Skip to main content

Distortion-Based Transparency Detection Using Deep Learning on a Novel Synthetic Image Dataset

  • Conference paper
  • First Online:
Book cover Image Analysis (SCIA 2023)

Abstract

Transparency detection is a hard problem, as suggested by animals and humans flying or running into glass. However, humans seem to be able to learn and improve on the task with experience, begging the question, whether computers are able to do so too. Making a computer learn and understand transparency would be beneficial for moving agents, such as robots or autonomous vehicles. Our contributions are threefold: First, we conducted a perception study to obtain insights about human transparency detection methods, when borders of transparent objects are not visible. Second, based on our study insights we created a novel synthetic dataset called DISTOPIA, which focuses on the warping properties of transparent objects, placed in a variety of natural scenes and contains over 140 000 high resolution images. Third, we modified and trained a deep neural network classification model with an attention module to detect transparency through warping. Our results show that a neural network trained on synthetic data depicting only distortion effects can solve the transparency detection problem and surpasses human performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. von Hermann, H.: Allgemeine Encyklopädie der Physik / 9 Handbuch der physiologischen Optik, volume 9. Leopold Voss. https://doi.org/10.3931/E-RARA-21259

  2. Beatrix Tudor-Hart. Beiträge zur psychologie der gestalt. (1). https://doi.org/10.1007/bf00492012

  3. Metelli, F.: An algebraic development of the theory of perceptual transparency. (1). https://doi.org/10.1080/00140137008931118

  4. Metelli, F.: The perception of transparency. (4). https://doi.org/10.1038/scientificamerican0474-90

  5. Adelson, E.H., Anandan, P.: Ordinal characteristics of transparency

    Google Scholar 

  6. Watanabe, T., Cavanagh, P.: Transparent surfaces defined by implicit x junctions. (16). https://doi.org/10.1016/0042-6989(93)90111-9

  7. Anderson, B.L., Julesz, B.: A theoretical analysis of illusory contour formation in stereopsis. (4). https://doi.org/10.1037/0033-295x.102.4.705

  8. Watanabe, T., Cavanagh, P.: Texture laciness: the texture equivalent of transparency? (3). https://doi.org/10.1068/p250293

  9. D’Zmura, M., Colantoni, P., Knoblauch, K., Laget, B.: Color transparency. (4). https://doi.org/10.1068/p260471

  10. Tavel, M.: What determines whether a substance is transparent? for instance, why is silicon transparent when it is glass but not when it is sand or a computer chip. http://www.scientificamerican.com/article/what-determines-whether-a/

  11. Faul, F., Ekroll, V.: Psychophysical model of chromatic perceptual transparency based on substractive color mixture. (6). https://doi.org/10.1364/josaa.19.001084

  12. Fulvio, J.M., Singh, M., Maloney, L.T.: Combining achromatic and chromatic cues to transparency. (8). https://doi.org/10.1167/6.8.1

  13. Thilak, V., Voelz, D.G., Creusere, C.D.: Polarization-based index of refraction and reflection angle estimation for remote sensing applications. (30). https://doi.org/10.1364/ao.46.007527

  14. Bex, P.J.: (in) sensitivity to spatial distortion in natural scenes. (2). https://doi.org/10.1167/10.2.23

  15. Klank, U., Carton, D., Beetz, M.: Transparent object detection and reconstruction on a mobile platform. In: 2011 IEEE International Conference on Robotics and Automation, pp. 5971–5978. IEEE. https://doi.org/10.1109/icra.2011.5979793

  16. Sayim, B., Cavanagh, P.: The art of transparency. (7). https://doi.org/10.1068/i0459aap

  17. von Gioi, R.G., Jakubowicz, J., Morel, J.-M., Randall, G.: Lsd: a line segment detector. https://doi.org/10.5201/ipol.2012.gjmr-lsd

  18. Alt, N., Rives, P., Steinbach, E.: Reconstruction of transparent objects in unstructured scenes with a depth camera. In: 2013 IEEE International Conference on Image Processing, pp. 4131–4135. IEEE. https://doi.org/10.1109/icip.2013.6738851

  19. Koffka, K.: Principles Of Gestalt Psychology. Routledge. https://doi.org/10.4324/9781315009292

  20. Lysenkov, I., Rabaud, V.: Pose estimation of rigid transparent objects in transparent clutter. In: 2013 IEEE International Conference on Robotics and Automation, pp. 162–169. IEEE. https://doi.org/10.1109/icra.2013.6630571

  21. Maeno, K., Nagahara, H., Shimada, A., Taniguchi, R.-I.: Light field distortion feature for transparent object recognition. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2786–2793. IEEE. https://doi.org/10.1109/cvpr.2013.359

