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Abstract. Promotions are becoming more important and prevalent in
e-commerce to attract customers and boost sales, leading to frequent
changes of occasions, which drives users to behave differently. In such
situations, most existing Click-Through Rate (CTR) models can’t gen-
eralize well to online serving due to distribution uncertainty of the up-
coming occasion. In this paper, we propose a novel CTR model named
MOEF for recommendations under frequent changes of occasions. Firstly,
we design a time series that consists of occasion signals generated from
the online business scenario. Since occasion signals are more discrimina-
tive in the frequency domain, we apply Fourier Transformation to sliding
time windows upon the time series, obtaining a sequence of frequency
spectrum which is then processed by Occasion Evolution Layer (OEL).
In this way, a high-order occasion representation can be learned to handle
the online distribution uncertainty. Moreover, we adopt multiple experts
to learn feature representations from multiple aspects, which are guided
by the occasion representation via an attention mechanism. Accordingly,
a mixture of feature representations is obtained adaptively for different
occasions to predict the final CTR. Experimental results on real-world
datasets validate the superiority of MOEF and online A/B tests also
show MOEF outperforms representative CTR models significantly.

Keywords: Click-Through Rate Prediction · E-commerce Promotions ·
Occasion Evolution · Frequency Domain.

1 Introduction

Click-Through Rate (CTR) prediction has been one of the most important tasks
in recommender systems [19,29,33] since it is directly related to user satisfaction,
efficiency, and revenue. With the rapid progress of deep neural models, most of
CTR models use high-order interactions of features to improve their representa-
tion ability [1,5,17,10,36], and leverage sequential user behaviors to model users
in a dynamic manner [35,34,18,31,30].
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Fig. 1. The entropy of searched categories is calculated as H = −
∑

pi log pi, where pi
denotes the global search ratio of the i-th category. H intuitively shows the diversity
of user interests and its change reflects the change of user data distribution.

Most previous works assume that users’ preferences are coherent and change
smoothly over time. However, users’ behaviors can be significantly influenced by
different occasions [28] which are fine-grained time periods related to particular
times or events. Especially with the intensification of e-commerce competition,
online promotions are becoming more frequent and diverse, which differ from
each other in many factors, e.g., scale, duration, density, and regularity in time,
resulting in frequent changes of occasions. From Figure 1, we can observe that
the entropy of searched categories, an indicator of user data distribution, fluctu-
ated dramatically as four promotions occurred. The fluctuations during different
promotions differed greatly and shared no regularity, illustrating that there ex-
ists considerable distribution uncertainty under frequent changes of occasions,
although the schedule of promotions is available beforehand. Besides, with dif-
ferent occasions included, training samples can be non-identically distributed,
imposing extra difficulty on model training. To achieve promotion-aware CTR
prediction, we need to tackle these two issues simultaneously.

An intuitive idea to deal with recommendations for e-commerce promotions
is leveraging years of plenty of historical data to train models with better gen-
eralization performance. However, directly introducing data with a large time
span results in discrepant data distributions between training and serving, which
degrades the generalization performance [14]. Besides, promotions driven by
emerging consumption trends are inaccessible in historical data. As far as we
know, the most widely adopted way to handle recommendations for promotions
is temporarily customizing or adding extra models, which highly relies on ex-
pert experience to decide when to switch models for online serving because it’s
uncertain when data distribution will change.

Recently, several studies, e.g., STAR [22], TREEMS [13], and SAR-Net [21],
have been carried out to handle Multi-Scenario CTR prediction, which seems ap-
plicable to our case. In general, these methods leverage scenario features to learn
data distributions of different scenarios to facilitate the Mixture-of-Experts [8]
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so they can serve all scenarios with one model. Each recommendation scenario
locates spatial differently and can be treated as stable over time, with explicit
features related to data distribution (i.e., scenario features such as scenario id).
In contrast, occasions intertwine with each other in time, and no explicit features
are available to provide certainty of data distribution and distinguish different
occasions, so existing Multi-Scenario CTR models don’t apply to our case. An-
other line of works [28,26,27,9] tries to make models more sensitive to time. In
[28], a model is developed to adapt to different occasions by learning represen-
tations indexed by timestamps. However, occasions resulting from promotions
are not necessarily related to timestamps. In [9], item behaviors [3], i.e., a set
of users who interact with this item, are introduced via a time-sensitive neural
structure, which models items in a dynamic manner to strengthen the ability
to predict users’ emerging interests. The methods proposed in [26,27] follow the
similar idea of modeling items in a dynamic manner by adopting hypergraphs.
However, local changes captured from item behaviors are not equivalent to global
changes of data distribution.

Based on these observations, we propose a novel CTR model named MOEF
which models occasion evolution to obtain a well-learned occasion representa-
tion to modulate the learning of user-item feature representations. Specifically,
with inspiration from time series prediction [2,32], we generate occasion signals
(detailed in Section 3) from our online business scenario with a proper sampling
interval, constructing a time series which is then processed by an elaborated
Occasion Representation Network (ORN). In the ORN, we obtain a sequence
of frequency spectrum by applying Fast Fourier Transformation (FFT) [23] to
time windows that slide on the time series with proper window size and stride,
since occasion signals are more discriminative in the frequency domain. Then
we process the sequence of frequency spectrum by Occasion Evolution Layer
(OEL), where deep neural structures for sequential modeling such as LSTM [7]
and Transformer-Encoder [25] can be used to model occasion evolution. In this
way, a high-order occasion representation can be learned to help tackle the online
distribution uncertainty. Meanwhile, multiple experts are adopted to learn fea-
ture representations, mitigating the mutual interference between non-identically
distributed training data. Under modulation of the occasion representation, mul-
tiple experts can learn feature representations from different aspects. At last, a
mixture of experts is calculated via an attention mechanism and used for the
final prediction. Our main contributions are summarized as follows:

– To the best of our knowledge, this is the first study of CTR prediction
concerning e-commerce promotions. We introduce occasion signals from a
perspective of time series prediction and propose a novel MOEF model to
achieve promotion-aware CTR prediction.

– We model occasion evolution in the frequency domain to facilitate learning a
good occasion representation, which is further used to modulate the learning
of multiple experts via an attention mechanism. In this way, both the dis-
tribution uncertainty and training difficulty resulting from non-identically
distributed training data are handled.
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– Experiments on real-world datasets and online tests demonstrate the supe-
riority of MOEF over representative methods. We also perform extensive
analyses for better interpretability. The code is publicly available3.

2 Related Work

2.1 CTR Prediction

CTR prediction has become a crucial part of many online applications, such
as search engines, recommender systems, and online advertising. To better cap-
ture high-order feature interactions, there are some representative DNN-based
CTR models have been proposed, including Wide&Deep [1], PNN [16], DeepFM
[5], and PIN [17]. Combining the idea of AutoML, AutoFIS [10] proposes to
find useful feature interactions, and AIM[36] further decides how the interaction
should be modeled. Meanwhile, since the sequence of user behaviors contains
rich information of users’ interests and preferences, there is increasing attention
on sequential modeling in online systems. Given a target item, DIN [35] intro-
duces the attention mechanism to activate the historical behaviors. To capture
dependencies between sequential behaviors, DIEN [34] adopts a two-layer RNN
structure to model the evolving process of specific interest for different target
items. MIMN [15] proposes a memory-based architecture to aggregate features
and tackle the challenge of long-term user interest modeling. DMIN [30] models
user’s multiple interests by a special designed extractor layer. For better model-
ing of the temporal effects, HPMN [18] is proposed to capture the periodic pat-
terns of user interests with a hierarchical recurrent memory network, while TIEN
[9] models items in a dynamic manner by using item behaviors to strengthen the
ability to predict users’ emerging interests. However, none of these models pay
enough attention to frequent changes of occasions resulting from promotions.
More recently, Multi-Scenario CTR methods [22,13,21] attempt to serve differ-
ent scenarios with a unified model, which however are not able to deal with
promotions as discussed in the introduction.

