Skip to main content

Learned Bloom Filter for Multi-key Membership Testing

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13943))

Included in the following conference series:

Abstract

Multi-key membership testing refers to checking whether a queried element exists in a given set of multi-key elements, which is a fundamental operation for computing systems and networking applications such as web search, mail systems, distributed databases, firewalls, and network routing. Most existing studies for membership testing are built on Bloom filter, a space-efficient and high-security probabilistic data structure. However, traditional Bloom filter always performs poorly in multi-key scenarios. Recently, a new variant of Bloom filter that has combined machine learning methods and Bloom filter, also known as Learned Bloom Filter (LBF), has drawn increasing attention for its significant improvements in reducing space occupation and False Positive Rate (FPR). More importantly, due to the introduction of the learned model, LBF can well address some problems of Bloom filter in multi-key scenarios. Because of this, we propose a Multi-key LBF (MLBF) data structure, which contains a value-interaction-based multi-key classifier and a multi-key Bloom filter. To reduce FPR, we further propose an Interval-based MLBF, which divides keys into specific intervals according to the data distribution. Extensive experiments based on two real datasets confirm the superiority of the proposed data structures in terms of FPR and query efficiency.

Y. Li, Z. Wang and R. Yang—Both authors contribute equally to this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.imdb.com/.

  2. 2.

    https://labs.criteo.com/.

References

  1. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7), 422–426 (1970)

    Article  MATH  Google Scholar 

  2. Bonomi, F., Mitzenmacher, M., Panigrahy, R., Singh, S., Varghese, G.: An improved construction for counting bloom filters. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 684–695. Springer, Heidelberg (2006). https://doi.org/10.1007/11841036_61

    Chapter  Google Scholar 

  3. Cai, M., Pan, J., Kwok, Y.K., Hwang, K.: Fast and accurate traffic matrix measurement using adaptive cardinality counting. In: SIGCOMM Workshop, pp. 205–206 (2005)

    Google Scholar 

  4. Chang, F., et al.: Bigtable: A distributed storage system for structured data. TOCS 26(2), 1–26 (2008)

    Article  Google Scholar 

  5. Dai, Z., Shrivastava, A.: Adaptive learned bloom filter (ADA-BF): efficient utilization of the classifier with application to real-time information filtering on the web. NIPS 33, 11700–11710 (2020)

    Google Scholar 

  6. Fan, B., Andersen, D.G., Kaminsky, M., Mitzenmacher, M.D.: Cuckoo filter: practically better than bloom. In: CoNEXT, pp. 75–88 (2014)

    Google Scholar 

  7. Fan, L., Cao, P., Almeida, J., Broder, A.Z.: Summary cache: a scalable wide-area web cache sharing protocol. SIGCOMM 28(4), 254–265 (1998)

    Article  Google Scholar 

  8. Flajolet, P., Fusy, É., Gandouet, O., Meunier, F.: HyperLogLog: the analysis of a near-optimal cardinality estimation algorithm. In: Discrete Mathematics and Theoretical Computer Science, pp. 137–156 (2007)

    Google Scholar 

  9. Geravand, S., Ahmadi, M.: Bloom filter applications in network security: a state-of-the-art survey. Comput. Netw. 57(18), 4047–4064 (2013)

    Article  Google Scholar 

  10. Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: DeepFM: a factorization-machine based neural network for CTR prediction. In: IJCAI, p. 1725–1731 (2017)

    Google Scholar 

  11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  12. Kim, K., Ji, B., Yoon, D., Hwang, S.: Self-knowledge distillation with progressive refinement of targets. In: ICCV, pp. 6567–6576 (2021)

    Google Scholar 

  13. Kraska, T., Beutel, A., Chi, E.H., Dean, J., Polyzotis, N.: The case for learned index structures. In: SIGMOD, pp. 489–504 (2018)

    Google Scholar 

  14. LeCun, Y., et al.: Handwritten digit recognition: applications of neural network chips and automatic learning. IEEE Commun. Mag. 27, 41–46 (1989)

    Article  Google Scholar 

  15. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV, pp. 2980–2988 (2017)

    Google Scholar 

  16. Liu, Q., Zheng, L., Shen, Y., Chen, L.: Stable learned bloom filters for data streams. PVLDB 13(12), 2355–2367 (2020)

    Google Scholar 

  17. Mitzenmacher, M.: Compressed bloom filters. Trans. Netw. 10(5), 604–612 (2002)

    Article  MATH  Google Scholar 

  18. Mitzenmacher, M.: A model for learned bloom filters, and optimizing by sandwiching. In: NIPS, pp. 462–471 (2018)

    Google Scholar 

  19. Montgomery, D.C., Peck, E.A.: Introduction to Linear Regression Analysis (2001)

    Google Scholar 

  20. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Decentralized Bus. Rev. 21260 (2008)

    Google Scholar 

  21. Putze, F., Sanders, P., Singler, J.: Cache-, hash-, and space-efficient bloom filters. JEA 14, 4 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Rae, J., Bartunov, S., Lillicrap, T.: Meta-learning neural bloom filters. In: ICML, pp. 5271–5280 (2019)

    Google Scholar 

  23. Rigatti, S.J.: Random forest. J. Insur. Med. 47(1), 31–39 (2017)

    Article  Google Scholar 

  24. Vaswani, A., et al.: Attention is all you need. In: NIPS, pp. 5998–6008 (2017)

    Google Scholar 

Download references

Acknowledgements

This work is partially supported by NSFC (No. 61972069, 61836007 and 61832017), Shenzhen Municipal Science and Technology R &D Funding Basic Research Program (JCYJ20210324133607021), and Municipal Government of Quzhou under Grant No. 2022D037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Wang, Z., Yang, R., Zhao, Y., Zhou, R., Zheng, K. (2023). Learned Bloom Filter for Multi-key Membership Testing. In: Wang, X., et al. Database Systems for Advanced Applications. DASFAA 2023. Lecture Notes in Computer Science, vol 13943. Springer, Cham. https://doi.org/10.1007/978-3-031-30637-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30637-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30636-5

  • Online ISBN: 978-3-031-30637-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics