Skip to main content

Fusing Local and Global Mobility Patterns for Trajectory Recovery

  • Conference paper
  • First Online:
  • 2023 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13943))

Abstract

The prevalence of various mobile devices translates into a proliferation of trajectory data that enables a broad range of applications such as POI recommendation, tour recommendation, urban transportation planning, and the next location prediction. However, trajectory data in real-world is often sparse, noisy and incomplete. To make the subsequent analysis more reliable, trajectory recovery is introduced as a pre-processing step and attracts increasing attention recently. In this paper, we propose a neural attention model based on graph convolutional networks, called TRILL, to enhance the accuracy of trajectory recovery. In particular, to capture global mobility patterns that reflect inherent spatio-temporal regularity in human mobilities, we construct a directed global location transition graph and model the mobility patterns of all the trajectories at point level using graph convolutional networks. Then, a self-attention layer and a window-based cross-attention layer are sequentially adopted to refine the representations of missing locations by considering intra-trajectory and inter-trajectory information, respectively. Meanwhile, an information aggregation layer is designed to leverage all the historical information. We conduct extensive experiments using real trajectory data, which verifies the superior performance of the proposed model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abu-El-Haija, S., Kapoor, A., Perozzi, B., Lee, J.: N-GCN: multi-scale graph convolution for semi-supervised node classification. In: UAI (2019)

    Google Scholar 

  2. Alwan, L.C., Roberts, H.V.: Time-series modeling for statistical process control. J. Bus. Econ. Stat. 6(1), 87–95 (1988)

    Google Scholar 

  3. Chen, G., Viana, A.C., Fiore, M., Sarraute, C.: Complete trajectory reconstruction from sparse mobile phone data. EPJ Data Sci. 8(1), 1–24 (2019). https://doi.org/10.1140/epjds/s13688-019-0206-8

    Article  Google Scholar 

  4. Chen, M., Zuo, Y., Jia, X., Liu, Y., Yu, X., Zheng, K.: CEM: a convolutional embedding model for predicting next locations. TITS 22, 3349–3358 (2021)

    Google Scholar 

  5. Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in location-based social networks. In: KDD (2011)

    Google Scholar 

  6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2019)

  7. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2021)

  8. Feng, J., et al.: Deepmove: predicting human mobility with attentional recurrent networks. In: WWW (2018)

    Google Scholar 

  9. Gambs, S., Killijian, M.O., del Prado Cortez, M.N.: Next place prediction using mobility Markov chains. In: MPM 2012 (2012)

    Google Scholar 

  10. González, M.C., Hidalgo, C.A., Barabasi, A.L.: Understanding individual human mobility patterns. Nature 453(7196), 779–782 (2008)

    Article  Google Scholar 

  11. Güting, R.H., Schneider, M.: Realm-based spatial data types: the ROSE algebra. VLDB J. 4, 243–286 (2005)

    Article  Google Scholar 

  12. Keikha, M.M., Rahgozar, M., Asadpour, M.: Community aware random walk for network embedding. arXiv preprint arXiv:1710.05199 (2018)

  13. Kipf, T., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2017)

  14. Li, G., Xiong, C., Thabet, A.K., Ghanem, B.: DeeperGCN: all you need to train deeper GCNs. arXiv preprint arXiv:2006.07739 (2020)

  15. Li, L., Li, Y., Li, Z.: Efficient missing data imputing for traffic flow by considering temporal and spatial dependence. Transp. Res. Part C Emerg. Technol. 34, 108–120 (2013)

    Article  Google Scholar 

  16. Li, X., Zhao, K., Cong, G., Jensen, C.S., Wei, W.: Deep representation learning for trajectory similarity computation. In: ICDE, pp. 617–628 (2018)

    Google Scholar 

  17. Liu, Q., Wu, S., Wang, L., Tan, T.: Predicting the next location: a recurrent model with spatial and temporal contexts. In: AAAI (2016)

    Google Scholar 

  18. Moritz, S., Bartz-Beielstein, T.: imputeTS: time series missing value imputation in R. R J. 9, 207 (2017)

    Article  Google Scholar 

  19. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: KDD (2014)

    Google Scholar 

  20. Salakhutdinov, R., Mnih, A.: Probabilistic matrix factorization. In: NIPS (2007)

    Google Scholar 

  21. Schneider, C., Belik, V., Couronné, T., Smoreda, Z., González, M.C.: Unravelling daily human mobility motifs. J. R. Soc. Interface 10 (2013)

    Google Scholar 

  22. Su, H., Cong, G., Chen, W., Zheng, B., Zheng, K.: Personalized route description based on historical trajectories. In: CIKM (2019)

    Google Scholar 

  23. Sun, H., Yang, C., Deng, L., Zhou, F., Huang, F., Zheng, K.: Periodicmove: shift-aware human mobility recovery with graph neural network. In: CIKM (2021)

    Google Scholar 

  24. Sun, K., Qian, T., Chen, T., Liang, Y., Nguyen, Q.V.H., Yin, H.: Where to go next: modeling long- and short-term user preferences for point-of-interest recommendation. In: AAAI (2020)

    Google Scholar 

  25. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: Large-scale information network embedding. In: WWW (2015)

    Google Scholar 

  26. Vaswani, A., et al.: Attention is all you need. arXiv preprint arXiv:1706.03762 (2017)

  27. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio’, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2018)

  28. Wang, J., Wu, N., Lu, X., Zhao, W.X., Feng, K.: Deep trajectory recovery with fine-grained calibration using Kalman filter. TKDE 33, 921–934 (2021)

    Google Scholar 

  29. Wu, S., Tang, Y., Zhu, Y., Wang, L., Xie, X., Tan, T.: Session-based recommendation with graph neural networks. arXiv preprint arXiv:1811.00855 (2019)

  30. Xi, D., Zhuang, F., Liu, Y., Gu, J., Xiong, H., He, Q.: Modelling of bi-directional spatio-temporal dependence and users’ dynamic preferences for missing poi check-in identification. In: AAAI (2019)

    Google Scholar 

  31. Xia, T., et al.: Attnmove: history enhanced trajectory recovery via attentional network. In: AAAI (2021)

    Google Scholar 

  32. Yang, D., Zhang, D., Zheng, V.W., Yu, Z.: Modeling user activity preference by leveraging user spatial temporal characteristics in LBSNs. IEEE Trans. Syst. Man Cybern.: Syst. 45, 129–142 (2015)

    Article  Google Scholar 

  33. Zhan, X., Zheng, Y., Yi, X., Ukkusuri, S.V.: Citywide traffic volume estimation using trajectory data. TKDE 29(2), 272–285 (2016)

    Google Scholar 

  34. Zhang, Y., Liu, A., Liu, G., Li, Z., Li, Q.: Deep representation learning of activity trajectory similarity computation. In: ICWS, pp. 312–319 (2019)

    Google Scholar 

  35. Zhao, J., Xu, J., Zhou, R., Zhao, P., Liu, C., Zhu, F.: On prediction of user destination by sub-trajectory understanding: a deep learning based approach. In: CIKM (2018)

    Google Scholar 

  36. Zhao, P., Xu, X., Liu, Y., Sheng, V., Zheng, K., Xiong, H.: Photo2Trip: exploiting visual contents in geo-tagged photos for personalized tour recommendation. In: MM (2017)

    Google Scholar 

  37. Zhao, Y., Shang, S., Wang, Y., Zheng, B., Nguyen, Q.V.H., Zheng, K.: Rest: a reference-based framework for spatio-temporal trajectory compression. In: SIGKDD, pp. 2797–2806 (2018)

    Google Scholar 

  38. Zheng, Y., Capra, L., Wolfson, O., Yang, H.: Urban computing: concepts, methodologies, and applications. TIST 5, 38:1–38:55 (2014)

    Google Scholar 

  39. Zheng, Y., Xie, X., Ma, W.Y.: GeoLife: a collaborative social networking service among user, location and trajectory. IEEE Data Eng. Bull. 33, 32–39 (2010)

    Google Scholar 

Download references

Acknowledgements

This work is partially supported by NSFC (No. 61972069, 61836007 and 61832017), Shenzhen Municipal Science and Technology R &D Funding Basic Research Program (JCYJ20210324133607021), and Municipal Government of Quzhou under Grant No. 2022D037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deng, L., Zhao, Y., Sun, H., Yang, C., Xie, J., Zheng, K. (2023). Fusing Local and Global Mobility Patterns for Trajectory Recovery. In: Wang, X., et al. Database Systems for Advanced Applications. DASFAA 2023. Lecture Notes in Computer Science, vol 13943. Springer, Cham. https://doi.org/10.1007/978-3-031-30637-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30637-2_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30636-5

  • Online ISBN: 978-3-031-30637-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics