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Abstract. The adoption of more environmentally friendly and sustainable fleets
for last-mile parcel delivery within large urban centers, such as e-cargo bikes, has
gained the interest of the community. The logistics infrastructure network, hadAQ1

to adapt to the requirements of this new type of fleet, and micro-hubs and nano-
hubs emerged. In this paper we tackle spatiotemporal characterization of e-cargo
bike fleet behavior, by conducting a data centered case study where we explore
data from Yoob, a last mile delivery e-cargo bike logistics startup that operates
in the Lisbon area and outskirts. We also address the identification of potentialAQ2

expansion locations to the establishment of new hubs. Our data was collected
during a 4-month period (January to April 2022). By adopting state-of-the-art
data science and machine learning techniques, and following the CRIPS-DM data
mining method, our innovative approach discovered five clusters that are able to
characterize the Yoob fleet, with variations in distances traveled, times, transported
volumes and speeds. In the perspective of expanding Yoob’s e-cargo bike network,
three new locations in Lisbon were signaled for potential new hub installation. To
the authors knowledge this is the first study of this kind carried in Portugal, bringing
new insights in the field of last-mile logistics.

Keywords: e-cargo bikes · micro-hub · K-Means · last-mile logistics

1 Introduction

The impact of urban logistics and logistics networks in urban mobility of the large cities
are increasingly discussed by policy makers and logistics operators [1]. These last ones,
along with service providers are beginning to introduce more environmentally friendly
vehicles into their fleets. E-cargo bikes are one of the most widely implemented electric
powered vehicles for deliveries within urban centers [2].

This study of based on data generated by e-cargo bike urban logistic operator, allows
us to understand and find patterns and dynamics in the functioning of E-cargo bikes in
urban centers, taking the example of the Lisbon case study.
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1.1 Motivation and Topic Relevance

Performing last mile delivery with less impact on urban mobility in a sustainable and
ecological way is the main goal of Yoob. This startup is a delivery logistics company
operating in Lisbon’s urban center, and it is the first of its kind operating in the city, and
in Portugal. Operations started in the fall of 2021. At the time of this article writing,
Yoob has a fleet of ten e-cargo bikes and two e-vans supported by five logistic hubs
spread (referred to as micro and/or nano-hubs) throughout the city, including the city
center. With the growth of their operations in the city, the need arose to get more insights
on the behavior patterns of Yoob’s e-cargo bike fleet. This data centered study provides
insights for better strategic decisions for Yoob’s future logistic operations and expansion
of its network.

1.2 Research Questions and Objectives

This study aims to analyze and visualize the behavior patterns of e-cargo bike fleet based
on anonymized real time data of a logistics company, collected in Lisbon from January
2022 to April 2022. It also intends, based on collected data, to evaluate the optimal sites
for the new hubs locations to expand the e-cargo bike delivery area in Lisbon. Therefore,
the following research questions are addressed by our research:

RQ1: How can we characterize the spatiotemporal traffic of the last mile logistic distri-
bution performed with the e-cargo bike fleet, taking into consideration open data of the
city and data collected during the performed routes?
RQ2: Based on the fleet behavior and the patterns detected, what are the best possible
locations for the micro-hubs or nano-hubs expansion?

1.3 Structure

This paper is organized into four sections. In Sect. 1, we introduce the topic context,
motivation and relevance, and we raise our research questions and objectives. In Sect. 2,
we present a literature review by using the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) methodology [3]. In Sect. 3, we apply the CRoss
Industry Standard Process for Data Mining (CRISP-DM) [4] methodology to our case
study, presenting the results of each phase. Finally, in Sect. 4, we present and discuss
our conclusions, limitations, and future work.

2 Literature Review

2.1 Methodology

PRISMA [3] is a standard methodology for generating systematic and objective findings
from literature reviews. It is an approach that assisted us in describing literature findings,
as well as to contribute to our goals.
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Data Driven Spatiotemporal Analysis of e-Cargo Bike Network in Lisbon 3

2.2 Results

To kick start PRISMA in our systematic literature review (SLR), we run the following
logical query on academic data repositories: (“e-cargo bikes” OR “electric-assist cargo
bicycles”) OR (“micro-consolidation hubs” OR “hub location”) OR (“Last mile logistic”
OR “urban logistic”) OR (“spatial patterns” AND “data mining”). 34 articles met the
eligible requirements.

Analyzed literature methods applied strong emphasis on visualization, with focus
on study and detection of transportation traffic patterns [10–19]. K-means [10, 11, 20]
was used to perform clustering analysis regarding travel activity for taxis and bikes and
to find the places that gave rise to shorter travel distances. DBSCAN was implemented
to found travel paths made by users of public transportations [12] and to study private
car trajectories in the city [15]. In the decision taking for hub location, the two principal
algorithms implemented were Genetic Algorithm [2, 21] and PROMETHEE [20, 22].

Moreover, we found that the study of e-cargo bikes is still very limited and focused
on the scope of environmental impact and benefit of cargo bike usage. Very few papers
analyzed the behavior and performance patterns of last mile delivery of e-cargo bikes
in urban centers. The importance of using spatiotemporal analysis in comparison to
traditional data mining approaches that consider instances to be “distributed equally
and independently”, is due to the possibility to find existing links between the various
instances of available data in space and time [23]. Ignoring these connections can lead
to misinterpretation and results that are difficult to understand [18, 23].

We observe homogeneity in the applied spatiotemporal methods. The clustering
technique for pattern detection was the most present in our SLR. Zeng et al. [14] charac-
terized the taxi travel patterns of Chongqing residents from two perspectives, hot spots
and hot paths, by applying the GRIDBSCAN and ST-TCLUS (Spatial-temporal trajec-
tory clustering) clustering algorithms. It allowed to conclude that depending on the time
of day, these areas varied according to their land use. Y. Huang et al. [15] studied the
travel patterns of private cars to identify the most frequented sites using the Density-
Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm and Markov
chains, allowed them to identify that 59% of car trips exhibit regular spatiotemporal
mobility and repeated travel patterns. By applying the ST-HDBSCAN clustering algo-
rithm (combination of ST-DBSCAN and HDBSCAN clustering algorithms) Li et al. [18]
made a spatiotemporal characterization of the hotspot characteristics, through the study
of “Spatiotemporal Distribution”, “Travel Distance Distribution” and “Travel Direction
Distribution”, concluding that the most frequented areas are the ones where there is
a higher density of points of interest. Toro et al. [10] studied the mobility patterns of
users of Milan’s bike sharing systems and using the clustering technique with K-Means,
allowed him to identify which stations have the same usage pattern. In the exploitation
of the most frequent paths made in the Singapore Strait Ron, Wen et al. [16] applied
the K-nearest neighbors’ algorithm, to perform clustering on time series of waterways,
which allowed them to identify the most congested areas spatially and temporally. Atluri
et al. [23] state that, in exploring problems with spatiotemporal data, finding the simi-
larities or dissimilarities between instances is the key to solving most challenges. In the
collected studies, the evaluation of the performance of cargo bikes is highly focused on
comparing with the performance of the cargo vans in the last mile delivery [17, 24–26].

A
ut

ho
r 

Pr
oo

f



4 B. Gil et al.

Cargo bikes showed a greater flexibility and advantage in the routes they made. Most of
the time the chosen bike route is shorter than the route made by vans [24]. This differ-
ence can be up to twice as large on shorter trips [17]. Also, it was found that cargo bike
riders easily break traffic regulations by riding in the opposite direction during short trips
[24]. Amaral et al. [17] identified that travel times were not as important for cargo bikes
as for motor vehicles, because bicycles can easily “outrun” traffic jams. An interesting
observation by Conway et al. [24], showed that the speed of cargo bikes on the bike paths
is lower than when on the road for motor vehicles, with a speed figure lower than 20%
on some of the routes. The impact of street topography was mentioned in Amaral et al.
[17] who defined a scale between the elevation and the impact on cyclist performance.
This scale sets as a reference, below 2%, with no effect, between 2% and less than 5%,
already considered with impact and above 5%, representing a substantial impact. The
speed considered in the studies was not homogeneous, varying between 11.6 km/h [24]
and 24.0 km/h [25]. A literature review done by Büttgen et al. [7] finds an average speed
of this type of vehicles between 8.0 km/h and 25.0 km/h.

Overall, all studies conclude that cargo bikes represent a more viable and advanta-
geous alternative in last mile delivery, with greater gains in more congested areas [24],
but with some constraints. Sheth et al. [25] concluded that the distance and the number
of deliveries, are the most impacting factors on viability and cannot exceed 3.2 km and
20 orders per stop. In Amaral et al. [17], the capacity of the vehicle was not considered,
but authors concluded that beyond 3.0 km, it was no longer efficient to deliver with this
type of vehicle. The combination of cargo bikes and the implementation of micro hubs
has helped the green alternatives for last mile delivery, to gain momentum [9]. Distribu-
tion networks with micro-hubs do promote a more organized last mile delivery [8] and
benefit from economies of scale [27].

The definition of micro hub in the literature is vast, and for our paper we adopted the
definition by Katsela et al. [8], which defined it as “logistics facilities where commercial
transportation providers (or “carriers”) consolidate goods near the final delivery point
and serve a limited spatial delivery area in a dense urban environment”. Finding and
defining a location for micro-hubs is an important and complex task [2, 8]. The rising
costs of urban land, lack of adequate infrastructure, changing demand, changing city
characteristics [22] and regulatory requirements [8], do not ease the task of being able
to find an optimal solution that minimizes operating costs and impact on communities.
The most common characteristics addressed in the literature to study this problem were
demand (e.g., residential, commercial, and/or employment density), infrastructure (e.g.,
pedestrian/bicycle infrastructure provision, road classifications, pedestrian zones, and
measures to assess traffic), and land use constraints [6, 22, 28]. When the deliveries
are made by cargo bikes, the location of the micro-hub should be the closest to the
delivery point [22, 29]. Assman et al. [9] recommended locating them in areas of higher
commercial density. This need for proximity comes from the capacity limitation of
bikes compared to a delivery van, and multiple trips to the micro-hub may be required,
so travel time and travel distances are minimized [8]. According to Assman et al. [9],
the maximum distance between the micro-hub and the delivery point should not exceed
1000 m. In Rudolph et al. [22] a distance between 500 m and 1200 m is pointed out as
the distance range that allows economic feasibility for deliveries made by cargo bikes.
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In Faugère et al. [5] and Srivatsa Srinivas et al. [30], the implementation of this type of
infrastructure in mobile units was evaluated and, in both studies, they concluded that
it can be a viable alternative but under very restricted conditions. Faugère et al. [5]
indicated as a condition, the requirement to transport a high volume of orders and a very
short maximum transit travel time. In Srivatsa Srinivas et al. [30] the need for a strong
analytical engine that can accurately predict demand for a given geographic location and
the dynamic optimization of the route and parking location of the mobile warehouse,
was the only way to make this alternative viable. The study of stationary micro-hubs is
the most widely covered in the literature, but the methods vary among literature papers.
When the targets’ location points are already known [2, 7, 31, 32], only an evaluation
of the performance of each of the locations was done to find the one that best suited
the purpose. Naumov et al. [2] developed a mathematical model representative of the
network and its behavior and by applying Monte Carlos simulation, evaluated which
of the five pre-defined locations allowed minimizing the transportation work. In Kedia
et al. [32], the Location-Allocation model, was used to find the locations that minimized
the distance that had to be traveled. Bütten et al. [7] uses the Two-Echelon Vehicle
Routing Problem 2E-VRP model to find an optimal solution that minimizes costs. In
Leyerer et al. [31], the Split Delivery Vehicle Routing Problem with Multiple Products
Compartments and Time Windows (SPVRPMPCTW) model is solved, to minimize costs
throughout the three stages (LRP, VRP with time window and VRP considering multiple
products) that compose model. When there is no pre-knowledge of such locations, other
approaches are needed, and possible solutions can be found based on the knowledge
of the demand or the geographical characteristics of the cities. Rudolph et al. [22] uses
a multi-criteria method to find the most suitable locations and employs the Analytical
Hierarchical Process AHP and PROMETHEE algorithms, defining that the main criteria
to use are demand, road type and land use. The optimal locations should minimize travel
times and travel distances. Song et al. [19], use the LCRS (Longest Common Route
Subsequence) algorithm, complemented with a voting system, to find the paths most
traveled and where there is a higher concentration of deliveries. This approach allows
them to calculate which locations can minimize the time and distance traveled. In the
literature we found that, in the approach to this problem, the computational capacity
and the time required to explore all possible options, limit the calculation of the optimal
points [19, 21, 33, 34]. The implementation costs of micro-hubs and vehicle capacity
are often not considered. We can argue that minimizing distances, travel times, and costs
are among the most relevant objectives in hubs location.

3 Data Analysis and Modeling

The CRISP-DM methodology, applied in our research, attempts to reduce the cost and
increase reliability, repeatability, manageability, and speed of big data mining opera-
tions. According to this methodology the life cycle of data mining projects is divided
into six parts: business understanding, data understanding, data preparation, modeling,
evaluation, and deployment.
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6 B. Gil et al.

3.1 Business Understanding

The data explored was provided by the e-cargo bike urban logistics startup Yoob [35].
As mentioned, the purpose of the study is two-fold: the first, to provide a spatiotemporal
characterization of the Yoob e-cargo bike fleet in the parcel collection and delivery
processes in Lisbon as well in its outskirts; the second, to propose locations for the
new hubs and adjustments to the existing logistics network, in order to strengthen and
expand the fleet operations. The company has two types of hubs, the micro-hub, with an
area of 36 m2, a relatively smaller option compared to the values found in SLR, which
range between 92 m2 to 920 m2 [36]. The functional definition is in line with that found
at SLR, with various services being done at the micro hub, namely, consolidation of
goods, storage, and recharging of e-cargo bikes. The nano-hubs, which is an innovative
concept developed by Yoob, emerged from the adaptation of the pick-up/drop-off concept
to last mile delivery logistics, characterized by having relatively small areas ranging
between 3 m2 and 120 m2, exclusively dedicated as a temporary transition point where
the goods remain no longer than 48 h. The type of associated physical infrastructure
varies depending on where it is implemented, given it only requires temporary storage
capacity for goods [37].

3.2 Data Understanding

The data was extracted from Yoob’s database and covered the period of January 1st

to April 30th 2022, encompassing 9,175 records and 34 variables. The data does not
provide the routes (trajectories) done by the fleet. The geographic information on the
route is characterized by latitude and longitude of origin and destination. There are some
variables that generated based on mobile devices used by the employees during the entire
logistics operation.

In our approach, each record in the data represents a “story”, which is geographically
composed of two points, one for pickup and the other for delivery. Within each story
there are two “sub-stories”, where each “sub-story” refers to a geographical location
(pickup or delivery) and is always associated to a “route”, where the “routes” can be
composed of one or more “stories”.

3.3 Data Preparation

The first data preparation step was the individual evaluation of all variables. Secondly,
the unnecessary variables, outliers and incomplete stories were removed resulting in a
dataset with 8,381 records (91,3% of the raw dataset) each one with 26 variables. The
third step was to convert our dataset to have a sub-story granularity, by creating two
datasets, one referring to the pick-up information and the other referring to drop-off
information. These two datasets were merged.

To enrich our dataset, we added extra features:

• [‘Elevation_point’] - Elevation of the sub-story geographic location, was obtained by
consulting a DEM (Digital Elevation Map) [41].
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• [‘order route’]: Number indicating the order in which the location is visited within
the route sequence.

• [‘time_enRoute_sec]: Time period in seconds between the [‘history.enRoute’] and
[‘history.arrived’].

• [‘time_points_sec’]: Time period in seconds between two consecutive points on the
same route.

This dataset processing with sub-story granularity resulted in 15,828 records and 27
variables.

To perform the spatial analysis two geographic data frames were generated with the
geopandas Python library [42]. In the first the granularity was the route level, and second
the granularity was the sub-story level. To be considered valid, a route must have two
or more associated sub-stories. Routes that do not meet this requirement were removed.
With this procedure we were able to reconstruct 664 routes, representing 95% of the
total routes in the original dataset (699 routes), at sub-story level. We have removed 20
records (<0.002%), ending up with a dataset with 15,808 records.

3.4 Modeling

Fig. 1. Clustering the sub-stories with K-Means

In the modeling phase, we applied
machine learning techniques, namely
K-means, to developed three models
to answer our research questions. In
the first model we created clusters to
identify the behavior of routes in cer-
tain geographical areas. In the second
model we clustered the routes and eval-
uated their characteristics, providing
answers to our first research question.
In the last model we performed a grav-
ity center analysis, with the goal to
explore new locations for the imple-
mentation of new hubs, answering our
second research question. To build
the models we used the sklearn [43]
library, for pre-processing we used

MinMaxScaler [44] and LabelEnconder [45] and to perform cluster and the center of
gravity analysis, we used K-Means algorithm [46]. To evaluate the optimal K value in
the two first models, we adopted the Knee Elbow method with the knee library [47] and
Davies-Bouldin index [48].

First Model – Clustering the Sub-stories with K-Means

In the first model, we identified the behavior of routes in certain geographical
areas with cluster analysis. The feature selection was made from the geodataframe data
structure with sub-story granularity.
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8 B. Gil et al.

The selected features were [‘latitude’], [‘longitude’], [‘elevation_point’],
[‘time_points_sec’] and [‘distance_to_prev’]. Before running the clustering model in
our data, we had to scale the data, as it had different measurement units, with Min-
MaxScaler. When evaluating the Knee Elbow method and the Davies-Bouldin index
through a range from 1 to 30 clusters, we found that the optimal value for K was 5 in
knee elbow method, and 4 in the David-Bouldin technique. After testing the model with
both values, the knee elbow value was selected as it gave us more information (later
confirmed in YOOB briefings). Then we applied the K-Means algorithm with a K value
of 5 to our data, and the output is depicted in Fig. 1. Four main clusters (C0 to C3)
outstand in the visualization, and a fifth cluster (C4) with dissipated grey dots among the
four other main clusters. In this model we can observe the e-cargo bikes’ performance
according to the geographical area. In Fig. 1, we can see the four well defined clusters
and a more disperse cluster (C4) where the e-cargo bikes have a higher average speed of
18.64 km/h, indicating that these are acceleration areas. In the other clusters the average
speed is significantly lower. The zones with the second highest average speed were the
ones in cluster C2 where e-cargo bikes achieved average speeds of 6.84 km/h, followed
by the zones covered by cluster C1 with average speeds of 5.01 km/h. The areas covered
by clusters C0 and C3 have a more homogeneous performance. However, in the areas
covered by cluster C3 the e-cargo bikes tend to be slower, with average speeds of 4.20
km/h vs 4.43 km/h of the speeds practiced in the C0 areas.

Second Model – Clustering the Routes with K-Means
In the second model the selected features were based on the geodataframe with granu-
larity of the route: [‘distancia_total’] and [‘distancia_maxima_do_ini’]; and were scaled
with MinMaxScaler. Much like in the first model, we evaluated the Knee Elbow value
and the Davies-Bouldin value in a range from 1 to 30 clusters and selected the optimal
value for K (5) provided by the Knee Elbow method, since the optimal value in the
David-Bouldin method was far bigger. Applying to our data K-Means with a K value of
5, the output results in five clusters (see Fig. 2, 3, 4, 5, 6, 7, 8 and 9).

Fig. 2. Routes per cluster Fig. 3. Average total distance per cluster

In Fig. 9, the operation time metric was calculated by subtracting the average total
en route time from the total time spent between two locations and dividing the result
by twice the number of locations visited, representing the operation time spent at each
location. In the presentation of results below, all figures are average numbers.
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Data Driven Spatiotemporal Analysis of e-Cargo Bike Network in Lisbon 9

Fig. 4. Average maximum distance from
initial location per cluster

Fig. 5. Average visited locations per cluster

Fig. 6. Average speed per cluster Fig. 7. Average total time in route per cluster

Fig. 8. Average total time between
locations per cluster

Fig. 9. Average operation time per cluster

The most common performance is the one observed in cluster C0, accounting for
41.2% of the total trips (see Fig. 2). This cluster features a speed of 6.84 km/h, which is
the lowest speed of the five clusters, corresponding to a total traveled distance of 11.16
km. Yoob’s e-cargo bikes travel at a maximum distance of 3.64 km, from their starting
location. The total duration of cluster 0 trips is 3 h and 54 min, and the e-cargo bikes
are only in motion for a period of 1h48m. Seventeen different locations are visited, and
3m40s is the shortest operating time per location visited, during trips of cluster C0. The
second largest type of performance is observed in cluster C3, which includes 32.4% of
the total trips (see Fig. 2). It is characterized by a total distance traveled of 4.31 km, at a
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10 B. Gil et al.

speed of 7.96 km/h. In cluster C3, e-cargo bikes travel a maximum distance of 2.22 km
from their starting location. These trips have the shortest and closest travel distances.
They have a total duration of 2 h 42 m, and bikes are only in motion for 42 m. With six
different locations, cluster C3 has the fewest number of locations visited from all five
performances, but has the longest operation time per location visited, requiring 8 m 25
s. This may be associated with the high waiting time for customers according to Yoob
partners feedback. The third most predominant type of performance is the one observed
in cluster C2, with 31.6% of total trips (see Fig. 2). The total distance traveled is 14.15
km at a speed of 9.75 km/h. The e-cargo bikes travel at a maximum distance of 6.23
km from the starting location. The total travel time is 4 h 6 m, with the e-cargo bikes
being in motion for 1 h 36 m. Thirteen different locations are visited, and bikers spend
5 m 43 s for each location. The fourth most observed performance type is the one of
cluster 4, with 24.8% of the total trips (see Fig. 2). It is characterized by a total traveled
distance of 28.01 km, at a speed of 9.41 km/h. The e-cargo bikes travel at a maximum
distance of 6.38 km from their starting location, with a total duration of the route, of 6
h 42 m. Bikes are in motion for an average period of 3 h 24 m. These are the trips with
the longest travel time and with the largest number of places visited, with a figure of
twenty-two different places. At each location visited bikers spend 4m31s in operation
time. The least observed type of performance is the one corresponding to cluster 1 (see
Fig. 2), with only 2.8% of the total trips. These are the longest trips with the wider range,
but also the fastest ones, with a total distance traveled of 35.58 km, at a speed of 11.20
km/h. In this cluster, the e-cargo bikes travel at a maximum distance of 14.16 km, from
their starting location. The total travel time of a trip is 5 h 12 m, with the e-bikes being
in motion for a period of 2 h 54 m. Twelve different locations are visited, and bikers
spend 5 m 47 s in each location.

Third Model – Center of Gravity Analysis with K-Means
In the third model, we analyzed the centers of gravity of the sub-stories of our data.
This model analysis was requested in one of the meetings held with Yoob. Although
in our initial SLR there were no direct references to this specific topic, by doing some
additional research, we found that Wen et al. [49] and Cai et al. [50], both approached
this problem by applying K-means techniques with a weighted featured to find the best
hub locations. In our approach, we adopted a similar method with a weighted K-Means
algorithm.AQ3

Fig. 10. Volume parcels per proposed new cluster centroid
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Fig. 11. Center of gravity analysis for eight hubs, using K-Means. Dark lines represent the
distances from the hub center to the delivery points

Our model applied the number of locations intended to simulate, and a new variable
was considered in the weighting of the cluster. In our model, the number of parcels
was considered, as the effort needed to carry out the delivery. As most of the time
the pickup parcels were in the hubs or at the collect/delivery locations, we added a
penalty value in the delivery parcels, considering these last ones three times bigger
in effort than the pickup ones. This forced the algorithm to locate the centroids of
the cluster in places where distance and effort would be reduced. The data applied in
this model was based on the variables [‘latitude’], [‘longitude’] and [‘parcels’] from
the geodataframe with sub-story granularity. A new variable was created designated
[‘calc_ajusto_de_custo_se_houver’], to include the penalty value. We simulated the
center of gravity for 8 hubs, the result is shown in Fig. 10 and the volume associated for
each location is depicted in Fig. 11.

3.5 Deployment

The models created were not applied in a real production environment. Software devel-
opment was developed on a personal computer equipped with Windows 10 (64bits) oper-
ating system, Intel(R) Core (TM) i7-11370H 3.30 GHz, with 40 Gb of memory ram.
We adopted the Python programming language (v3.10.4) [38], compiled with Visual
Studio Code (v1.69.1) [39] on Jupyter Notebooks extension [40]. The developed soft-
ware material and data sets are available for use by the Yoob company and for further
academic research purposes.

4 End-User Evaluation

The end-user evaluation verifies that the findings are consistent with the proposed
research objectives and the accuracy of the business requirements.
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Table 1. Method assessment questionnaire

Criteria Objective statement Eval #1 Eval #2

Utility It can help business decisions regarding the behavior
of the fleet and hub expansion

FA FA

Understandability Provides understandable results FA FA

Accessibility Can be used without training LA LA

Level of detail Provides knowledge regarding the mobility of the fleet
and detailed location for expansion

FA FA

Consistency Gives consistent results LA LA

Robustness Has enough detail to be used in other cases of e-cargo
bikes and hub expansion

FA FA

In the end of the study a questionnaire was sent to the two YOOB partners, with
the questions and answers indicated in Table 1. The development of the questionnaire
follows the standards defined by the ISO/IEC TS 330611 [51], primarily used to assessAQ4

software development processes. Four levels of the NLPF were employed for evaluation:
Not Achieved (NA) - [0–15%]; Partially Achieved (PA) - [15–50%]; Largely Achieved
(LA) - [50–85%]; Fully Achieved (FA) - [85–100%]. In this evaluation, we obtained a
rating of FA, in the criteria of usefulness, understanding, level of detail and robustness,
and LA rating in the criteria of accessibility and consistency. Overall, this indicates that
the work done represents an added value for the company, providing useful, detailed, and
clear information, appropriate to support decision making, in the context of the e-cargo
bike fleet as well as for the expansion of new hubs. The YOOB evaluators consider that
this study can be replicated to other case studies with potential for improvement, and
implementation readiness. Moreover, the outcomes are aligned with the objectives and
requirements proposed for the research presented in this paper.

5 Discussion and Conclusions

We have presented an innovative data science-based study, the first regarding last mile
delivery using e-cargo bikes operating in Lisbon, Portugal, as far as the authors are
aware. To tackle our research questions, we developed and evaluated three intelligent
computing models. Our second model (Clustering the routes with K-Means) in particular,
allowed us to answer the first research question, and to characterize the behavior of
the e-cargo bike fleet through the traveled distance, time, speed and number of visited
locations. Overall, the average of total traveled distance ranges between 4.31 km and
35.50 km, distancing from their start location, between 2.20 km and 14.10 km. 63% of
the routes show distance ranges very close or even lower than the values reported by
Sheth et al. [25], which considered cargo bikes to have an efficient performance under

1 “ISO - ISO/IEC TS 33061:2021 - Information technology—Process assessment model for
software life cycle processes.” https://www.iso.org/standard/80362.html.
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3.20 km. The average number of different locations visited per route ranges between
6 and 22. The average observed speed varies between 6.84 km/h and 11.20 km/h, a
value close to the study by Bütten et al. [7], where these authors looked at several cargo
bike projects, and calculated average speeds between 8.00 km/h and 25.00 km/h. The
temporal characteristics revealed a time in movement per route from 42 m minutes up
to 3 h 24 m, and a total route duration time, ranging between 2 h 42 m and 6 h 42
m. Required transaction time within each route ranged from 3 m 40 s to 8 m 25 s. This
higher time may be due to the particularities of certain customers requiring more waiting
time. Excluding this last observation, the time metric ranges between 3 m 40 s and 5
m 43 s. This set of characteristics gave us an overview of the needs of each route and
the respective performance of the e-cargo bikes in their operation conditions. As for the
second research question, the third model (K-Means center gravity analysis), was used
as our basis for analysis. The choice of new hubs locations, in the context of an expansion
of the e-cargo bikes network, is a complex process due to the high number of constraints
that are to be considered in the site search [2, 19, 21, 33, 34]. In the search for new
locations the factors considered for the cost function of our model were the distance and
the cost associated with each location visited. Then for evaluation of the hub type, the
volume associated with each hub of this new structure was analyzed. When simulating an
expansion of three more hubs beyond the five that are currently part of YOOB’s network,
our model suggests that the implementation of these new hubs should be located in the
boroughs of Alvalade, Benfica and Algés (Fig. 10). When confronted with the results of
this model, the YOOB partners considered that these three new proposed locations are
valid options that required further analysis in terms of economic viability. Regarding the
3 remaining computed locations, in the case of C2 (Fig. 10), the choice of the current
location of the hub (nr 1), which is within the radius of this cluster, was due to the
geographical characteristics of the area, which is on top of a hill, causing the trips to
have a downward direction, facilitating the effort required by the biker. In the case of
C7 (Fig. 10), the divergence between the location of the hub (nr 4) and the location
proposed by our model, raises additional challenges of further changes of location due
to the high price of real estate in the area where the centroid calculated by our model is
located. Considering the remaining proposed hub locations, the YOOB partners showed
complete agreement. By analyzing the volume of parcels associated with each hub in
Fig. 11, we can discuss what type of hub is the most adequate for micro-hub or nano-hub
requirements. In our study all three new locations are more suitable for nano-hubs. In
the already existing nano-hub located in the Saldanha, we observed that due to the high
associated volume of parcels it could shift to a micro-hub, and this observation was
positively validated by YOOB partners.

Research Limitations
The most significant limitations of our study are related to the dimension, granularity, and
structure of the data. The information on the routes was limited to the visited geographical
points, lacking information about the order of each visited location, and lacking complete
information about the route trajectory (its 3D coordinates) taken from pickup to delivery
as well city traffic. Having trajectory and traffic data would allow a deeper and more
rigorous analysis of the e-cargo bike fleet route patterns, namely the real trajectories
in which route was performed and the actual distances traveled. We collected data in
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the period from January to April of 2022, corresponding to the first four months of the
company’s registered activity (YOOB started operations in Lisbon in the fall of 2021).
After data pre-processing, we came up with a dataset comprising 15 828 records and
27 variables, which was considered sufficient for our analysis, but that nevertheless can
be limited for long-term trend analysis. The proposed hub locations can be considered
the best possible locations with limitations, as many factors were not considered, such
as street elevations and, specially, socio-economic factors that need to be taken into
account, to tackle costs for the customer and the municipality.

Future Work
The following suggestions are made for upcoming research work:

• Expand the number of observations analyzed to detect long-term trends and produce
more insightful results, given that YOOB has the possibility to collect stories and
route data on a regular basis.

• Study the shortest and flattest path.
• Perform more detailed cluster analysis, with an increased number of clusters when

analyzing route typologies.

Acknowledgements. This work is partially funded by national funds through FCT - Fundação
para a Ciência e Tecnologia, I.P., under the project FCT UIDB/04466/2020.
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