2.2 Mixture-of-Experts

For deep learning models, ensemble of sub-networks has been proven to be effec-
tive in improving model performance [6]. The Mixture-of-Experts (MoE) [8] first
proposes to share some experts and combine them based on a gating network,
which is very helpful when dealing with complex problems that may contain
many sub-problems, each requiring different experts. Therefore, MoE has been
widely used as basic blocks in recent deep models [4,20]. Further, MMoE [11]
extends MoE with multiple gates to model task differences, and PLE [24] fur-
ther improves the design of connection routing and gating mechanisms. We took
inspiration from these works by using MoE to learn different feature representa-
tions with different experts.

3 https://github.com/AaronPanXiaoFeng/MOEF
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3 Preliminaries

3.1 Problem Formulation

In CTR prediction, the model takes input as (x, y) ∼ (X,Y ), where x is the fea-
ture and y ∈ {0, 1} is the click label. Specifically, the features in this work consist
of six parts: 1) user behavior sequence xseq; 2) user features xu including user
profile and user statistic features; 3) item features xi such as item id, category,
brand, and related statistic features; 4) context features xc such as position and
time information; 5) occasion signals xo, i.e., statistics of the online business
scenario (e.g., active user amount, gross merchandise volume, and amount of
add-to-cart behavior) which are calculated with a proper sampling interval and
cover the time frame of last few hours.

The goal of CTR prediction is to learn a model fθ parameterized with θ that
minimizes the generalization error:

θ∗ = min
θ
E(x,y)∼(X,Y )[L(x, y; fθ(x))], (1)

where L is the loss function. In the situation of frequent promotions, CTR pre-
diction becomes highly challenging due to two issues: 1) data distribution of the
upcoming occasion is uncertain, and 2) the distribution of training dataset is
non-identical since samples are collected from different occasions.

3.2 Occasions and Occasion Signals

Similar but slightly different to global occasions discussed in [28], occasions in
this work are more fine-grained time periods when users’ behaviors change sig-
nificantly. Thus, occasions derived from promotions are not explicit. To observe
the changes of occasions, we design a set of statistical features of the online
business scenario, i.e.,

xo = {xo1, ...,xoi , ...,xoM}, (2)

where M denotes the number of occasion signals, and xoi = [xoi1, x
o
i2, ..., x

o
iN ]

denotes the i-th occasion signal which is recorded in the form of a time-domain
sequence. All occasion signals are calculated with a sampling interval of T and
only keep the recent N values. It’s noteworthy that N and T should be set
according to the characteristics of the specific business. For example, a large N
and a small T are needed for the financial quantification business, which however
is not necessary for relatively stable businesses such as e-commerce. In this work,
we set T to 5 minutes and N to 96 so that occasion signals cover the time frame
of last 8 hours, which is usually enough for capturing the occasion evolution
process.

Combining all occasion signals in the form of sequences over time, we obtain
a time series:

S = [S1, ...,St, ...,SN ] ∈ RM×N , (3)

where St = [xo1t, x
o
2t, ..., x

o
Mt] denotes the value vector of occasion signals at the

t-th time step. With the time series S, we aim to model the occasion evolution
and obtain a well-learned occasion representation.
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Fig. 2. Framework of the proposed MOEF model, which consists of the Occasion Repre-
sentation Network (ORN), Experts Network and Mixture Prediction Network (MPN).

4 The Proposed Method

In this section, we present the details of our proposed MOEF model. As shown
in Figure 2, occasion signals are fed into the ORN while the other features are
fed into experts network. With occasion signals transformed into the frequency
domain, the ORN models the occasion evolution and generates a well-learned
occasion representation, perceiving the changes of occasions. Meanwhile, each
expert generates a feature representation of the target item and user. With the
output of the experts network and the ORN, attention weights are calculated to
combine different experts for the final CTR prediction.

4.1 Occasion Representation Network

To model the occasion evolution, we generate sub-sequences in the time series
S by applying sliding windows to S with Nw as the window size and Ns as the
stride, therefore obtaining a sequence of sub-sequences, i.e.,

Ss = [Ss1, ...,S
s
t , ...,S

s
L],

Sst = [St×Ns
, ...,St×Ns+Nw−1] ∈ RM×Nw ,

L = dN/Nse,
(4)

where d·e refers to the round up operation and Sst denotes the t-th sub-sequence
that consists of M occasion signals. Generally, a larger Nw and a smaller Ns are
more beneficial for observation over the occasion evolution. Considering both
effectiveness and efficiency, we set Nw to 24 and Ns to 6 in this work, so each
sub-sequence covers a time frame of 2 hours and the time gap between adjacent
sub-sequences is half an hour.
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Intuitively, with occasions changing, the frequency components of different
sub-sequences are much more discriminative. Motivated by this, we perform Nf -
point FFT on each sub-sequence to calculate its frequency components:

F = [F1, ...,Ft, ...,FL],

Ft = |FFT (Sst )| ∈ RM×Nf ,
(5)

where | · | refers to the calculation of modulus of complex numbers. Then we
flatten Ft so a sequence of numerical observations is obtained:

F̃ = [F̃1, ..., F̃t, ..., F̃L],

F̃t = Flatten(Ft) ∈ Rd,
d = M ×Nf ,

(6)

where F̃ ∈ Rd×L is a sequence of frequency spectrum, of which each position
can be treated as a raw representation of the corresponding sliding window.

At last, in the Occasion Evolution Layer (OEL), we apply Long Short Term

Memory (LSTM) network to F̃ to capture and characterize the global temporal
dependency in the short-term sequence. The LSTM is implemented as:

it = σ(W 1
i F̃t +W 2

i ht−1 + bi),

ft = σ(W 1
f F̃t +W 2

f ht−1 + bf ),

ot = σ(W 1
o F̃t +W 2

o ht−1 + bo),

ct = ftct−1 + it tanh(W 1
c F̃t +W 2

c ht−1 + bc),

ht = ot tanh(ct),

(7)

where it, ft, ot and ct are the input gate, forget gate, output gate and cell
vectors, respectively. The LSTM encodes the short-term sequence of frequency
spectrum into a hidden output vector ht ∈ Rdh at time t, where dh denotes the
hidden unit size of LSTM. With ct carrying information from ht−1 and flowing
between cells, we can model the occasion evolution more comprehensively in
a dynamic manner. The hL is passed to subsequent neural structures as the
occasion representation.

Considering the computational latency, the Transformer-Encoder [25], i.e.,
self-attention mechanism with position encoding, can be an alternative to LSTM
to model the occasion evolution, especially when L is large.

4.2 Experts Network

In this section, we adopt multiple experts to model the target item and user
from multiple aspects, generating a set of user-item feature representations
{r1, ..., rK} for the final prediction, where K denotes the number of experts.

As shown in Figure 2, the input features of experts network consist of xu, xi,
xc and xseq, which are detailed in Section 3.1. All these features are processed
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by a Shared Embedding Layer so we obtain the embedded user features, item
features, context features and user behavior sequence, i.e., eu, ei, ec and eseq =
{ei1, ..., eim}, where eim denotes the item embedding of m-th user behavior and
m is the sequence length.

In each expert, we perform three kinds of attention calculation. Firstly a
multi-head self-attention [25] is calculated over eseq to model user preference
from multiple views of interest and êseq = {êi1, ..., êim} is the output. On top of
the self-attention, user attention au is calculated to mine personalized informa-
tion with eu attending to êseq, and target attention ai is employed to activate
historical interests related to the target item with ei attending to êseq. Then au,
ai, ei, eu and ec are concatenated and fed into the MainNet, i.e., a Multi-Layer
Perception (MLP). Meanwhile, we feed eu and ec into another MLP (i.e., the Bi-
asNet) to model the bias that different users in different contexts usually behave
differently even to similar items. Finally, the output of an expert is obtained by
concatenating the outputs of MainNet and BiasNet.

4.3 Mixture Prediction Network

In this section, we integrate the occasion representation and experts via an at-
tention mechanism [25], i.e., treating the occasion representation as Query and
the output of experts as Key and Value. Thus, we can obtain the final occasion-
adaptive feature representations and achieve the goal of serving promotion pe-
riods and normal days with a unified CTR model.

As shown in Figure 2, the weight vector α used to combine different experts
is calculated via an attention mechanism:

αi =
exp(fg(hL, ri))∑K
j=1 exp(fg(hL, rj))

, (8)

where αi is the weight value for the i-th expert and fg is a function that projects
the input into a scalar. The final CTR prediction is formulated as:

ŷ = fθ(x) = F

(
K∑
i=1

αi · ri

)
, (9)

where F is a 3-layer MLP with a hidden unit size [144, 64, 1], of which the last
layer uses Sigmoid as activation function while the other layers use ReLU. We
adopt the widely-used logloss to train our MOEF model as follows:

L = − 1

|D|
∑

(x,y)∈D

(y log ŷ + (1− y) log(1− ŷ)). (10)

where D denotes training set and |D| denotes the number of samples in D.
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Table 1. Statistics of the established datasets.

#Dataset #Users #Items #Exposures #Clicks #Purchases

D 5.85M 0.82M 1.32B 65.82M 819K
Dv 1.87M 0.69M 0.18B 9.57M 91k

5 Experiments

In this section, we conduct a series of experiments to answer the following re-
search questions:
RQ1 How does MOEF perform compared to representative CTR models in both
normal days and promotion periods?
RQ2 Does ORN necessarily contribute to the improvement of the performance?
RQ3 Can ORN adapt to different occasions and guide multiple experts to learn
feature representations from different aspects?
RQ4 How does the number of experts affect the performance of MOEF?

5.1 Experimental Setup

Datasets We establish the datasets by collecting the users’ interaction logs4

from our online e-commerce platform, where promotions are highly frequent
and have a considerable impact on the recommender system. In order to collect
sufficient training samples, logs are sampled from 2020/10/01 to 2020/12/31,
including Double 11, Black Friday, Double 12, and three member day promotions
(21st of every month). The entire dataset is split into non-overlapped training
set D (2020/10/01-2020/12/15) and validation set Dv (2020/12/16-2020/12/31)
to avoid feature leakage. Both D and Dv cover normal days and promotion
periods. Table 1 summarizes their statistics. All the data have been anonymously
processed by the log system and users’ information is protected.

Evaluation Metrics Area under ROC curve (AUC) is used as the offline eval-
uation metric. For online A/B testing, we choose CTR and average number of
user clicks (IPV), which are widely adopted in industrial recommender systems.
Improving CTR and IPV simultaneously implies not only more accurate recom-
mendation but also more active users.

Competitors We compare our MOEF model with two classes of the previ-
ous methods, i.e., methods that aim to capture high-order feature interactions,
and methods based on sequential modeling of user behaviors, which are briefly
described as follows:

– DeepFM [5] uses an FM layer to learn second-order feature interactions
and MLP to learn high order feature interactions.

4 To the extent of our knowledge, there are no public datasets suited for this
promotion-aware CTR prediction task.
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Table 2. Offline results. Bold: best. Underline: runner-up.

Model
AUC (mean±std.)

Promotion Normal

DeepFM 0.7140±0.00037 0.7076±0.00031
AutoFIS 0.7151±0.00036 0.7098±0.00029
AIM 0.7162±0.00042 0.7129±0.00035
DIEN 0.7174±0.00171 0.7145±0.00162
TIEN 0.7143±0.00225 0.7140±0.00301
HPMN 0.7289±0.00187 0.7265±0.00168
MOEF-1E 0.7293±0.000103 0.7215±0.00089
MOEF 0.7457±0.00136 0.7376±0.00101

– AutoFIS [10] identifies and selects important feature interactions for fac-
torization models with a set of learnable architecture parameters. Note that
AutoFIS use DeepFM as base model.

– AIM [36] designs a gate-based unified framework to search proper embed-
ding size, effective feature interactions and interaction functions. In our ex-
periments, AIM is implemented without searching embedding size.

– DIEN [34] models interests evolving process from user behaviors via a two-
layer RNN structure with an attention mechanism.

– HPMN [18] adopts a hierarchical and periodical updating mechanism to
capture multi-scale sequential patterns of user interests.

– TIEN [9] develops a time-interval attention layer and a time-aware evolu-
tion layer to strengthen the ability to predict users’ emerging interests by
modeling items in a dynamic manner.

– MOEF-1E refers to MOEF that uses one expert in the Experts Network.

Input features for all the competitors listed above are the same except that
DeepFM, AutoFIS and AIM discard the user behavior sequence and TIEN addi-
tionally adopts item behaviors. Except for MOEF and its variants, other models
treat occasion signals as context features and process them via log1p transfor-
mation [37].

Implementation Details We implement these deep learning models in dis-
tributed Tensorflow 1.4. During training, we use 3 parameter servers and 6
NVIDIA Tesla V100 16GB GPU workers. The number of points for FFT is
32 and the hidden unit size of LSTM is 96. Item ID, category ID and brand ID
have an embedding size of 32 while 8 for the other categorical features. We use
8-head attention with a hidden unit size of 128 in each expert. Both MainNet
and BiasNet are 3-layer MLPs, of which the hidden unit size is [480, 256, 128]
and [96, 32, 16] respectively. Adagrad optimizer with a learning rate of 0.01 and
a mini-batch size of 256 is used for training. The number of experts K varies
from 2 to 5 and is set to 2 by default. We report the results of each method
under its empirically optimal hyper-parameter settings.
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Table 3. Results of online A/B testing.

Model
Promotion Normal

CTR Gain IPV Gain CTR Gain IPV Gain

MOEF-1E 0% 0% 0% 0%
DIEN -1.51% -3.32% -0.87% -1.72%
HPMN -0.08% -0.13% +1.27% +2.64%
MOEF +4.23% +6.47% +4.61% +6.96%

5.2 Experimental Results: RQ1

To comprehensively evaluate model performance in both normal days and pro-
motion periods, we divide Dv into two parts accordingly. Each offline evaluation
is repeated 3 times and experimental results are presented in Table 2. Based on
the offline evaluation, we chose several models and conducted online A/B testing
lasting two weeks, and the experimental results are presented in Table 3. Note
that the time frame for online A/B testing covered promotion periods and nor-
mal days and MOEF-1E was used as the baseline model. The major observations
are summarized as follows:

– MOEF-1E outperforms DeepFM, AutoFIS, AIM and DIEN impressively,
validating the importance of modeling occasion evolution since the main
difference is that MOEF-1E process occasion signals with OEL while the
other models treat occasion signals as regular context features.

– With periodic patterns of user interests captured, HPMN becomes the runner-
up method in normal days. However, during promotions when changes of
occasions are more frequent, it’s not comparable to MOEF-1E and MOEF
since it pays little attention to the occasion evolving process and fails to
adapt to different occasions. TIEN delivers unsatisfactory performance be-
cause it’s hard to train the huge user embedding parameters introduced by
item behaviors.

– For both offline and online, MOEF yields the best performance with ORN
guiding multiple experts to learn feature representations from different as-
pects, outperforming MOEF-1E and HPMN significantly. Compared to the
baseline model (i.e., MOEF-1E), MOEF improves 4.23% on CTR and 6.47%
on IPV during promotion periods while 4.61% and 6.96% in normal days,
which helps to recommend more attractive items and improves the amount
of purchases.

5.3 Ablation Study: RQ2

In this section, we conduct ablation experiments to study how each component
in the ORN contributes to the final performance, i.e.,

– MOEF w/o FFT refers to MOEF that processes occasion signals in the
time domain via log1p transformation [37] and then feeds them into a MLP
to generate the occasion representation.
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Table 4. Ablation Study.

Model AUC (mean±std.)

MOEF w/o FFT 0.7148±0.00147
MOEF w/o LSTM 0.7304±0.00126
MOEF-TE 0.7394±0.00118
MOEF 0.7413±0.00122

(a) (b)

Fig. 3. (a) Distributions of weights in different days. (b) Visualization of feature rep-
resentations from two experts.

– MOEF w/o LSTM refers to MOEF that uses a MLP instead of LSTM.
– MOEF-TE refers to MOEF that uses Transformer-Encoder [25] (i.e., self-

attention mechanism with position encoding) instead of LSTM for better
computational latency.

Each model is evaluated on Dv for 3 times and the results are detailed in Ta-
ble 4. MOEF w/o LSTM significantly outperforms MOEF w/o FFT, validating
the effectiveness of handling occasion signals in the frequency domain. Compared
with MOEF w/o LSTM, MOEF further improves the performance by modeling
the occasion evolution via LSTM, which helps to learn a better occasion repre-
sentation in a dynamic manner.

Moreover, we compare MOEF-TE with MOEF and observe a slight perfor-
mance degradation when LSTM is replaced by Transformer-Encoder, although
the latter is more efficient in computation. Finally, in our case, we decide to use
LSTM since the sequence processed by the OEL is short. In cases where a long
sequence is needed to model occasion evolution, we suggest using Transformer-
Encoder instead.

5.4 Visualization of the ORN and Experts Network: RQ3

In this section, we conduct a visual analysis on the ORN and Experts Network
to study how they contribute to the final performance. Intuitively, we attempt
to observe the differences of the ORN between different occasions to validate
the effectiveness of ORN, which is not easy since occasions are not explicit time
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Fig. 4. Visualization of feature representations from MOEF models, of which the num-
ber of experts is 3, 4, and 5, respectively.

periods. However, we can alternatively observe the differences of the ORN be-
tween different kinds of days of which the occasions vary greatly to study the
contribution of the ORN. Specifically, we feed samples from different days into
MOEF so that each sample generates a weight value α for one of the experts
(1 − α for another). Then, distributions of α in different days are plotted with
different colors as shown in Figure 3(a), of which the x-axis refers to the value of
α and the y-axis refers to the amount of samples. It can be observed that for dif-
ferent kinds of days, e.g., promotion periods (20201219-20201223) and normal
days (20210105-20210106), the weights distinguish from each other obviously.
While for the same kind of days, e.g., normal days, the weights are very close.
Moreover, we find that days right before promotion (20201219-20201220), mid-
dle of promotion (20201222), and the other days of promotion (20201221 and
20201223) can be further distinguished. These observations show that the ORN
can perceive fine-grained occasions rather than simply distinguish promotion pe-
riods from normal days. Therefore, MOEF can adapt to different occasions and
handle the distribution uncertainty.

To validate the effectiveness of the Experts Network, we randomly sample
hundreds of samples and feed them into MOEF. The output of the two experts
is visualized using t-SNE [12]. As shown in Figure 3(b), representations of the
two experts clearly distinguish from each other, which implies that the Experts
Network can learn feature representations from multiple aspects with multiple
experts under the guidance of the ORN.

5.5 Influence of the Number of Experts: RQ4

In this section, we explore the influence of the number of experts by training
MOEF models with the number of experts varying from 1 to 5 and evaluating
each model on Dv for 3 times. The AUCs are 0.7263±0.00097, 0.7413±0.00122,
0.7381±0.00141, 0.7386±0.00157 and 0.7273±0.00184, respectively. Intuitively,
MOEF with two experts yields better performance than that with a single ex-
pert because multiple experts can help handle the mutual interference between
non-identically distributed data and learn feature representations from multiple
aspects. However, with the number of experts varying from 2 to 5, we observe a
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decreasing trend of AUC. The visualization in Figure 3(b) and Figure 4 shows
that representations between experts mix with each other more seriously as the
number of experts increases from 2 to 5. We suspect that the performance degra-
dation is caused by the increased model complexity introduced by more experts,
which have more learnable parameters and may lead to over-fitting.

6 Conclusion

In this paper, we investigate the difficulties of CTR prediction in the context
of frequent e-commerce promotions and propose a novel MOEF model. Our
MOEF model mainly consists of the ORN and Experts Network, where the for-
mer learns the occasion representation and guides the latter to learn good feature
representations from multiple aspects using multiple experts. In this way, our
MOEF model achieves promotion-aware CTR prediction and outperforms rep-
resentative CTR methods on both real-world offline dataset as well as online
A/B testing. The ablation study validates the effectiveness of modeling the oc-
casion evolution in the frequency domain. Further, the visualization of weights
distribution and feature representation confirms the effectiveness of our model
design.
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