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Abstract. Vipera provides a compiler and runtime framework for im-
plementing dynamic Domain-Specific Languages on micro-core architec-
tures. The performance and code size of the generated code is critical on
these architectures. In this paper we present the results of our investi-
gations into the efficiency of Vipera in terms of code performance and
size.
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1 Introduction

In order to reduce the power consumption of new High-Performance Computing
(HPC) machines, the use of hybrid HPC architectures with graphics process-
ing units (GPUs) as accelerators has increased, such as the 4:1 ratio of GPUs
to central processing units (CPUs) per node of the new OLCF Frontier exas-
cale supercomputer[I]. Other novel architectures for HPC have been introduced,
including innovative micm—coreﬂ processor architectures that consist of many,
low energy cores combined with small amounts of memory on a single chip,
such as the 256 core Kalray MPPA, the 256 core Sunway SW26010 , the 1024
Adapteva Epiphany-V and the 2048 core PEZY-SC2 . These micro-core archi-
tectures have the promise of overcoming the power wall due to the high energy
efficiency of their designs, for example, the class-leading 70 GFLOPS per Watt
of the the 64-core Adapteva Epiphany-IV [3]. Whilst these architectures provide
the high energy efficiency and low overall power consumption levels, micro-cores
are notoriously difficult to program and take advantage of; each technology is
different with its own idiosyncrasies, such as the topology of the Network-on-
Chip (NOC), and they each present a different low-level interface to the pro-
grammer. Although manufacturers have made great progress in developing the
hardware, parallel programming and compilation techniques have not evolved

L Although the term manycore is commonly used, we define micro-cores as many-
cores with extremely small amounts of on-chip, scratchpad RAM (circa 32 - 64KB)
without hardware cache support.
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quickly enough to exploit this effectively[23]. Fundamentally, writing parallel,
scalable code is difficult and requires the programmer to consider multiple levels
of parallelism to get good performance25]. However, to date, these technologies
have tended to result in significant performance overheads, required the pro-
grammer to ensure their code fits within the limited on-chip memory, provided
limited choices around data location and size, and provided little, if any, porta-
bility across architectures. As evidenced by ePython[I2], a Python interpreter
for the Epiphany-III, dynamic programming languages can significantly reduce
the programming effort required to overcome these complexities in comparison
to the provided, low-level C software development kits (SDKs)[22].

In this paper we present the investigations into the efficiency of our Vipera
framework for dynamic programming languages, in terms of code performance
and size, relative to handwritten (native) C, on a variety of micro-core and
traditional CPU architectures.

2 Background and related work

Whilst Python is currently the most popular programming language[2], its use
of an interpreter results in performance significantly slower than statically com-
piled languages, such as C and Fortran. This has driven the need to overcome
the performance overhead of the interpreter and the restrictions imposed by the
global interpreter lock (GIL). This has resulted in technologies to increase the
performance of existing Python codes through the compilation to native code, in-
cluding Cython[11], MicroPython[9], Numba[24], Copperhead[14], Parakeet|26],
ALPyNA[I9] and PyCUDAM]. The high-level approach of Numba, Copperhead
and Parakeet is similar, whereby they define an embedded domain specific lan-
guage (eDSL) and utilise Python function decorators (directives) to annotate
the code to be compiled to native code or offloaded to GPUs. ALPyNA adopts
a different technique to generating GPU code than the eDSL and function dec-
orator approach. Rather than requiring the programmer to select and annotate
the Python functions that will be generated as GPU kernels, ALPyNA analyses
loop data dependencies and performs automatic loop parallelisation to generate
CUDA kernels for GPUs. However, unlike Numba, Copperhead, Parakeet and
ALPyNA, PyCUDA does not abstract the generation of GPU code but instead
embeds CUDA C code directly within the Python source code. MicroPython
performs the compilation of bytecode to native code on the device[8] similar to
JIT except that the bytecode is not profiled as is common for JIT compilers,
rather the bytecode is just lowered to native code. An alternative approach was
taken for Vipera, similar to that employed by the Pallene / Titan compiler[I7]
for Lua[Ig]. Here, the source language compiler, running on the host, emits C
source code that is then compiled to generate native binary executables.

2.1 Vipera dynamic language framework

The Vipera[I3] framework was created to support the development of dynamic
languages on micro-core architectures. The framework consists of a layered ar-
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chitecture with components running on the host and micro-core devices. Vipera
manages the compilation of code, the transfer and launch of kernels on the micro-
core devices, and the transfer of data. vPython is a development of ePython, a
subset of the Python programming language specifically designed for micro-core
architectures. Vipera provides two implementations of this; the first compiles
down to bytecode that executes on a tiny virtual machine (c. 24KB on the
Adapteva Epiphany-I1I[12]) running on the device and the second generates
Olympus abstract machine code that is compiled to provide device native code.
In this paper we will focus on the Olympus abstract machine version of vPython.

vPython can either be run standalone on the device or as a Domain-Specific
Language (DSL) within Python running on the host, offloading kernels for exe-
cution to the device. More information on the parallel programming, offloading
and dynamic code loading capabilities of the language can be found in [22] and
[21].

3 Benchmarking

3.1 CPU selection

In order to support the assessment of the Vipera vPython compiler and Olym-
pus abstract machine, a number of different platforms and processors were se-
lected, including the Adapteva Epiphany-III, Xilinx MicroBlaze and PicoRV32
RISC-V micro-cores and the AMD64 (x64), ARM Cortex-A9 (ARM32), MIPS32,
SPARCv9 and U740 RISC-V (RISCV64) traditional CPUs. As processor ISAs
can have a significant impact on both the compiled kernel performance and bi-
nary size, the CPUs were selected to test the impact of the Olympus abstract
machine design and to test the portability of Olympus between 32 bit and 64
bit processors with varying alignment constraints and byte ordering.

For the selected benchmarks, LINPACK[I5] and the Sieve of Eratosthenes[16],
the source vPython codes were compiled to Olympus abstract machine C source
code and wrapped by Eithne[20] API calls for execution on a single core of the
CPUs.

3.2 LINPACK performance

Figure [1| shows the single-core performance results for LINPACKEI on the target
processor architectures, compiled using the -0s and -03 compiler optimisation
levels. Whilst the results vary widely across the architectures, the performance
difference between the Olympus and native C kernels is very small. However,
the Olympus LINPACK kernel compiled at -0s is 1.7 times faster than native C
on the Epiphany-IIT and is marginally faster (1.5%) on the ARM32. Although
the performance advantage of Olympus kernels on the ARM32 is reversed at
-03, where native C is 4.6% faster, the advantage is actually slightly increased

2Due to the extremely small memory available on the micro-core devices, the prob-
lem size n was 50 and for traditional CPUs n = 1000.
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Fig. 1. LINPACK benchmark native C and Olympus kernel performance (log scale)

at -03 on the Epiphany-III to 1.8 times faster than native C. On the other
architectures, native C is between about 1.2% on the MicroBlaze and 42% on
the SPARC faster than Olympus at -0s and between about 7.2% on the MIPS32
and 24% on the AMD64 faster at -03.

Analysing the performance advantage of Olympus kernels over native C on
the Epiphany-IIT and at -0s on the ARM32 requires knowledge of the peculiar-
ities of the Epiphany-IIT and looking at the assembly language generated by the
C compiler. In the case of the Epiphany-III, there are four modes for the float-
ing point unit (FPU) that can be specified at compile time[6]. The default FPU
mode is caller, which resultsEI in native C kernels being 1.7 times faster than
Olympus. The truncate FPU mode does not provide a significant improvement
(2.1%) of native C kernels over Olympus. The round-nearest mode provides a
2.1 times performance improvement of native C over the Olympus abstract ma-
chine. The int FPU mode, executing integer operations as well as floating point
operations in the FPU, delivers a 1.66 and 1.83 times performance advantage of
Olympus kernels over native C at for -0s and for -03, respectively. This result
is surprising but considering that the Epiphany-III is a superscalar design that
can execute two floating point operations and one integer instruction per clock
cycle[I0], it is possible to surmise that the Olympus mnemonics can take advan-
tage of the additional two integer operations per clock cycle afforded by the int
FPU mode and prevent the pipleline from stalling.

The minor performance advantage of Olympus over native C on the ARM
at the -0s compiler optimisation level can be explained by the additional 21
APSR_nzcv opcodes in the native C kernel. This opcode transfers the floating-

3The FPU mode comparisons were all performed using the -03 compiler optimisa-
tion level.
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point status flags are transferred the ARM application program status register
(APSR) and, as [7] state:

These instructions stall the ARM until all current NEON or VFP oper-
ations complete.

It is also interesting to determine from the disassembly listing of the ARM
Olympus kernel that the ARM NEON vector / SIMD instructions (e.g. VLDR,
VLMUL and VSTR) are being issued by the C compiler for the Olympus mnemon-
ics, thereby taking advantage of this parallel processing capability of the ARM
processor for the LINPACK benchmark.

3.3 LINPACK code size

Figure[2]illustrates that the C kernels are significantly smaller than the Olympus
kernels on all platforms, at GCC optimisation levels -0s and -03, for the LIN-
PACK benchmark. The difference in kernel size ranges from around 1.5 times
bigger than native C on the Epiphany-III to 2.6 times bigger on the MIPS32,
using -03. Interestingly, the difference ranges from around 2 times bigger than
native C on the Epiphany-III to around 3 times bigger on the MIPS32 and
AMDG64. This suggests that the Olympus mnemonics generate wordy C code,
whereby a significantly larger number of underlying operations (machine op-
codes) are generated by the C compiler in comparison to the equivalent native C
operation. However, it should be noted that the Olympus kernels include a full
compacting heap manager and other runtime functions required to support the
dynamic features of ePython that are absent from the static native C LINPACK
kernel.

native C -Os Olympus C -Os 3 native C -0O3 Olympus -03 3
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20000
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Kernel binary size (bytes)

10000
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Fig. 2. LINPACK benchmark native C and Olympus kernel size
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The figures for the MicroBlaze reflect the use of the floating-point emulation
option for the LINPACK benchmark. Unsurprisingly, the code size difference is
greater on the MicroBlaze in comparison to the Epiphany-III, at between 2 and
2.6 times larger (for both compiler optimisation levels), due to the increased num-
ber of operations generated by the Olympus mnemonics over native C, which
is amplified by the floating-point emulation code required for the MicroBlaze
LINPACK benchmark. There is up to a 20% advantage, on the Epiphany-III, in
terms of code size in selecting -0s over -03. However, for the SPARCv9 the ad-
vantage is minimal (0.048%) and is actually detrimental on the ARM32 (-1.67%).
Overall, there is an average increase in code size of 7.5% selecting -03 over -Os,
which needs to be considered relative to any performance advantage gained by
selecting the higher compiler optimisation level. For a micro-core architecture,
such as the Epiphany-III, the code size saving of 20% (approximately 1.8KB)
could be significant. Therefore, it is important to understand any performance
differences between the two compiler optimisation levels.

3.4 Sieve of Eratosthenes performance

The LINPACK benchmark tests the floating point performance of the Olym-
pus abstract machine. Therefore, the Sieve of Eratosthened!] (Sieve) benchmark
was selected to determine the size efficiency and integer performance of Olym-
pus relative to handwritten (native) C. Figure [3| shows that, across compiler
optimisation levels -0s and -03, the Sieve benchmark displays a wider perfor-
mance gap between the Olympus and native C kernels than was observed for
the LINPACK benchmark, discussed in Section [3.2] The Olympus Sieve kernel
performance ranges from approximately 1.4 times slower than native C on the
Epiphany-III to over 5.5 times slowe1E| on the RISCV64. For all CPUs apart from
the AMDG64, the difference between Olympus and native C kernel performance
is smaller at compiler optimisation level -03 than at -0s. On the RISCV64, the
native C Sieve kernel is 5.5 times faster than the Olympus kernel at -0s but is
only 4 times faster at -03.

Whilst the kernel performance difference between the -0s and -03 GCC op-
timisation levels is greatest for the RISCV64, all of the RISC CPU Olympus
kernels close the performance gap with the native C kernels at -03. In com-
parison, the CISC AMDG64 native C kernels are 1.7 times faster than Olympus
at -0s and 2 times faster at -03. This suggests that GCC is able to leverage
the additional registers available on the RISCV64 over those available on the
AMDG64 to optimise the Olympus abstract machine code at -03 optimisation
level. However, the results for the Epiphany-11I, MIPS32 and SPARCv9 suggest
that the additional registers available on the Epiphany-IIT do not provide an
advantage over the 32 available on the the MIPS32 and SPARCvV9.

“Due to the limited memory on the micro-core devices, the flag array size was
reduced (SIZE = 4095) on the Epiphany-III, MicroBlaze and PicoRV32 micro-cores,
on the other CPUs, per the original benchmark, SIZE = 8190.

5Both bounds of the range at compiler optimisation level -03.
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Fig. 3. Sieve benchmark native C and Olympus kernel runtime (log scale)

On the PicoRV32, the Olympus -03 kernel froze and did not return a value
to the host, even though the kernel successfully executed when compiled at
optimisation level -0s. As the LINPACK PicoRV32 kernels also failed to execute
correctly at -03, it is likely that the version of the RISC-V compiler used (riscv32-
unknown-elf-gce 8.2.0) is generating code that is invalid for the PicoRV32 at this
level of optimisation.

3.5 Sieve of Eratosthenes code size

Figure [4] shows the size of the Sieve kernels compiled with -0s and -03 compiler
optimisation levels for all CPUs. Whilst the Olympus kernel sizes are between
near parityﬂ and 1.9 times[] that of the native C kernels for the other CPUs,
the difference for the PicoRV32 is striking, with the Olympus kernel size around
5 times larger for both -0s and -03. The Olympus kernel binary size for the
PicoRV32 is explained by the fact that the GCC compiler allocates space in
the kernel ELF file for the statically allocated C array used for the heap in
the Olympus abstract machine. This is best illustrated by the size of the .bss
segment reported by the GNU size utility for the Olympus Sieve kernel on
the Epiphany-III, as shown in Listing[T.1] where the Olympus abstract machine
heap is 24KB, and the 8MB default heap size of the RISCV64 desktop (threaded)
kernel, as shown in Listing|1.2

5MicroBlaze GCC optimisation level -0s.
"Epiphany-III GCC optimisation level -03.
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Fig. 4. Sieve benchmark native C and Olympus kernel size

1 text data bss dec hex filename
2 4666 1208 25336 31210 79ea e_task.elf

Listing 1.1. Output of GNU size for Epiphany-III Olympus Sieve kernel

1 text data bss dec hex filename
9185 928 8001440 8011553 7a3f21 threaded_sieve.elf

N

Listing 1.2. Output of GNU size for RISCV64 Olympus Sieve kernel

1 text data bss dec hex filename
54668 0 0 54668 db58c rv_task.elf

I~

Listing 1.3. Output of GNU size for PicoRV32 Olympus Sieve kernel

In contrast, for the PicoRV32, as shown in Listing [T.3] there is is only a
single .text segment, containing the executable code, static values, strings and
the Olympus heap array. This is due to the custom GNU linker file that is
required to set up the memory map on the bare-metal PicoRV32 micro-core.
The Epiphany-III and MicroBlaze micro-cores require similar custom linker files.
However, the PicoRV32 file is unique in that the KEEP command is used to
prevent the linker from performing dead code removal on the .text segment,
which is vital to ensure that the PicoRV32 register initialisation is performed.
As the register initialisation subroutine is not referenced in the C source code,
it would be removed by the GCC linker when the kernel binary is created, if the
KEEP command was not used. As all functions are placed in the .text segment
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and no dead code removal is performed, all unused library functions will also
be kept in the final binary, unlike the binaries for other CPUs. Although this is
an issue for PicoRV32 binaries, it impacts both Olympus and native C kernels.
Therefore, a more detailed discussion of possible mitigations for this issue will
not be provided, except to highlight the benefits of the Olympus dynamic code
loading mechanism discussed in [21].

3.6 Optimising loops

Whilst the performance of the Olympus abstract machine closes the gap with
native C, the question remained as to whether the Olympus code generator could
leverage the constrained vPython for loop to increase performance. Although
it is considered unpythonic to use range to provide an index variable to iterate
through the elements of a list[5], as shown in lines 2 and 3 of Listing rather
than accessing an iterator directly as shown in lines 5 and 6, the iterator is
immutable and the list element is cannot be updated, whereas the unpythonic
approach allows the list element to be updated.

| arr = [ ngn np" nen

> for i in range(0,len(arr)):
3 arr [i] = "x"

4

5 for i in arr:
6 i="y

Listing 1.4. Unpythonic and Pythonic list access

Although a while loop with a manual index variable is often used in this case,
the unpythonic for loop approach provides a performance benefit in vPython.
As the iterator is managed by the Olympus abstract machine and not the pro-
grammer, the vPython for loop can leverage a native C local loop index variable,
for example $iter_i$ in Listing[1.5] This C variable not only controls the loop
iteration but also is used to update the vPython list element, as shown in line 2
of Listing In contrast, the while loop requires a lookup of the index variable
in the Olympus environment for both loop control and list element updates, as
shown in lines 5, 6 and 7 of Listing [T.5]

| FOR($iter_i$,0,LDI (ADDRL(2)),1)
STAI (ADDRL (4) ,$iter_i$ , TRUE);
END

N

5 WHILE ((LDI (ADDRL (10))<LDI (ADDRL (2))))
¢ STAI (ADDRL (4) ,LDI (ADDRL (10)) ,TRUE);

7 STI (ADDRL (10) , (LDI (ADDRL (10))+1));

s END

Listing 1.5. Example Olympus abstract machine code for vPython loop constructs
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Two vPython Variantaﬂ of the Sieve benchmark were used to determine the
performance benefits of the for loop over the while loop alternative. These were
compiled at GCC optimisation levels -0s and -03, and run on the RISCV64. A
native C version of the Byte Sieve benchmark was also compiled at both optimi-
sation levels and run for comparison with the vPython variants. As detailed in
Table [I} the for loop variant of the vPython Byte Sieve benchmark is approx-
imately 3 times faster at both -0s and -03 GCC optimisation levels than the
while loop variant. Furthermore, the for loop variant closes the performance
gap with native C to around 1.5 times slower from approximately 5 times slower
for the while loop variant (both at GGC optimisation level -0s).

Table 1. Byte Sieve benchmark runtime performance (seconds)

Code variant GCC -Os GCC -03
vPython while 7.22 5.95
vPython for 2.33 1.92
Native C 1.33 1.20

The new version of the Olympus abstract machine for Vipera that separates
the object addressing from operation within the mnemonics, not only enables di-
rect access to native C variables, as shown in Listing[T.5] to increase performance
but also simplifies the implementation of object references within the abstract
machine, enabling the integration of Olympus applications with C frameworks,
such as the Eithne benchmarking framework[20] and MPI (Message Passing In-
terface).

4 Conclusion

Whilst the vPython virtual machine provided a productive environment to de-
ploy parallel codes written in a dynamic language to micro-core architectures,
the performance overhead of the interpreter limited its use for real-world codes.
However, the Olympus abstract machine approach resulted in kernel performance
that was comparable to or, in some cases could exceed, native C kernels, as con-
firmed for the LINPACK benchmark in Section [3:2] and, at a worst-case, was
around five times slower than native C for the Sieve of Eratosthenes benchmark
(Section . Crucially, as shown in Section this gap can be lowered to just
over 1.5 times slower by leveraging the for loop’s native C iterator. Further-
more, a single Python code is portable across these architectures, which is not
the case for the standard C codes.

Vipera has also addressed the portability of user codes and underlying run-
time support. All of the benchmarks run unmodified across all the supported
platforms and the Olympus abstract machine builds from a single codebase,

8Standalone versions, not run within the Eithne framework per Section
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which results in significant programmer productivity gains. All device-specific
code is managed within the mnemonics and runtime support functions, with the
generated Olympus abstract machine code remaining the same across all plat-
forms. Furthermore, the vPython virtual machine was also shown to be portable
to a number of micro-core architectures with the minimum of effort.

Further work includes exploring automatic memory management for data
and code, optimisation of the Olympus abstract machine, automatic dynamic
function selection for the dynamic loading support discussed in [21], additional
data types (byte arrays) to minimise the memory footprint of data and additional
device support (GPUs and FPGAs) using OpenCL C and Xilinx HLS C.

Whilst this paper has focused on the assessment of the Olympus code gener-
ation model using vPython, we also believe that Vipera has a wider applicability
to other dynamic programming languages targeting micro-core architectures.
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