  22. Schlüter, N., Faul, F.: Are optical distortions used as a cue for material properties of thick transparent objects? 14(14), 2. https://doi.org/10.1167/14.14.2

  23. Han, K., Wong, K.-Y.K., Liu, M.: A fixed viewpoint approach for dense reconstruction of transparent objects. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4001–4008. IEEE. https://doi.org/10.1109/cvpr.2015.7299026

  24. Kawabe, T., Maruya, K., Nishida, S.: Perceptual transparency from image deformation. (33). https://doi.org/10.1073/pnas.1500913112

  25. Phillips, C.J., Lecce, M., Daniilidis, K.: Seeing glassware: from edge detection to pose estimation and shape recovery. In Robotics: Science and Systems XII, vol. 3, p. 3. Michigan, USA, Robotics: Science and Systems Foundation. https://doi.org/10.15607/rss.2016.xii.021

  26. Qian, Y., Gong, M., Yang, Y.-H.: 3d reconstruction of transparent objects with position-normal consistency. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4369–4377. IEEE. https://doi.org/10.1109/cvpr.2016.473

  27. Park, J., Woo, S., Lee, J.-Y., Kweon, I.S.: Bam: Bottleneck attention module. In: British Machine Vision Conference. arXiv. 1048550/ARXIV.1807.06514

  28. Schlüter, N., Faul, F.: Visual shape perception in the case of transparent objects. (4). https://doi.org/10.1167/19.4.24

  29. Tsai, D., Dansereau, D.G., Peynot, T., Corke, P.: Distinguishing refracted features using light field cameras with application to structure from motion. (2). https://doi.org/10.1109/lra.2018.2884765

  30. Mei, H., et al.: Don’t hit me! glass detection in real-world scenes. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3687–3696. IEEE. https://doi.org/10.1109/cvpr42600.2020.00374

  31. Sajjan, S., et al.: Clear grasp: 3d shape estimation of transparent objects for manipulation. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 3634–3642. IEEE. DOI: https://doi.org/10.1109/icra40945.2020.9197518

  32. Xie, E., Wang, W., Wang, W., Ding, M., Shen, C., Luo, P.: Segmenting transparent objects in the wild. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 696–711. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_41

    Chapter  Google Scholar 

  33. Gu, G., Ko, B., Go, S., Lee, S.-H., Lee, J., Shin, M.: Towards light-weight and real-time line segment detection. https://doi.org/10.48550/ARXIV.2106.00186

  34. He, H., et al.: Enhanced boundary learning for glass-like object segmentation. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 15859–15868. IEEE. https://doi.org/10.1109/iccv48922.2021.01556

  35. Karras, T., et al.: Alias-free generative adversarial networks. In: Proceedings NeurIPS. arXiv. 1048550/ARXIV.2106.12423

  36. Zhu, L., et al.: Rgb-d local implicit function for depth completion of transparent objects. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4649–4658. IEEE. https://doi.org/10.1109/cvpr46437.2021.00462

  37. Fang, H., Fang, H.-S., Xu, S., Lu, C.: Transcg: a large-scale real-world dataset for transparent object depth completion and a grasping baseline. (3). https://doi.org/10.1109/lra.2022.3183256

  38. Mei, H., et al.: Glass segmentation using intensity and spectral polarization cues. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12622–12631. IEEE. https://doi.org/10.1109/cvpr52688.2022.01229

  39. Wirth, T., Jamili, A., von Buelow, M., Knauthe, V., Guthe, S.: Fitness of general-purpose monocular depth estimation architectures for transparent structures. In: Pelechano, N., Vanderhaeghe, D., (eds.) Eurographics 2022 - Short Papers. The Eurographics Association. https://doi.org/10.2312/EGS.20221020

  40. Yang, J., Li, C., Dai, X., Yuan, L., Gao, J.: Focal modulation networks. https://doi.org/10.48550/ARXIV.2203.11926

  41. Yu, L., et al.: Progressive glass segmentation. https://doi.org/10.1109/tip.2022.3162709

  42. Pavlovia. https://pavlovia.org/

  43. Poly haven. https://polyhaven.com/

Download references

Acknowledgements

Part of the research in this paper was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) project number 407 714 161. We thank Frank Jäkel for his generous support and the anonymous reviewers whose comments helped improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Knauthe .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 5318 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Knauthe, V. et al. (2023). Distortion-Based Transparency Detection Using Deep Learning on a Novel Synthetic Image Dataset. In: Gade, R., Felsberg, M., Kämäräinen, JK. (eds) Image Analysis. SCIA 2023. Lecture Notes in Computer Science, vol 13885. Springer, Cham. https://doi.org/10.1007/978-3-031-31435-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31435-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31434-6

  • Online ISBN: 978-3-031-31435-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics