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Abstract 

Thermal Images profile the passive radiation of objects 

and capture them in grayscale images. Such images have a 

very different distribution of data compared to optical 

colored images. We present here a work that produces a 

grayscale thermo-optical fused mask given a thermal input. 

This is a deep learning based pioneering work since to the 

best of our knowledge, there exists no other work on 

thermal-optical grayscale fusion. Our method is also 

unique in the sense that the deep learning method we are 

proposing here works on the Discrete Wavelet Transform 

(DWT) domain instead of the gray level domain. As a part 

of this work, we also present a new and unique database for 

obtaining the region of interest in thermal images based on 

an existing thermal visual paired database, containing the 

Region of Interest on 5 different classes of data. Finally, we 

are proposing a simple low cost overhead statistical 

measure for identifying the region of interest in the fused 

images, which we call as the Region of Fusion (RoF). 

Experiments on the database show encouraging results in 

identifying the region of interest in the fused images. We 

also show that they can be processed better in the mixed 

form  rather than with only thermal images. 

1. Introduction 

Compared to optical images, the thermal Images are 

difficult to work with because the objects are not well 

segregated like optical images and different signatures are 

visible in black and white. This is because Thermal Infrared 

(TIR) images work on the principle of passive thermal 

radiation, as opposed to reflected light in optical images or 

Near Infrared (NIR) images. Moreover, thermal images are 

produced by radiation, which are of higher wavelength than 

visible light, leading to a lower resolution. As such, while 

there exist works like [2-4] which focus on thermal images, 

we did not come across any work which tries to fuse 

thermal and optical images represented in the grayscale 

domain directly. While we have presented a work [5] which 

tries to prepare color images in a fused domain, that is 

different from our present work, because we try to create a 

fused image which can be used in the optical domain. E.g. 

we can do Deep Learning (DL) based colorization trained 

only on optical images, which would not be possible with 

the work described in [5]. We demonstrate this in Fig. 2. 

Moreover, our work is specifically focused on data 

synthesis in a single grayscale level instead of a mask in the 

RGB or the 3 channel luminance-chrominance (LAB) 

domain, and thus we have different data distributions for 

our deep network. We anticipate that our work will be 

useful in domains that need the input from thermal images 

to process the data for further information like defense, 

drone imaging at night, forensic domain images etc. 

Also, our method is unique in the sense that we are 

proposing a network that works on a transformed space 

(DWT). Our network creates different levels of parallel 

pathways for DWT transform and captures the data 

distribution at different levels of abstraction [21]. Finally, 

we return to the normalized gray-level image domain, the 

reason for which is described in Section 2.1.  

Non DL methods on fusion of thermal images include 

works like [39] which works on contour formation, [40] for 

long range observation and [41] which handles multiple 

thermal image fusion for focus improvement. The DL based 

methods usually need more data, but in many cases such 

methods outperform even humans. Some examples are, fine 

grain image identification [35], image coloring [37, 38] or 

medical image diagnosis [34, 36]. Thus, in specialized 

areas, DL based methods are used to handle jobs that are 

difficult in classical methods. This is one motivation of our 

current work. 

We hypothesize that the distribution of the fused image 

is similar to both thermal and optical image. Therefore, 

these images should be properly processed by a machine 

learning method which is trained to work on either optical 

or thermal images with nominal retraining. In Sec.3 we 

show this in our blind testing method. We also provide 

objective measures in support of our claim in Table 2.  

Our database [19] is based on an existing database [6], 

which contains complex real-world scenes of 5 classes, 

namely nature, modern infrastructure, animal, human and 

crowd which we collected over a period of 1.5 years. These 

images were picked from our work on cross domain 

colorized images [5], which were not annotated. We 

manually annotated all collected images and marked the 

Regions of Interest (ROI). Since these were real (non-

synthetic) images, the total process took about 130 working 

hours to complete. We went on to fuse these images with 
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the input thermal image to obtain the fused image. Each 

image is then finally Histogram Equalized to obtain the 

final presented output. A database called CVC-14, [24] has 

annotated thermal images, but the database has only 1 class 

annotated namely pedestrians unlike 5 classes in ours. Such 

annotated databases are not publicly available. Our 

database provides data distributions which are widely 

different from each other, which is needed in training DL 

based models. 

We also present a simple new statistical measure for 

obtaining the region which has been changed most in the 

output image in comparison to the input image, which we 

call Region of Fusion (RoF). In summary: 

• We demonstrate that it is possible to produce grayscale 

fused images containing information from both the 

thermal and optical images.  

