack.

1. Generate a random prime p′ such that |p′|b = 256.

2. Let d ′ ← 1, u ′ ← 1 and encode them as byte strings d′, u′ such that |d′|B =
254, |u′|B = 126.

3. Let rest← len(d′) ∥ d′ ∥ len(u′) ∥ u′ and obtain [rest]kM ← OECBkM(rest).

4. For i ∈ {0, . . . ,n − 1}, do the following:

(a) Compute p ← p′ ·ri and encode it as a byte string p such that |p|B = 126.8

(b) Let ptpi ← len(p) ∥ p and obtain [ptpi ]kM ← OECBkM(ptpi).

5. For t ∈ {0, . . . , rn−1 − 1}, do the following:

(a) Compute q∗ ← 2128 · t and encode it as a byte string q∗ such that
|q∗|B = 126.

(b) Let ptqt ← len(q∗) ∥ q∗[0 : 110], which skips the last block of q∗ to make
space for the target. Obtain [ptqt ]kM ← OECBkM(ptqt).

6. For i ∈ {0, . . . ,n − 1}, do the following:

(a) For t ∈ {0, . . . , ri − 1}, do the following:

Store cti,t ← [ptqt ]kM ∥ [B ]kM ∥ [ptpi ]kM ∥ [rest]kM .

8 We include the prime p′ for several reasons. First, because of one of the uncaught
errors, we must make sure that q mod p ̸= 0. Further, to avoid false positives from
error ⊥5, we need the gcd(p, q) ̸= 1 signal to be equivalent to gcd(p, q) = ri .
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Online attack. Suppose we have a set of cti,t as described above.

1. For i ∈ {0, . . . ,n − 1}, do the following:

(a) For t ∈ {0, . . . , ri − 1}, do the following:

i. When the client initiates a login, respond to the client’s request with
([kM]ke , cti,t , [m]pk , uh), where everything but cti,t is as it would be
in an honest response.

ii. If the client returns ⊥5, save the value of t and break out of this loop.

(b) Save B∗
i ← −2128 · t mod ri .

2. Then, compute B∗ mod R by solving the system B∗ ≡ B∗
i (mod ri) for

i ∈ {0, . . . ,n − 1} using CRT.

Correctness. Notice that for each decrypted cti,t , DecodePrivk(·) results in
p ← p′ · ri and q ← 2128 · t + B . The error ⊥5 will be triggered if and only if
gcd(p, q) ̸= 1, which is equivalent to gcd(p, q) = ri , since p′ is a prime larger
than q . Hence ⊥5 is triggered if and only if q mod ri = 0, and so if and only
if B ≡ −2128 · t (mod ri). This means that for the computed value B∗

i we
have B∗

i ≡ B (mod ri). It follows that B∗ ≡ B (mod R). Since R is such that
|R|b ≥ 128 and |B |b = 128, we deduce that B∗ = B (over the integers).

Cost. First, we count the cost of recovering the target in terms of ECB encryption
oracle calls, assuming that each repeated value (such as an all-zero block) is
only queried once. As can be seen in Fig. 6, the encoding of q∗, p, d ′ and u ′ is
block-aligned. The value rest consists of four non-zero blocks: two blocks that
include a length encoding, and two identical blocks containing the value 1. Next,
ptpi also has four non-zero blocks: one length-encoding block and three blocks
for p′ · ri since |p′ · ri |b < 263 < 3 · 128; similarly, ptqt has two non-zero blocks:
one length-encoding block and one block for t since |t |b ≤ |rn−1|b < 128. Finally,
notice that ptpi [0 : 16] is the same for all i , and similarly ptqt [0 : 16] is the
same for all t , so the length-encoding blocks can be reused. Recalling that each
use of the oracle returns two blocks of ciphertext, together the attack requires⌈
1
2 · (1 + 3 + 2 + n · 3 + rn−1)

⌉
= 91 ≈ 26.5 queries. Further, the result of these

queries can be reused when recovering multiple blocks for a given target user.

Second, we count the number of online login attempts. On average, the attack
requires 1

2 ·
∑n−1

i=0 ri = 627 ≈ 29.29 logins (210.29 in the worst case).9

3.2 Full-length version

The attack in Section 3.1 could technically be prevented by a number of simple
checks, e.g. by moving the check on bit lengths before the client computes
9 Note that the attack can be easily modified to use one less login for each ri . This is

because, in the online phase, if the server does not get a positive answer from the
oracle for any of the values t ∈ {0, . . . , ri − 2}, it means that the value ri − 1 is the
correct one and so does not need to be submitted explicitly.
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q−1 mod p (and so possibly triggers ⊥5), by ensuring that |p|b, |q |b = 1024 or
that d , u ̸= 1. However, none of these changes would prevent this type of attack:
here we provide a more general version that would still work if these changes
were made. The content of the modified ciphertexts that will be submitted to
the client is shown in Fig. 7.

Fig. 7. The plaintext content of cti,t , where the all-zero blocks are light green, the
parts containing fixed values are dark green, the placement of the target block B is in
red and the placement of the unmodified values from ct is in yellow.

Precomputation using the ECB encryption oracle. As before, take {r0,
. . ., rn−1} = {7, 11, . . . , 103}, n = 24 small odd primes such that their product
R =

∏n−1
i=0 ri has |R|b ≥ 128. Let [B ]kM be the target ciphertext block and denote

by B∗ the plaintext block computed as part of this attack. Let ct← [privk]kM
be the original ciphertext encrypting the user’s private RSA key.

1. Let d ′ ← 22047 and encode it as a byte string d′ such that |d′|B = 256.

2. Let ptd← 00 00 00 01 ∥ len(d′) ∥ d′[0 : 10] and get [ptd]kM ← OECBkM(ptd).

3. Let [rest]kM ← ct[272 : |ct|B]. The slice begins with the ciphertext block
that encrypts the most-significant full block of the original d .

4. For i ∈ {0, . . . ,n − 1}, do the following:

(a) Compute p ← 21023 +232 · ϱ+1 for ϱ such that p ≡ 0 (mod ri) and p/ri
is prime. Encode it as a byte string p such that |p|B = 128.

(b) Let ptpi ← 00 01 ∥ len(p) ∥ p[0 : 124] and get [ptpi ]kM ← OECBkM(ptpi).

5. For t ∈ {0, . . . , rn−1 − 1}, do the following:

(a) Compute q∗ ← 21023 + 2128+16 · t + 1 and encode it as a byte string q∗

such that |q∗|B = 128.

(b) Let ptqt ← len(q∗) ∥ q∗[0 : 110] and obtain [ptqt ]kM ← OECBkM(ptqt).

6. For i ∈ {0, . . . ,n − 1}, do the following:

(a) For t ∈ {0, . . . , ri − 1}, do the following:

Store cti,t ← [ptqt ]kM ∥ [B ]kM ∥ [ptpi ]kM ∥ [ptd]kM ∥ [rest]kM .
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Correctness. In this version, the precomputation must construct a modified
ciphertext such that all values q , p, d , u are of the expected bit length. Recall
that the plaintext encoding has the form: len(q) ∥ q ∥ len(p) ∥ p ∥ len(d) ∥ d
∥ len(u) ∥ u ∥ pad. Since each value is encoded by prefixing a two-byte length
field and the original lengths are either 1024 bits or 2048, the values in the
resulting plaintext are not block-aligned. This is why we construct the “partial”
block ptd in Step 2 separately: it is composed of the final 4 bytes of p, len(d′)
and the first 10 bytes of d ′. Similarly, the block-aligned plaintext ptp in Step 4b
begins with another partial block which consists of the final 2 bytes of q∗, len(p)
and the first 12 bytes of p.10 Finally, the modified blocks are “stitched” together
in Step 6a as in the simple version of the attack, ensuring that the target B is
interpreted as the last “full” block of q .

Cost. Finding p of the correct form for each i in Step 4a is easy and takes
326 ≈ 28.35 trials on average for the given primes ri . This step is independent
of user data and so can be reused to attack multiple users. With reference to
Fig. 7, note that both ptpi and ptqt will likely have two non-zero blocks each.
We assume the reuse of the length-encoding blocks as in Section 3.1. Thus the
attack requires

⌈
1
2 · (1 + 1 + 2 + n + rn−1)

⌉
= 66 ≈ 26.04 queries.

Online attack. Suppose we have a set of cti,t as described above.

1. For i ∈ {0, . . . ,n − 1}, do the following:

(a) For t ∈ {0, . . . , ri − 1}, do the following:

i. When the client initiates a login, respond to the client’s request with
([kM]ke , cti,t , [m]pk , uh), where everything but cti,t is as it would be
in an honest response.

ii. If the client returns ⊥5, save the value of t and break out of this loop.

(b) Save B∗
i ← (216)−1 · (−21023 − 2128+16 · t − 1) mod ri .

2. Then, compute B∗ mod R by solving the system B∗ ≡ B∗
i (mod ri) for

i ∈ {0, . . . ,n − 1} using CRT.

Correctness. Recall that for each decrypted cti,t , DecodePrivk(·) gets p ←
21023 +232 · ϱ+1 and q ← 21023 +2128+16 · t +216 ·B +1. The overwritten values
are encoded so that the parsing succeeds, and there are no other explicit errors
that could be triggered before the error we are using for the attack.11 The error
⊥5 will be triggered if and only if gcd(p, q) ̸= 1, which is equivalent to gcd(p, q) =
ri with high probability, since p/ri is a large prime and the probability that
10 That is, ptd[0 : 4] = p[124 : 128] for all p, and ptpi [0 : 2] = q∗[126 : 128] for all q∗.
11 There is a possibility that d∗ mod (p − 1)(q − 1) = 0 where d∗ ← d ′ + (d mod 21968)

and d is the original value encrypted in ct. Because of the uncaught non-termination
bug arising during the computation of (d∗)−1 mod (p − 1)(q − 1), in this case the
attack would fail, but this is highly unlikely to happen in practice.
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q ≡ 0 (mod (p/ri)) is ≈ 1/(p/ri) ≤ 2−1016. Hence ⊥5 is triggered if and only if
q mod ri = 0, and hence if and only if B = (216)−1·(−21023−2128+16·t−1) mod ri .
Thus we have B∗

i ≡ B (mod ri). The rest of the analysis follows as for the simpler
version of the attack.
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Fig. 8. Number of login attempts used by the attack over 500 runs.

Cost. The attack requires the same number of online login attempts as the
simpler version in Section 3.1. We confirmed this in our implementation: in 500
runs of the attack recovering random ECB-encrypted blocks, the average number
of login attempts required by the full version of the attack was 632 ≈ 29.30. The
histogram is shown in Fig. 8.

4 Attack based on small subgroups

Here, we present our second AES-ECB decryption attack. In terms of login
attempts it is less efficient than the attack in Section 3. However it requires fewer
uses of the ECB encryption oracle. Further, it exploits a number of additional
errors and also behaviours resulting from the “legacy” check on the second byte
of the RSA plaintext.

The attack is also in the malicious server/TLS-MitM setting and uses the ECB
encryption oracle from Section 2.2 with the aim of recovering blocks of d from
the original privk (or any other AES-ECB-encrypted blocks that can be placed
in their position). It exploits the errors ⊥2 and ⊥3 arising on line 5 and line 6
of DecPrivkAndSid(kM, [privk∗]kM , c

∗, uh∗) in Fig. 5 for an adversarially supplied
privk∗ (created with the help of the ECB encryption oracle), c∗ and uh∗. It
also requires working around some of the uncaught exceptions described in
Section 2.3. To reach the needed error, the checks that trigger the earlier errors
⊥1,⊥4,⊥5,⊥6 and ⊥7 must all be satisfied: uh∗ must be a UTF-8 string of size 11,
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privk∗ must encode q∗, p∗, d∗, u∗ of sufficient length such that gcd(q∗, p∗) = 1
and gcd(d∗, (p∗ − 1)(q∗ − 1)) = 1 so that the corresponding inverses exist,
u∗ = (q∗)−1 mod p∗ and c∗ < N ∗ where N ∗ = p∗ · q∗.

Under these constraints, observe that DecryptSid(sk , c∗) behaves differently de-
pending on whether the second byte of the decrypted value m∗ ← (c∗)d

∗
mod N ∗

is 00, where m∗ is first zero-padded to the length of N ∗ to form m∗. Suppose the
server supplied p∗, q∗ such that |N ∗|B = 256. Let m← DecryptSid(sk , c∗) and m′

be the intermediate value such that m = m′[2 : |m′|B]. Then, based on the error
returned by the client, the server can distinguish the following two cases:

– Case (⊥2, 254): This means that |m|B = 254, so |m′|B = 256 = |N ∗|B = |m∗|B,
so the condition on line 9 was not satisfied, i.e. m∗[1] = 00.12

– Case ⊥3: This means that |m|B = 255, so |m′|B = 257 = |N ∗|B + 1 = |m∗|B + 1,
which can only arise if m′ = 00 ∥ m∗ and so m∗[1] ̸= 00.

A similar case analysis can be done for arbitrary values of |N ∗|B; then the errors
may be swapped. However due to the bugs in the modular power implementation
in MEGA code, the attack actually only works for |N ∗|B ≤ 256.

We explain next how to exploit this behavioural difference to leak information
about a target user’s RSA private key.

The server constructs [privk∗]kM using the ECB encryption oracle such that in
the “d ” field it knows the plaintext for all blocks except the least-significant
full block. That block will be the target of the attack; it can be an arbitrary
AES-ECB-encrypted block [B ]kM . Let d∗ denote the “d ” component constructed
in this way. The server must also precompute p∗, q∗ of a special form and a
number of values m∗ with m∗[1] = 00 such that it can interpret one of the errors
arising on decryption of a corresponding ciphertext as confirmation of a correct
“guess”.

At a high level, the primes p∗ and q∗ are constructed so that (p∗ − 1)(q∗ − 1)
contains small prime factors ri of a given bit length such that their product is
at least 128 bits.13 Let G = (Z/N ∗Z)× so that |G| = (p∗ − 1)(q∗ − 1). For each
factor ri , the server computes gi ∈ G such that gi has order ri and such that
a value ti ∈ {1, . . . , ri − 1} (or a set of such values Ti) exists with the property
that gi ti mod N ∗ has second byte 00 after zero-padding to the length of N ∗. The
value of u∗ is then set to (q∗)−1 mod p∗.

Then, in the online phase of the attack, the server submits privk∗ constructed
using the ECB encryption oracle to contain q∗, p∗, d∗, u∗. For each ri , it sets
xi = 1, 2, . . . , ri − 1 and submits c∗i,t ← gi

xi mod N ∗ until the client returns the

12 Note that the server does not know whether this is because prior to zero-padding, we
have |m∗|B ≤ |N

∗|B − 2 and therefore trivially m∗[1] = 00 or because |m∗|B = |N ∗|B
and m∗[1] = 00. However, the root cause is immaterial to our attack.

13 The factors do not need to be common between (p∗ − 1) and (q∗ − 1), and can be
freely distributed between the two.
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error that confirms the second byte of the decrypted value was 00 (which is
(⊥2, 254) in the case that |N ∗|B = 256 which we will use in the attack). Then,
based on the precomputed values it learns that, for the specific value xi triggering
the error, xi · d∗ ≡ ti (mod ri). Here d∗ is a value that is known except for its
least significant full block, where it contains B . From this equation, the value
of B (mod ri) can be recovered. Finally, using CRT and taking some care with
non-block-aligned inputs, allows recovery of the block B .

The attack is described in more detail in the following subsections, first a simpler
but less-efficient version and then the full version. The ECB encryption oracle
calls are shown as [x]kM ← OECBkM(x) as before. Since both versions of the attack
must “stitch” AES-ECB blocks together to create the final ciphertext, we provide
the algorithm in Fig. 9 to avoid repetition. This algorithm combines the chosen
values q∗, p∗, d′, u∗ so that they parse as expected, with the target block B being
placed in the position of the least-significant full block of d∗ and overwriting the
corresponding block of d′. This is visualised in Fig. 10.

Stitch(q∗, p∗, d′, u∗, [B ]kM)

1 : pt0 ← len(q∗) ∥ q∗ ∥ len(p∗) ∥ p∗ ∥ len(d′) ∥ d′[0 : 234]

2 : pad←$ ({0, 1}8)8 // random padding, could also be 00s

3 : pt1 ← d
′[250 : 256] ∥ len(u∗) ∥ u∗ ∥ pad

4 : [pt0]kM ← OECBkM(pt0)

5 : [pt1]kM ← OECBkM(pt1)

6 : ct
∗ ← [pt0]kM ∥ [B ]kM ∥ [pt1]kM

7 : return ct
∗

Fig. 9. Combining modified values produced using the ECB encryption oracle with the
target ciphertext block in the correct format, reusing known AES-ECB blocks where
possible. This assumes that |q∗|B = |p∗|B = |u∗|B = 128 and |d′|B = 256, as is the case
for legitimate MEGA keys.

Fig. 10. The plaintext content of ct∗, with the placement of the target block B in red.
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4.1 Simplified version

This version of the attack assumes a single ti value per factor, which simplifies
the presentation but imposes a high cost at the precomputation stage. Further,
there is a non-negligible probability of the attack aborting and thus failing to
complete. We will remove this restriction in the full version of the attack below.

Precomputation Take {r0, . . . , rn−1} where each ri is a prime such that |ri |b =

8, and n is such that
∣∣∣∏n−1

i=0 ri

∣∣∣
b
≥ 128. This imposes the constraint 16 ≤ n ≤ 19.

Let [B ]kM be the target ciphertext block.

1. Find primes p∗, q∗ such that |p∗|b = |q∗|b = 1024 and

p∗ = 2 ·

⌈n/2⌉−1∏
i=0

ri

 · p′ + 1, q∗ = 2 ·

 n−1∏
i=⌈n/2⌉

ri

 · q ′ + 1

where p′, q ′ is each a product of 2-4 large primes.14 Encode p∗, q∗ as byte
strings p∗, q∗.

2. Set N ∗ ← p∗ · q∗ and G← (Z/N ∗Z)×.

3. For i ∈ {0, . . . ,n − 1}:

(a) Find gi ∈ G of order ri , e.g. by sampling h ←$ G and computing
gi ← h(p∗−1)(q∗−1)/ri mod N ∗ until gi ̸= 1.

(b) Find a value ti ∈ {1, . . . , ri − 1} such that for m ← g tii mod N ∗; m ←
ZeroPad(m,N ∗), we have m[1] = 00. If no such ti is found or there are
multiple possible values, restart the precomputation.

4. Compute u∗ ← (q∗)−1 mod p∗ and encode it as a byte string u∗ with |u∗|b =
1024.

5. Let d ′ ← 22047 + 1 and encode it as a byte string d′ with |d′|b = 2048.

6. Obtain ct∗ ← Stitch(q∗, p∗, d′, u∗, [B ]kM). Let d∗ ← d ′ + 248 · B (where B is
the unknown target block) denote the unknown value in the “d ” field that
will arise on decrypting ct∗.15

Success probability. For random m ∈ G we have Pr[m[1] = 00] = 2−8. For
each factor ri the probability that Step 3b finds exactly one suitable ti is
(ri − 1) · 2−8 ·

(
1− 2−8

)ri−2, which is greater than 0.18 for 27 < ri < 28. However,
this needs to occur for all n factors where n ≥ 16 to get a product of sufficient
length to recover B using CRT, so the overall success probability is of the order
14 These primes could repeat, the goal here is to avoid (p∗− 1)(q∗− 1) having any other

small factors except for r0, . . . , rn−1.
15 Note that by the choice of d ′, overwriting the least significant full block of d ′ with B

is equivalent to adding 248 · B to d ′.
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≈ 2−39 or less. To reduce the required amount of precomputation, in Section 4.2
we increase the bit length of each factor to ensure that there is at least one
suitable ti for each ri and provide a strategy to disambiguate between multiple
fitting ti values.

Online attack Let R =
∏n−1

i=0 ri and ct∗, {gi}i∈I , {ti}i∈I be as computed
before, for I = {0, . . . ,n − 1}.

1. When the client initiates a login, respond to the client’s request with ([kM]ke ,
ct∗, [m]pk , uh), where everything but ct∗ is as it would be in an honest
response. If the client returns ⊥6, abort.

2. For i ∈ {0, . . . ,n − 1}, do the following:

(a) For x ∈ {1, . . . , ri − 1}, do the following:

i. Compute c∗i,x ← (gi)
x mod N ∗.

ii. When the client initiates a login, respond to the client’s request with
([kM]ke , ct

∗, c∗i,x , uh), where everything but ct∗ and c∗i,x is as it would
be in an honest response.16

iii. If the client returns (⊥2, 254), save the value of x and break out of
this loop.

(b) If there is a saved value x , then we have d∗ ≡ x−1 · ti (mod ri) for
unknown d∗.

3. Then, use CRT to compute d∗ mod R from the values collected in Step 2b.
Recall that by construction d∗ = d ′ + 248 · B , so d∗ = 22047 + 248 · B + 1.
Hence compute

B ≡
(
248

)−1 ·
(
d∗ − 22047 − 1

)
(mod R),

to recover the target plaintext block since |R|b ≥ 128.

Cost. In the worst case, the main cost of the online attack is
∑

i∈I(ri − 1) login
attempts. This is bounded from above by n · (28 − 1) ≈ 212.24 for n ≤ 19. In the
average case, for each i we expect Step 2a to conclude after approximately 1

2 · 2
8

trials, so the overall bound becomes n · 27 ≈ 211.24 for n ≤ 19.

Probability of abort. Note that the attack aborts if it receives error ⊥6. This error
is returned whenever the decrypted d∗ = d ′ + 248 · B is such that gcd(d∗, (p∗ −

16 An honest response refers to the data that an honest server would have sent. Note
that in this case, the “honest” uh will not match the value recovered from c∗i,x , but
this check only comes after the errors triggered by the attack. The attacker could
equally replace the uh value with an arbitrary 11-byte UTF-8 string.
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1)(q∗ − 1)) ̸= 1. Since d∗ is odd by construction,17 the error can only be caused
if at least one of the following is true:

– d∗ ≡ 0 (mod ri) for at least one ri ,

– d∗ ≡ 0 (mod p′
j ) for at least one p′

j | p′, or

– d∗ ≡ 0 (mod q ′k ) for at least one q ′k | q ′.

The values p′
j , q

′
k are large primes by construction, so the probability of an abort

being caused by those cases is negligible. However, each factor ri is only 8 bits
in size, which means that assuming a random B the probability that the attack
aborts because d∗ ≡ 0 (mod ri) for at least one ri is bounded by n · 2−7 ≈ 0.15
with n ≤ 19. In Section 4.2, we discuss strategies for avoiding the abort.

Correctness. Now, assume the attack does not abort. By construction, the
values of q∗, p∗, d ′, u∗ pass the check on bit length, we have gcd(q∗, p∗) = 1,
u∗ = (q∗)−1 mod p∗ and all c∗i,x < N ∗. During DecryptSid(sk , c∗i,x ), the client

will compute m =
(
c∗i,x

)d∗

mod N ∗ = (gi)
x ·d∗

mod N ∗. If it is the case that
m = (gi)

ti mod N ∗ and therefore x · d∗ ≡ ti (mod ri), the second byte of
zero-padded m will be 00 and so the client will return (⊥2, 254) to the server.
Otherwise, it will proceed with the computation and with very high probability
return ⊥3, since the uh value will not match the relevant substring of m. Hence
the attack recovers the target plaintext block.

4.2 Full version

Here, we provide strategies to improve the running time and the success probability
of our second attack. First, we discuss the use of multiple ti values per factor ri ,
incorporate this into the attack and show the effect of this strategy. For practical
purposes, this strategy is already sufficient to reduce the precomputation cost
and the likelihood of aborts.

In this version of the attack, we increase the bit length of the factors ri . As a
result, the probability of finding a suitable ti value during precomputation is
increased. However this also implies that there will be more than one such value.
We therefore have to also amend the online part of the attack to provide a way
of determining which t ∈ Ti value has caused the expected error for a given x .
There are multiple ways in which this could be achieved, and here we describe
one option.

Take ri , Ti and assume that we got the (⊥2, 254) error for some x ∈ {1, . . . , ri − 1}.
We can test each potential value tj ∈ Ti by submitting another query c∗i,xj ←
(gi)

xj mod N ∗ where xj ← x · t−1
j mod ri . If the guess for tj is correct, we have

17 This is also why we cannot make the block-aligned simplification for this attack,
because if we aligned it such that the least-significant block of d∗ is full and therefore
placed our target block B there, then if B ≡ 0 (mod 2) the client would output error
⊥6 on all queries.
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x · d∗ ≡ tj (mod ri), and so decryption of c∗i,xj will produce (gi)
xj ·d∗

mod N ∗ =

(gi)
x ·t−1

j ·d∗
mod N ∗ = gi as the plaintext. Then, as long as gi is such that its

second byte is not 00, which we can ensure in the precomputation phase, the
check that produces ⊥2 will pass. Since the server knows gi and is able to set uh
to arbitrary 11-byte values, it can also make sure to pass the check that produces
⊥3, and therefore get 43 bytes of gi from the client via the returned sid value
when the guess is correct. However, if the guess is not correct, it is very unlikely
that the server-modified uh would match the resulting plaintext, leading to ⊥3.
So the server can distinguish between the two cases.

Precomputation Take {r0, . . . , rn−1} where each ri is a prime such that |ri |b =

12, and n is such that for R ←
∏n−1

i=0 ri we have |R|b ≥ 128, so 11 ≤ n ≤ 12. Let
[B ]kM be the target ciphertext block.

1. Find primes p∗, q∗ such that |p∗|b = |q∗|b = 1024 and

p∗ = 2 ·

⌈n/2⌉−1∏
i=0

ri

 · p′ + 1, q∗ = 2 ·

 n−1∏
i=⌈n/2⌉

ri

 · q ′ + 1

where p′, q ′ is each a product of 2-4 large primes. Encode p∗, q∗ as byte
strings p∗, q∗.

2. Set N ∗ ← p∗ · q∗ and G← (Z/N ∗Z)×.

3. For i ∈ {0, . . . ,n − 1}:

(a) Find g ∈ G of order ri , e.g. by sampling h ←$ G and computing g ←
h(p∗−1)(q∗−1)/ri mod N ∗ until g ̸= 1.

(b) Initialise Ti = ∅.

(c) For t ∈ {1, . . . , ri − 1}, do the following:

i. Let g′ ← ZeroPad(g ′,N ∗) for g ′ ← g t mod N ∗.

ii. If g′[1] = 00, add t to Ti . Else if g′[17 : α] for some α ≥ 28 is a valid
UTF-8 string of size 1118, save gi ← g ′, a ← t and uh∗i ← g′[17 : α].

(d) If Ti = ∅ or a is undefined, restart the precomputation.

(e) Shift Ti by replacing each t ∈ Ti by t · a−1 mod ri . This ensures that the
values in Ti are with respect to the new generator gi instead of g .

4. Compute u∗ ← (q∗)−1 mod p∗ and encode it as a byte string u∗ with |u∗|b =
1024.

18 Note that an 11 B byte string interpreted as a valid UTF-8 string will likely not be a
string of size 11, i.e. a string consisting of 11 characters, since not all byte values are
interpreted as text and non-ASCII characters require multiple bytes to encode [38].
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5. Compute d ′ ← 22047 + 248+128 · δ + 1 for δ < R such that d ′ ≡ 0 (mod R).
Encode it as a byte string d′ with |d′|b = 2048.

6. Obtain ct∗ ← Stitch(q∗, p∗, d′, u∗, [B ]kM).

Success probability. Increasing the bit length of the factors means that now
for each factor ri the probability that Step 3(c)ii finds at least one suitable t
is 1 − (1 − 2−8)ri−1, which is greater than 0.9996 for 211 < ri < 212. Across
all n factors for n ≤ 12, it is still greater than 0.99. Next, the probability
that a random 11-byte string is a valid UTF-8 string is ≈ 0.001634. Hence
for each factor ri the probability that at least one such string will be found
is 1 − (1 − 0.001634)ri−1 > 0.9648, and across all factors it is at least 0.65. In
practice, if the precomputation fails at this point, it can simply be re-run again
with different ri values.

Cost. This version tests all possible values of t for every ri , so overall it must
check at most n · 212 ≈ 215 values of g t (these can however be cycled through for
each ri). The prime generation is a one-time cost in the sense that the values
can be reused in attacks on multiple users. Finally, since d ′ will be composed
mostly of zero-blocks, building the ciphertext ct∗ requires up to 15 uses of the
ECB encryption oracle (which, recall, produces 2 blocks at a time).

Online attack Let ct∗, {gi}i∈I , {Ti}i∈I be the values computed before where
I = {0, . . . ,n − 1}.

1. When the client initiates a login, respond to the client’s request with ([kM]ke ,
ct∗, [m]pk , uh), where everything but ct∗ is as it would be in an honest
response. If the client returns ⊥6, abort.

2. For i ∈ I, do the following:

(a) For x ∈ {2, . . . , ri − 1}, do the following:

i. Compute c∗i,x ← (gi)
x mod N ∗.

ii. When the client initiates a login, respond to the client’s request with
([kM]ke , ct

∗, c∗i,x , uh), where everything but ct∗ and c∗i,x is as it would
be in an honest response.

iii. If the client returns (⊥2, 254), save the value of x and break out of
this loop.

(b) If Ti = {ti} has a single element, skip this step. Otherwise, for t ∈ Ti , do
the following:

i. Let x ′ ← x · t−1 mod ri .

ii. Compute c∗i,x ′ ← (gi)
x ′

mod N ∗.
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iii. When the client initiates a login, respond to the client’s request with
([kM]ke , ct

∗, c∗i,x ′ , uh∗i ), where only [kM]ke is as it would be in an honest
response.

iv. If the client returns sid = gi [1 : 44], save the value ti ← t and break
out of this loop.

(c) We have that d∗ = d ′ +248 ·B ≡ x−1 · ti (mod ri), and so B ≡
(
248

)−1 ·
x−1 · ti (mod ri).

3. Then, use CRT to compute B mod R from the values collected in Step 2c,
which in turn recovers the target plaintext block since |R|b ≥ 128.

Success probability. As in the attack in Section 4.1, this attack aborts if it receives
error ⊥6. However, the probability that this happens becomes smaller with the
increased bit length of the factors ri . Assuming a random B , for 12-bit factors
the probability of an abort is bounded by n · 2−11 ≈ 0.006 with n ≤ 12. In the
full version of this work we give a more complex attack strategy that avoids the
abort altogether.

In practice, the attack’s success probability may be impacted by another factor,
namely differing implementations of UTF-8 validation. Suppose that the values
g produced in Step 3(c)ii of the precomputation in Section 4.2 have valid UTF-
8 substrings of size 11 in Python: this does not guarantee that they will be
interpreted as such by the Javascript webclient. This requires implementing
additional strategies for disambiguation in case the UTF-8-based one never yields
the expected sid request.19

Cost. In the worst case, the main cost of the online phase of the attack is the∑
i∈I(ri − 1) login attempts needed. This is bounded by n · (212 − 1) ≈ 215.58 for

n ≤ 12. In the average case, for each i we expect Step 2a to conclude after at
most 28 trials and Step 2b to finish after around 1

2 · |Ti | ≈
1
2 · ri ·2

−8 trials. Added
together, the number of login attempts needed in the average case is bounded by
n · (28 + 1

2 · 2
12 · 2−8) ≈ 211.63 for n ≤ 12. Performing the experimental analysis

over a large number of runs as in Section 3.2 would be more difficult due to
the interaction between the disambiguation strategies and the web client with
automated logins, which causes the web client to freeze or begin sending requests
in large batches. This can impact the success rate (in particular, the attack may
produce one x or t value that is slightly off) and hinders automating the attack.
We stress that this is purely an artefact of our proof-of-concept implementation.

19 One alternative is to instead for all t ∈ Ti submit x ′ ← x · t−1 · tj mod ri for some
tj ∈ Ti , tj ̸= t , and use the original error (⊥2, 254) as the confirmation signal. This
still has a potential for false positives and false negatives, however. A final, and most
expensive, failover strategy is then to cycle through all values of x , saving the ones
for which the client returns (⊥2, 254) and then running an offline computation to
determine which x values are matched to which t values.
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Note that to keep the presentation of the attacks simpler, we have assumed specific
values of |ri |b and thus constrained the value of n. In reality, using different values
would allow making a different tradeoff between the precomputation cost and the
number of login attempts needed in the online phase. For instance, using 10-bit
primes would lower the (online) worst-case bound to n·(210−1) ≈ 213.91 for n ≤ 15,
but slightly increase the (online) average-case bound to n ·(28+ 1

2 ·2
10·2−8) ≈ 211.92

login attempts. It would also make the precomputation phase much less likely
to succeed in a single run: the probability of finding suitable t values for all ri
would fall to around 0.11, while the probability of finding generators with suitable
UTF-8 substrings for all ri would only be around 0.0002.

5 Recovering the RSA private key

Our attacks in Sections 3 and 4 can be seen as building generic AES-ECB
decryption oracles. In this section, we turn this capability into an RSA private key
recovery attack. Naively we would expect to call our costly AES-ECB decryption
oracle up to nine times: each factor p, q of N has 1024 bits, but these are not
perfectly aligned with AES block boundaries, necessitating to cover (partial)
plaintexts from nine different 128-bit blocks. However, using a post-processing
stage, we can reduce this number to four.

In particular, as illustrated in Fig. 4, the block alignments of p and q differ. For
reasons that will become apparent below we will need to recover at least 512
bits. Based on the specific alignments, we will aim to recover the 512+16 least
significant bits of q: 512 bits (i.e. four 128-bit blocks) are recovered using the
attacks from Sections 3 and 4 and the least significant 16 bits are “recovered”
using exhaustive search (which avoids the query cost of recovering a fifth block).
If instead we targeted p, we would need to recover 32 bits using exhaustive search,
which would have prohibitive cost. Thus, next, we discuss how to recover the
remaining bits of q given the ℓ = 512+ 16 least significant bits of q. In particular,
we will solve the following computational problem.

Definition 1. Let N = p · q be a 2048-bit RSA modulus with p, q having 1024
bits each. Given ℓ consecutive least significant bits of q, recover q.

Our approach is a simple combination of exhaustive search, lattice reduction and
root finding over Z following Coppersmith’s method [6]. In particular, we use
the Howgrave-Graham variant [8,9,14,29] of this algorithm. Let ⌈log2 q⌉ − ℓ <
1024, q = 2⌈log2 q⌉−ℓ · r + q′0, where r are the bits we are trying to recover
and |q′0| ≤ 2ℓ are the known bits of q. Then r satisfies f ′(x) ≡ 0 mod q for
f ′(x) := q′0 + 2⌈log2 q⌉−ℓ · x mod q. Given this we can consider

q0 := 2−⌈log2 q⌉+ℓ · q′0 and f(x) := q0 + x mod q

and note that r still satisfies f(x) ≡ 0 mod q. That is, we translate our problem
into one where the most significant bits are known rather than the least significant
ones, cf. [29].
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From this, the algorithm proceeds by constructing several polynomials that
evaluate to zero modulo q or a multiple thereof, such as (powers of) N . In more
detail, Let h ≥ 2 ∈ N and u < h ∈ N, for 0 ≤ i < h we let

fi(x) :=

{
Nu−i · (q0 + x)

i for 0 ≤ i < u,

xi−u · (q0 + x)
u for u ≤ i < h.

For example, picking h = 4 and u = 2 we get

N2, N · q0 +N · x, q20 + 2 q0 · x+ x2 and q20 · x+ 2 q0 · x2 + x3.

First, note that all fi(x) evaluate to zero modulo qu at the correct r. Second,
note the maximal degree of the fi(x) is h− 1, i.e. max0≤i<h(deg(fi(x))) = h− 1
and thus each polynomial has at most h coefficients.

Now, letting X = 2⌈log2 q⌉−ℓ and f
(j)
i denote the coefficient of xj in fi(x), we

construct a matrix A where the entry Ai,j := f
(j)
i · Xj . Continuing with our

example, we would have

A :=


N2 0 0 0

N · q0 N ·X 0 0
q20 2 q0 ·X X2 0
0 q20 ·X 2 q0 ·X2 X3

 .

Since the matrix is triangular we can read off the determinant det(A) =
Nu·(u+1)/2 · Xh·(h−1)/2. The rows of this matrix A span a lattice which con-
tains a vector v of Euclidean norm ∥v∥ ≤

√
h ·

(
Nu·(u+1)/2 ·Xh·(h−1)/2

)1/h
by

Minkowski’s theorem. In other words, there exists an integer-linear combination
of the rows of A that produces a vector with at most this Euclidean norm.
Using lattice reduction we can find this shortest vector.20 Now, given a vector of
Euclidean norm ∥v∥ we know that its ℓ1 norm, i.e. the sum of the absolute values
of its entries, is bounded by |v|1 ≤

√
h · ∥v∥. Finally, if v ̸= 0 and |v|1 ≤ qu,

we can extract a polynomial that evaluates to zero modulo qu on r but which
evaluated at r is strictly smaller than qu.21 In other words, this polynomial
evaluates to zero at r over Z. The algorithm concludes by finding the roots of
this polynomial, which can be accomplished in polynomial time (and efficiently
in practice).

To select h and u, by abuse of notation let h also be a formal variable and set
u := 1/2 · h− 1. As in [8, p.102], we then find a root > 0 of

1024− ℓ

2048
· h · (h− 1)− u · h+ u · (u+ 1).

20 The traditional presentation of this algorithm invokes the LLL algorithm which gives
a short vector that is at most an exponential factor away from the shortest vector.
However, the lattice dimensions involved here are in the range where the shortest
vector problem (SVP) can be solved efficiently in practice – say, up to dimension
150 [7] – and we may thus simply assume we solve SVP. In any case, the exponential
factor is ≈ 1.0219h which is < 3 for h ≤ 50.

21 We extract g(x) as g(j) := vj/X
j ∈ Z.
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This succeeds for ℓ > 512 and the solution grows as ℓ approaches 512 from above.

As mentioned above, in our setting we consider ℓ = 512 + 16: We run the attack
from Section 3 on four blocks to recover 512 bits and run an exhaustive search
over the remaining 16 bits (which are contained in a non-aligned block). In this
setting, we picked h = 36 and u = 18. In our experiments, using LLL, finding
a sufficiently short vector takes about 26 seconds on a Intel(R) Xeon(R) Gold
6252 CPU @ 2.10GHz using SageMath/FPLLL [33,34]. In 1024 experiments, we
obtained a success rate of 100%. Thus, we expect to be able to recover q in time
216 · 26 seconds, or about 20 core days.22

The overall cost of the RSA private key recovery attack is 4 ·29.29 = 211.29 ≈ 2500
login attempts, 66 ECB encryption oracle calls, and about 20 core days of
computation (using the attack of Section 3 in combination with the attack in
this section).

6 Attacking unpatched clients

We briefly revisit the attacks of [2] against unpatched MEGA clients in the light
of our discovery of the ECB encryption oracle described in Section 2.2.

Attack 1 in [2] uses an estimated 512 logins to recover a target user’s RSA private
key. The number of logins required was subsequently reduced to 6 in [31] by using
more sophisticated lattice techniques.

Attack 2 in [2] then exploits knowledge of that private key to recover two blocks
of AES-ECB plaintext per login. This is done by overwriting two blocks of the
encrypted version of u with the target AES-ECB ciphertext blocks and selecting
a carefully crafted RSA ciphertext in the authentication protocol; the session ID
returned by the client in that protocol then leaks the two AES-ECB plaintext
blocks. This approach is used to build an efficient procedure for recovering file
encryption keys in [2].

Interestingly, however, the RSA private key used in Attack 2 in [2] does not need
to be the target user’s true key – it only needs to be a key known to the adversary
and any valid RSA private key (in the appropriate format) will do. Hence, an
adversary can use the ECB encryption oracle to create a suitably encrypted,
known RSA private key. By carefully reusing all-zero blocks for most of q, p
and d, the number of ECB encryption oracle calls needed can be made as small
as 7. The adversary then applies Attack 2 from [2] with the target AES-ECB
ciphertext blocks being selected from those encrypting the least significant bits
22 We note that this computation is “proudly parallel” or “embarrassingly parallel”. This

is because for each of our 216 guesses we can run an independent lattice reduction.
We also note that the running time is independent of whether the input instance
corresponds to a correct or incorrect guess. Moreover, incorrect solutions resulting
from incorrect guesses can be filtered out using the known public key.
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of q (from the actual private key). With two applications of the attack, the
adversary recovers 4 plaintext blocks, or 512 bits of q. Applying the lattice attack
from Section 5, the adversary recovers the full RSA private key.

The cost of the attack is 2 login attempts and a small number of ECB encryption
oracle calls.

Note that Attack 2 of [2] is prevented by patched MEGA client code because
of the requirement that the client-selected 11-byte string uh appear in m at a
specific location and because overwriting u with a target ciphertext would make
the check at line 10 in DecodePrivk(privk) fail.

7 Discussion and future work

On the one hand, the conclusion to be drawn from this work for practitioners
and designers is no different from the one derived from [2]. The root causes
at play here were already identified in [2], whose suggestion of protecting the
integrity of encrypted keys using a MAC would have prevented the attacks in this
work as well. Further, the existence of the ECB encryption oracle in a feature
completely separate from the attacked protocol highlights the continued fragility
of the MEGA infrastructure, made possible also by the lack of key separation.

However, our attacks also highlight issues going beyond the ones exposed in
previous works. First, some of the errors that our attacks exploit as oracles
are not explicit, but derive from bugs in the big integer arithmetic provided
by asmcrypto.js. This presents a challenge already mentioned in [3] which
called for a verified big integer library that could serve as a common core for
different projects. In the case considered here, such a library would need to be
cross-compilable to JavaScript or WebAssembly. We consider this a pressing area
for future work.

There are also further lessons to be drawn for a cryptanalytic audience. First,
our attacks serve as an additional example of key overwriting attacks [2,5,10],
a class of attacks that appears to deserve more exploration in terms of targets
(deployed in practice) and attack refinement. Moreover, our attacks make use of
the detailed and verbose error reporting by MEGA clients. This enables powerful
side-channel attacks that can be observed remotely,23 highlighting the practical
significance of these classes of attacks. Finally, our work, along with other recent
works attacking widely deployed protocols such as [1, 5, 11, 32, 37], underlines
that while it might seem that the “golden age” of cryptographic attacks against
deployed protocols is over – given the level of academic involvement and formal
rigour that went into the design of TLS 1.3 – the target has simply moved up
the stack. As cryptographic applications move beyond “simple” protection of
data in transit or at rest, more complex cryptographic solutions are deployed at
scale, often without significant input from the cryptographic community. This
23 In contrast to timing-based side-channel attacks, generally considered less practical

in the remote, as opposed to local, setting.
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suggests a broad and impactful field for cryptanalysis of targets “in the wild”.
It is well known that attacks are typically required to convince practitioners to
adopt cryptographic recommendations. This in turn suggests that to achieve
the adoption of more secure and formally analysed cryptographic solutions in
practice, further cryptanalytical work on the “current generation” of deployed
solutions is needed.

Finally, the two attacks presented in this work require a large number of login
attempts. This was also the case for the first attack of [2] and used as an argument
by MEGA that the attack was not practical. However, later work by [31] reduced
the number of login attempts to six, and we have further reduced it to just two.
Beyond reinforcing the truism that attacks only get better, this poses the open
problem to improve the attacks presented in this work in terms of login attempt
complexity.
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