• We introduce a novel DL architecture that works on a 

separate logical space (DWT) than the input or output 

space (normalized images). 

• We introduce a unique dataset containing annotated 

thermal images across multiple classes based on our 

existing database [6]. 

• We define a simple statistical score for focusing on a 

region of interest in fused images. 

2. Related Works  

Machine Learning techniques for working with thermal 

images have been growing significantly over the last few 

years. This includes methods for reconstruction of thermal 

images [46], super resolution [47] imparting color to 

thermal images [2-5, 37, 42-45], depth estimation [48] and 

even unsupervised data extraction [49-50]. Similarly, 

innumerable methods exist for optical domain image 

processing including for colorization [38, 43], automatic 

annotation [8-9], denoising [27] etc. However, we have not 

encountered any work related to processing the TIR images 

via a fusion method in the grayscale domain. We opted to 

work on this domain because we hoped to be able to extract 

and process the information in the fused domain better than 

either the thermal or the optical domain images 

individually. We chose Discrete Wavelet Transform as the 

base of our work as it has been used extensively over the 

years for processing different kinds of data distributions 

from audio [26], image compression [31, 27], face detection 

[17], spliced image detection [32] and even generalized 

signal [28]. Almost all of these works focused on either 

restoration or detection. This is primarily because DWT 

offers an easy to use method which transforms the input 

signal into a separate (frequency) domain, which helps 

observe the data from a different viewpoint. This in turn, is 

used to separate the high frequency and the low frequency 

information in the data, often even at the pixel level in 

images [29] providing a statistically inexpensive method.  

While there are several works on non DL based image 

fusion techniques, very few of them like [39-41] handle 

thermal-optical fusion. All of them work by trying to find 

an output following some pre-defined rules. CNN tries to 

achieve this by aiming to find the optimal data distribution 

[30] for a given input. While there are fusion based DL 

networks which discriminatively train on multiple domains 

while providing outputs, like [16], we have not encountered 

a work that calculates the kernels and computes the full 

model in a different logical space.  We do this because of 2 

reasons. The first is that we are eliminating the 

preprocessing step of converting the visible image into the 

discrete wavelet transformed data. The second, and more 

important one is that transforming an image from the visible 

domain into the DWT domain converts the image into 4 

different sub bands for image enhancement. This is often 

used for blurriness reduction. However, this comes at the 

cost of distortion of the input images, often at the corners 

[33]. TIR images possess a data distribution that is blurry 

by virtue of its capturing sensors and thus, a preprocessing 

DWT method would result in further degradation of the 

input data distribution. Hence, we argued that instead of 

using a discrete wavelet transformed image, if we use a 

normalized image as the input instead, we should be able to 

minimize this initial degradation. Of course, an argument 

can be made that Convolutional Neural Networks (CNNs) 

themselves work in a separate function space than the 

input/output space, but we are going beyond that to propose 

a method that works on a logical space mirroring an 

established statistical method for signal processing and go 

on to show that deep networks are capable of effectively 

learning relations in this space. 

Thus, while there are existing works like [21] and [23] 

that work on the DWT domain, it must be understood that 

these use wavelet transformed feature maps as input, thus 

changing the domain of the work completely from visible 

images. Our method, on the other hand, uses images 

directly and computes all relations directly in the proposed 

deep network. Even on non-image based fields with DWT 

based DL, like in [22], we see that the methods are based 

on pre-processing the data to obtain the nth level 

decomposition at the first level before feeding it into the 

deep network. We avoid this step directly, thus simplifying 

our process considerably. 

3. Proposed Method 

We are using a deep network to produce a mask, creating 

a masked image followed by Histogram Equalization to 

create the final output. The output mask is created by 

training the model to optimize the loss from an input 

thermal image to an output image which is the thermal 

image embedded with the optical-thermal average in the 

annotated region. This ensures that only a particular region 

in the thermal image is different from the input image, thus 
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highlighting it. The deep model we are using is described in 

Fig. 1 and described in Table 1 and our data is presented in 

Supplementary Section 1. 

3.1. Deep Network 

Our network can roughly be divided into 3 different 

blocks: Input Encoder/Decoder, DWT Layer and Output 

Encoder/Decoder. We outline this in Table 1. 

 

Table 1: Deep Network Details 

Base Layer Name Details Description 
encode_same (input, 

filter, kernel, dropout = 

True, normalization = 

True) 

Conv2D {W 

(3,3), S: (1,1)} 

leakyReLU () 

if (normalization 

= True): 

  Batch 

Normalization() 

If (dropout = 

True) 

  DropOut(0.5) 

Creates an 

output layer of 

the same size 

as the input 

layer, with the 

specified depth 

(filter) 

encode_half (input, 

filter, kernel, dropout = 

True, normalization = 

True) 

Conv2D {W 

(3,3), S: (2,2)} 

leakyReLU () 

if (normalization 

= True): 

  Batch 

Normalization() 

If (dropout = 

True) 

  DropOut(0.5) 

Creates an 

output layer of 

half the size 

(length/width) 

as the input 

layer, with the 

specified depth 

(filter) 

encode_double (input, 

filter, kernel, dropout = 

True, normalization = 

True) 

Conv2D 

Transpose{W 

(3,3), S: (2,2)} 

leakyReLU () 

if (normalization 

= True): 

  Batch 

Normalization() 

If (dropout = 

True) 

  DropOut(0.5) 

Creates an 

output layer of 

double the size 

(length/width) 

as the input 

layer, with the 

specified depth 

(filter) 

LL (input, filter, kernel, 

dropout = True, 

normalization = True) 

Conv2D {W 

(3,3), S: (1,1)} 

ReLU () 

if (normalization 

= True): 

  Batch 

Normalization() 

If (dropout = 

True) 

  DropOut(0.5) 

Creates an 

output layer of 

the same size 

as the input 

layer, with the 

specified depth 

(filter), using 

ReLU 

activation 

function 

intermediate_enc_dec 

(input, filter) 

p = encode_same 

(input, dwf) 

p = encode_half 

(input, dwf*4)  

p = encode_ half 

(input, dwf*16) 

Combination 

of  

encode_same, 

encode_half 

and 

encode_double 

blocks to 

p = encode_same 

(input, dwf*64) 

p = 

encode_double 

(input, dwf*16)  

p = 

encode_double 

(input, dwf*4, F)  

p = encode_same 

(input, 1, F, F) 

create an 

encoder-

decoder like 

structure used 

in the network 

Input Encoder/Decoder (dwf = 4, F = False, T = True) 

Layer Output 
inp = encode_same (input,dwf,F,F) 128 x 128 

d0 = encode_half (inp, dwf*4) 64 x 64 

d1 = encode_half (d0, dwf*16) 32 x 32 

d2 = encode_half (d1, dwf*64) 16 x 16 

d3 = encode_half (d2, dwf*128) 8 x 8 

d4 = encode_half (d3, dwf*256) 4 x 4 

d5 = encode_double (d4, dwf*128)  8 x 8 

d6 = encode_double (d4, dwf*64) 16 x 16 

d7 = encode_same (d4, dwf*64) 16 x 16 

d8 = encode_double (d4, dwf*16) 32 x 32 

d9 = encode_double (d4, dwf*4) 64 x 64 

d10 = encode_same (d4, dwf) 64 x 64 

 

DWT Layer (dwf = 4, F = False, T = True) 

Layer Output 
ca1, ch1, cv1, cd1 = slice along last axis 

(d10) 

 (64 x 64) 

ll1 = LL (ca1, dwf) 64x64 

ll1 = LL (ll1, dwf*4) 64x64 

ll1 = LL (ll1, dwf*16) 64x64 

ll1 = LL (ll1, dwf*32) 64x64 

ll1 = encode_half (ll1, dwf*64) 32 x 32 

ll1 = encode_same (ll1, dwf*16) 32 x 32 

ll1 = encode_same (ll1, dwf*4) 32 x 32 

ll1 = encode_same (ll1, dwf) 32 x 32 

ca2, ch2, cv2, cd2 = slice along last axis 

(ll1) 

 (32 x 32) 

ll2 = LL (ca2, dwf) 32 x 32 

ll2 = LL (ll2, dwf*4) 32 x 32 

ll2 = LL (ll2, dwf*16) 32 x 32 

ll2 = LL (ll2, dwf*64) 32 x 32 

ll2 = LL (ll2, dwf*16) 32 x 32 

ll2 = LL (ll2, dwf*4, F) 32 x 32 

ll2 = LL (ll2, 1, F, F) 32 x 32 

hl2 = intermediate_enc_dec (ch2, 1) 32 x 32 

lh2 = intermediate_enc_dec (cv2, 1) 32 x 32 

hh2 = intermediate_enc_dec (cd2, 1) 32 x 32 

hl1 = intermediate_enc_dec (ch1, 1) 64 x 64 

lh1 = intermediate_enc_dec (cv1, 1) 64 x 64 

hh1 = intermediate_enc_dec (cd1, 1) 64 x 64 

ll2_1 = concatenate ([ll2, hl2], axis= 2) 32 x 64 

ll2_2 = concatenate ([lh2, hh2], axis= 2) 32 x 64 

ll1 = concatenate ([ll2_1, ll2_2], axis = 1) 64 x 64 

a = concatenate ([ll1, hl1], axis = 2) 64 x 128 

b = concatenate ([lh1, hh1], axis = 2) 64 x 128 

op1 = (a, b, axis = 1) 128 x 128 



4 

 

Fig. 1: The pink block represents an LL layer comprised of a combination of the individual encode_same blocks, the yellow 

ones are encode_same, blue represents encode_half and the red ones are encode_double. The intermediate encoder/decoder 

has been simplfied into a single orange block. The grey blocks are spliced single depth layers obtained by separating the 4 

layers of an output block. The last red layer is a single depth Conv2D layer with sigmoid activation. The green blocks are 

concatenation blocks, which are joined along the last axis with the output from a previous layer and + represents the 

concatenation operation. The averaging is represented by the * operator and HE stands for Histogram Equalization. Detailed 

information on the model is available in Table 1 

 
op2 = encode_same (op1, dwf*4) 128 x 128 

op2 = encode_half (op2, dwf*16) 64 x 64 

op2 = concatenate ([op2, d0], axis = 3) 64 x 64 

op2 = encode_half (op2, dwf*64) 32 x 32 

op2 = concatenate ([op2,d1], axis = 3) 32 x 32 

op2 = encode_half (op2, dwf*128) 16 x 16 

op2 = concatenate ([op2,d2], axis = 3) 16 x 16 

op2 = encode_half (op2, dwf*256) 8 x 8 

op2 = concatenate ([op2,d3], axis = 3) 8 x 8 

op2 = encode_same (op2, dwf*256) 8 x 8 

op2 = encode_double (op2, dwf*128) 16 x 16 

op2 = encode_double (op2, dwf*64) 32 x 32 

op2 = encode_double (op2, dwf*16) 64 x 64 

op2 = encode_double (op2, dwf*4, F) 128 x 128 

output = Conv2D {W (3,3), S: (2,2)} 128 x 128 

sigmoid () 

 

In the above table all output layers have a depth equal to 

the number of filters used as the function arguments for 

convolution. Thus, for example, the layer d0 has a shape of 

64x64x16 when using an input shape of 128x128 in the inp 

layer. For slicing layers, outputs have a depth of 1 (i.e., it is 

a 2D matrix only). 

The Input Encoder/Decoder is a basic encoder coupled 

with a decoder with Convolutional 2D Transpose layers 

(instead of statistical Upsampling layers) to preserve the 

gradient in between the layers. Also, we do not form a  
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complete encoder-decoder, but put 1 less layer of the input 

dimension for feeding into the first level of our DWT layer. 

The Output Encoder/Decoder is also a general encoder 

decoder with a concatenation of the output from the input 

encoder with the output encoder. The concatenation is a 

layer-wise concatenation along the last axis. This is done so 

as to help the network learn the input texture in the output 

mask. Our method does not convert an input thermal image 

completely into a full optical mask, but instead minimizes 

the loss against a partial output image which has an 

averaged area embedded into the input thermal image. 

Thus, it would make sense to include this distribution into 

the output, which is what we try to encapsulate with the help 

of the skip connections. The output mask is obtained by 

using a last 2D Convolutional layer with the sigmoid 

activation which normalizes the output to (0,1) values. 

We wanted to check if we could work in the Discrete 

Wavelet transform (DWT) domain instead of the usual 

normalized image domain for our fusion. The reasoning for 

this is that 2 Dimensional DWT (2DDWT) works on 

iteratively smaller scales of an image by halving the 2 axes 

of an input image, processing it and then reconstructing it 

back. In fact, this is similar to the logic of an encoder-

decoder, except that an encoder-decoder based CNN works 

on the spatial domain and 2DDWT works on the frequency 

domain.  

Since conversion from the spatial to the frequency domain 

is a standard signal processing algorithm, our logic was that 

a logically sound sufficiently complex deep network should 

be able to intuitively model it by itself. In fact, this is 

precisely the reason we alternate between 2 different blocks 

of deep network for modelling the LL blocks as opposed to 

the other (LH, HL, HH) blocks in our model. As can be 

noticed, for the LL blocks, we specifically use ReLU as the 

activation function, while we use LReLU for other blocks. 

In 2DDWT, LL blocks are confined to lie between 0 and a 

positive integer, which doubles in value with every 

Fig. 2: A comparison of different images used for input versus the different outputs we obtain along with a blind testing 

done by colorizing the images with a network trained exclusively on optical images. HE represents Histogram 

Equalized masked images. All of the colorization is via the method in [18]. 

Masked 

Colorized 

(a) 

(b) 

(c) 

(d) 

(e) 

Thermal Optical Masked HE Thermal 

Colorized 
HE 

Colorized 
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successive iteration, which is the reason we use ReLU. 

When normalized, this essentially means that the values 

cannot go below 0, and are constrained between 0 and 1. On 

the other hand, the other blocks can have values which go 

below 0, and thus are effectively modelled by LReLU 

(where the output lower bound can have values below 0). 

Of course, while the 1st and the 2nd level LL bands might 

be normalized to lie between 0 and 1, the 2nd level LH, HL 

and HH blocks may contain values below 0. However, these 

blocks combine to form the 1st level LL band, which is 

again normalized to lie between 0 and 1. This is exactly how 

we model our method as well. 

It needs to be noted here that we design our model to 

represent only till the 2nd level decomposition. However, 

theoretically, one could go even deeper. We did not opt for 

this because of two reasons. Firstly, the size of our data was 

128x128. We could not have data at the 256x256 size since 

the database we used had several images which had a 

maximum size of 240 in one dimension. Secondly, another 

level of decomposition would bring the output size of the 

patches down to 4x4, which would render our method 

unusable. Also, at one point, the increase in complexity 

would overrule the optimization of the loss.  

As can be seen in our model, we decide to create a 

method that is able to create patches of localized data by 

creating an encoder-decoder structure for each scale of 

resolution we work on. The reason we decide to use this 

structure for the localized resolution paths is because we 

find that a localized encoder-decoder structure is able to 

lower the absolute loss by about 20%, as opposed to using 

patches with more depth at the same resolution. We also use 

skip connections between the 4 levels of the input encoder 

(before feeding it into our multi resolution kernels) and the 

output encoder (after we have obtained the final DWT 

kernel). We find that this optimizes the absolute loss by 

around 18% at the cost of about 10 times as many 

parameters. We wanted to find the optimum loss with skip 

connections between all the layers of the input encoder and 

the output encoder till a resolution of 1x1 was reached. 

However, that created an excessive overhead of parameters 

at 110 times the first variant, which did not fit in our 

hardware. So, we produced the model with only 4 localized 

encoder-decoder like structure as 6 skip connections did not 

give any significant change in accuracy over using 4, even 

at the cost of 20 times the initial number of parameters. 

We decided to use Adaptive Moment Optimization 

(ADAM) as the optimizer because our model actually tries 

to optimize the loss function similar to what ADAM is 

doing as explained below.  

The optimizer tries to lower the loss by changing values 

of nth
 moment, which is defined as  

mn = E [ Xn ]        (1) 

where X represents the data and E is the expectation. Since 

ADAM works by minimizing loss through moving average 

optimization, with the help of 2 constants (β1 = 0.9 and β2 = 

0.999), the kth mini-batch moving averages at the ith level 

reduces to 

 

m̂ 𝑘 =
𝑚𝑘

1− 𝛽1
𝑖  , 𝑣̂̂𝑘 =

𝑣̂𝑘

1− 𝛽2
𝑖        (2) 

 

where m and v represent the moving averages. 

Thus, we see that as the level goes deeper, the loss 

becomes lower and more local. The local convergence of 

ADAM optimizer has been relied on heavily for its choice 

of optimizer and has been already proven in [25]. This is 

what we are trying to achieve with our method as well, 

wherein the levels are logically represented by the parallel 

levels of DWT layer described in Table 1. 

Fig. 3: A comparison of different images showing their 

RoF. (a) and (b) are images obtained via the FLIR E60 

and (c), (d) and (e) are obtained via Sonel KT400 and 

have different image resolutions. The leftmost images are 

thermal inputs, the middle ones are Histogram Equalized 

masked outputs and the right most images are the outputs 

obtained after running the RoF algorithm on the images 

in the middle. 

(c) 

(d) 

(e) 

(a) 

(b) 
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However, there is another hyper parameter, the loss 

function which forms an integral part of a deep network. 

We use logcosh as the loss for our current model. As stated 

in [1], if we consider wavelet based data, geodesic distance 

based on the Riemannian manifold is a good estimator as a 

distance measure. Since the Riemannian manifold is a part 

of the hyperbolic plane, we decided to use the logcosh loss 

measure representing the logarithm value of the hyperbolic 

cosine of the error predicted, given by  

 

𝑙𝑜𝑔𝑐𝑜𝑠ℎ (𝑥) =  {
𝑥2

2
                                  𝑓𝑜𝑟 𝑥 ≪  1

𝑎𝑏𝑠(𝑥) − log(2)           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (3) 

Once we have the mask from our deep network, we fuse 

it with the thermal prior according the simple averaging 

rule: 

Oi = ( Ti + Mi )/2         (4) 

where Oi represents the averaged output image pixel, Ti is 

corresponding the thermal prior pixel and Mi is the 

equivalent mask pixel for each ith pixel. We are trying to 

obtain an image that already has the thermal image as a part 

of the output. 

Finally, we go on to equalize the fused image in order to 

obtain a final output image which has a better distribution 

of illumination for better visibility. Here we point out that 

there is no meaning to equalizing a thermal image. This is 

because thermal images are already histogram equalized by 

the capturing device since thermal images use all 256 levels 

of illumination. This is evident from the thermal bar present 

on the right side of thermal images. We present a 

comparison of the thermal input, the fused image and the 

final output in Fig. 2.  

3.2. (RoF) 

When looking at research works focused on fusion, we 

have found that there is no objective measure which could 

provide a bounding box for the localized regions of fusion. 

This becomes relevant in works such as this one, where we 

are focusing on regions which should have localized 

content for fusion. 

Hence, we propose a measure called Region of Fusion 

(RoF), based on localized Region of Interest (ROI), which 

can be objectively calculated given a fused image and the 

input from which it is obtained. This method is fully 

customizable in regards to the distance metric that is used 

to calculate the region similarity and can be used on fusion 

methods which are either DL or statistically based. It has a 

low computational complexity on par with the size of the 

image (constrained by the similarity measure being used).  

The idea behind the method is to take a score for the 

variation of full image between the thermal and the fused 

output and then calculate the area of both. We iteratively 

reduce the size of the region by 1 and check the percentage 

reduction of variation with the percentage reduction in area. 

If variation is less than the change in area, we stop and 

define the region as the final region. The full algorithm is 

discussed in details as Algorithm 1 below.  

_____________________________________________ 

Algorithm 1 

Input: Thermal-Fused grayscale image pair 

Output: Fused Image with a RoF 

1. for each image pair in list: 

2. obtain image size as x = 0 to m, y = 0 to n 

2.1. check = 0 

2.2. while x<n, with x = 0,  y = n  

2.2.1. if check = 1 

2.2.1.1. x = x+1 

2.2.1.2. continue 

2.2.2. calculate the measure of similarity between 

the thermal and the fused image patch for 

region (x = 0 to m, y = 0 to n) as M1 

2.2.3. calculate the measure of similarity between 

the thermal and the fused image patch for 

region (x = 1 to m, y = 0 to n)  as M2 

2.2.4. calculate the area A1 = (m-x)*n and A2 = (m-

(x+1) )*n 

2.2.5. if M1 / M2 < A1 / A2 

2.2.5.1. x = x+1 

2.2.5.2. X1 = x 

2.2.6. else 

2.2.6.1. check = 1 

2.3. check = 0 

2.4. while x>X1, with x = m,  y = n  

2.4.1. if check = 1 

2.4.1.1. x = x-1 

2.4.1.2. continue 

2.4.2. calculate the measure of similarity between 

the thermal and the fused image patch for 

region (x = X1 to m, y = 0 to n) as M1 

2.4.3. calculate the measure of similarity between 

the thermal and the fused image patch for 

region (x = X1 to m-1, y = 0 to n) as M2 

2.4.4. calculate the area A1 = (m- X1)*n and A2 = ( 

(m-1) - X1) )*n 

2.4.5. if M1 / M2 < A1 / A2 

2.4.5.1. x = x-1 

2.4.5.2. X2 = x 

2.4.6. else 

2.4.6.1. check = 1 

2.5. repeat steps 2.1 – 2.2 keeping x as constant from 

X1 to X2 and varying y from 0 to n to get Y1 

2.6. repeat steps 2.3 – 2.4 keeping x as constant from 

X1 to X2 and varying y from n to Y1 to get Y2 

2.7. draw a box on the fused image from (X1, Y1) to 

(X2,, Y2) to get the RoF 

_______________________________________________ 

As can be understood from the above algorithm, the 

measure for similarity (or dissimilarity) can be changed as 

needed. We have used the sum of the square of difference 

of pixel values as a measure of dissimilarity in our case, but 
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one can use other scores, like Structural Similarity Index 

Measure (SSIM). Also, since this is an unbiased score, one 

can opt to combine existing DL based fusion methods like 

[11, 12] with our score to provide a better measure of the 

fused region to focus on the output. 

One may note that while RoF can model any fusion based 

distribution for a region of interest, the data distribution 

needs to be on the same scale. For example, if we work with 

data distributions modelled on Wavelet transformed data 

(without converting it back into an image), which are multi 

resolution data distributions containing several scales of an 

image, it would not work. This is because RoF is designed 

to work on data in a single scale only by determining a local 

maximum for the bounding box. 

3.3. Database 

We use the thermal-visual paired images dataset [6] for 

our work. It was presented as a part of a work on colorizing 

thermal images. We use 10 random cuts of the input images, 

while keeping the annotated region inside the cut. This 

limits our data, and we are able to create only 89,442 pairs 

of images for our experiment. This is because while it is 

possible to take a random cut from an input pair if the 

objective was just the production of a fused thermal-optical 

image, we try to create a model which is able to create a 

localized region for the final output instead of a uniform 

fused image. Examples of these images are shown in the 

Supplementary Section 2. 

The database we propose has 1873 thermal images hand 

annotated by us. The annotation in rectangular bounding 

boxes is done using the tool VGG Image Annotator (VIA) 

[7]. We annotate the images into 5 different classes, Nature 

(nat), Animal (ani), Human (hum), Crowd (cro) and 

Modern Infrastructure (inf). Each image may have multiple 

annotated objects inside it, which is how we are able to 

obtain more than one sub-image for each individual 

annotated image. A few of these are included in the 

Supplementary Section 1. 

However, the database [6] also contained the paired 

visual equivalent for each of these thermal images, which 

has lent a way to further augment our dataset. We applied 

an optical Region of Interest bounding box algorithm on the 

optical images to create additional data. The logic behind 

this is that since we are proposing a localized fusion 

method, the fusion should occur from both directions, and 

not just from thermal to optical. There might be objects 

present in the optical domain which are not well visible in 

the thermal domain (objects at the same thermal profile 

range). We came across different object identification 

algorithms like [8, 9] etc, but most of them were either 

image classifiers only or did not provide multiple bounding 

boxes over a single image, as we required. Moreover, since 

the database we were using as our background base was 

focused on multiple classes, not of a very high resolution 

and of different sizes, we wanted to find a low overhead 

high accuracy algorithm which would be able to fit in our 

case. Thus, we decided to opt for DEtection TRansformer 

(DETR) [10] for our use. DETR is a state of the art localized 

low cost object annotator which has multiple object classes, 

trained on optical images. We use the public code that they 

provide, and obtain object annotations on the optical images 

in the database and transpose these boxes on their thermal 

counterparts to finally obtain the localized database we are 

using for our use. Of course, since we have only 5 classes 

in our annotation, we simplify the annotation provided by 

DETR into our annotation labels by changing classes like 

bus, car, laptop, truck etc into Modern Infrastructure, sheep, 

horse etc into animal and so on. 

The final database we propose has 5 different classes 

labeled as a number from 1 to 5. Once this is done, we take 

10 random cuts around the annotated region, for each of the 

images with individual annotations constraining the 

minimum size for each image to be 128 x 128 and combine 

the thermal and optical information in the annotated region 

following Eq. (4). We finally obtain 89,442 image pairs, 

which we use in our work. 

It should be noted that since there is no extra restriction 

on the annotated region size, our final database for the 

model comprises of images of widely differing sizes, which 

we normalize to 128x128 keeping parity in the input and 

output image sizes in the deep network. We reshape it back 

to the original image size after we obtain the mask to create 

the final masked output for equalization and obtain the final 

output. 

4. Experimental Results 

We use 3 different objective scores to evaluate our 

method. Since we did not find any thermal image fusion 

evaluation score, we choose Structural Similarity Index 

Measure (SSIM) [20], Cosine-similarity (Cossim) and 

Mean Square Error (MSE) for our evaluation. These scores 

are denoted in Table 2. 

 Thermal vs 

output 

Thermal vs 

visual 

Visual vs 

output 

SSIM 0.873 0.2641 0.307 

Cossim 0.932 0.889 0.916 

MSE 117.91 9613.741 8620.87 

Table 2: Objective score comparison between thermal 

images, optical images and the masked average outputs 

 

 In Table 2, we show a comparison between our masked 

average outputs versus their thermal and optical 

counterparts. We use 3 different measures of similarity. The 

first column shows how similar our averaged output is to 

the thermal images. Similarly the third column shows their 

similarity with the visual counterparts. The middle one is 

the similarity of the thermal images to their optical 

counterparts and provides the baseline against which we 
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compare our values. Of course, the scores between the 

thermal and the averaged output is much better than the 

ones between the optical and the average output, because 

we fuse the mask with the thermal image before 

comparison. 

5. Discussion 

 Since there is no direct method of comparison for 

showing that our method produces a significantly different 

output (as all of it is in grayscale domain and optical 

features incorporated in the mask are not immediately 

identifiable), we opt for an indirect method to show this. 

We use a neutral testing method of coloring of the thermal 

image and the final output we are producing. The coloring 

is done via the method explained in [18] for optical image 

colorization. We use the online demo method they provide 

for the same, without training it on our database for the 

blind testing.  

 As can be seen in Fig 2, the Histogram Equalized (HE) 

images contain more texture as compared to the thermal 

images. This is especially noticeable in image (e), (a) and 

(c). We include (a) since it has a noticeably bad optical 

image since the setting for the photograph possessed a bad 

illumination. Similarly, (b) has a binary thermal image. 

These kinds of images occur when the levels of the thermal 

imager for the upper and lower limits of temperature to be 

captured are very near the limits of temperature of the 

surrounding. As can be seen, both (a) and (b) provide 

outputs which have noticeably improved texture in the 

masked images. The colored mask as well as the colorized 

HE masked images show the same. In case of (c), we see 

that the walls of the structure in the image have a lower 

temperature. This region becomes prominent in the HE 

masked images. Finally, we note that the images for both 

(d) and (e) are quite different from the input thermal 

images. This is especially noticeable in all of these images 

when we consider the blind testing method we provide, in 

which we color each of these images via the method 

described in [18], which is a pure optical coloring 

technique. Our method shows that the color improves as 

compared to the thermal images. Of course, this is possible 

because the temperature profile is not well segmented in 

most thermal images, which is why these are different from 

optical images. However, if there exist thermal images 

which have very well defined levels of separation in 

between objects, our method would not perform as well 

since the texture might be interpreted as noise by a machine 

learning method. None of the images shown in Fig. 2 are of 

the same size because all of them were random cuts from 

thermal images.  

 We show the results from our measure of fusion, RoF in 

Fig. 3. The images we use here are those which are 

published in [6] as being unregistered. Thus, we did not 

have the optical counterparts of these images, and they were 

not used in training our DL algorithm. We obtain the HE 

masked images for each of the thermal inputs and then run 

our RoF identifying algorithm on them. The texture 

difference is relevant in case of images (a), (b) and (c), 

where we see a clear region of interest. In case of (d), the 

region is around almost the full image. However, in (e), the 

region is quite outside the expected region of interest. This 

is because, in (e), we see that the thermal image has well 

defined levels of separation for regions. However, our 

method does detect a region where the score varies enough 

to make a RoF. In images such as this, since the thermal 

image itself is well segmented and possess well defined 

visual features, we would not opt for a fusion method. 

However, we include this result to show that this case may 

also occur. 

 We use 89,352 images for training and 90 images for 

validation. We finally use 294 images for testing against 

paired images, which are random cuts from registered 

images in [6] and 438 images for testing on a blind dataset, 

images that were unregistered in the dataset. 

 All experiments have been conducted on Keras 2.2.4, 

with Tensorflow 1.13.1 as the backend, using a 1080Ti 

GPU on a 7820X i7 chipset processor. This work was 

supported by the Computer Visions and Biometrics Lab 

(CVBL), IIIT-Allahabad. 

6. Conclusion 

We present a novel method demonstrating that it is 

possible to fuse thermal images with optical priors having 

annotated regions for focusing on specific regions. The 

model is both unique in its scope of work and the theoretical 

basis, wherein we show that the calculations are based on a 

separate logical space, constructed on the principles of 2 

Dimensional Discrete Wavelet Transform. We also 

introduce a simple statistical score for identifying regions 

with significantly different distribution in output fused 

images. Lastly, we introduce a unique database [19]  

containing annotated thermal images on varying classes as 

a part of this work for public use.  

While the outputs are promising, further scope lies in 

checking how the method behaves under the use of other 

metrics for loss optimization, like geodesic distance, what 

is the behavior of the method, when we use deeper networks 

and how to extract and process information in the joint 

domain for better processing of fused images. 
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