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Abstract. In recent years, we have seen a significant interest in data-
driven deep learning approaches for video anomaly detection, where an
algorithm must determine if specific frames of a video contain abnor-
mal behaviors. However, video anomaly detection is particularly context-
specific, and the availability of representative datasets heavily limits real-
world accuracy. Additionally, the metrics currently reported by most
state-of-the-art methods often do not reflect how well the model will
perform in real-world scenarios. In this article, we present the Charlotte
Anomaly Dataset (CHAD). CHAD is a high-resolution, multi-camera
anomaly dataset in a commercial parking lot setting. In addition to
frame-level anomaly labels, CHAD is the first anomaly dataset to in-
clude bounding box, identity, and pose annotations for each actor. This
is especially beneficial for skeleton-based anomaly detection, which is
useful for its lower computational demand in real-world settings. CHAD
is also the first anomaly dataset to contain multiple views of the same
scene. With four camera views and over 1.15 million frames, CHAD is
the largest fully annotated anomaly detection dataset including person
annotations, collected from continuous video streams from stationary
cameras for smart video surveillance applications. To demonstrate the
efficacy of CHAD for training and evaluation, we benchmark two state-
of-the-art skeleton-based anomaly detection algorithms on CHAD and
provide comprehensive analysis, including both quantitative results and
qualitative examination. The dataset is available at https://github.com/
TeCSAR-UNCC/CHAD.

Keywords: Anomaly Detection · Dataset · Computer Vision · Deep
Learning.

1 Introduction

Video anomaly detection, which requires understanding if a video contains anoma-
lous behaviors, is a popular but challenging task in computer vision. In addi-
tion to substantial research interest, many real-world applications greatly benefit
from being able to determine if such anomalous behaviors are present. Parking
lot surveillance is one such application, where being able to determine the pres-
ence of an anomalous action (e.g. fighting, theft, fainting) is paramount.
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Current state-of-the-art (SotA) deep learning solutions take one of two ap-
proaches. The first is an appearance-based method, where the algorithm works
directly on video frames. The second is the skeleton-based methodology, in which
algorithms rely on extracted human pose data to understand human behaviors.
Both methods require large amounts of quality data. Anomaly detection is par-
ticularly context-specific, so training data must also be representative of both
the environment and the context of the target application. This need is ampli-
fied for unsupervised approaches, which try to learn the normal behaviors of a
specific context and need many example frames to do so.

There are currently only a limited number of datasets for video anomaly
detection. These datasets, while seeing continual growth in the amount of data
provided, also tend to fall short regarding the number of normal frames per con-
text (i.e., per scene). Additionally, no current video anomaly dataset provides the
detection, tracking, and pose information required by skeleton-based methods,
leaving them to rely on external algorithms to generate this data. Since there is
no standard for this, it is difficult to determine how much of an approach’s error
is due to the noise in this generated data or from the algorithm itself. This is
further obfuscated by the inconsistency of the metrics used in reporting perfor-
mance. Of the three main metrics for anomaly detection, discussed in Section 6,
most SotA approaches only report one. However, all of them are necessary for a
full understanding of an algorithm’s performance, especially in the real-world.

In this paper, we present the Charlotte Anomaly Dataset (CHAD), a high-
resolution, multi-camera anomaly detection dataset in a parking lot setting.
CHAD is designed to address the most challenging issues facing current video
anomaly detection datasets. The first video anomaly dataset with multiple cam-
era views of a single scene, CHAD has over 1.15 million frames capturing the
same context. With over 1 million normal frames, CHAD places itself as the
premiere video anomaly dataset for unsupervised methods, providing human
detection, tracking, and pose annotations. Thanks to these annotations, CHAD
allows for a more accurate standard, positioning itself as the best-in-class dataset
for skeleton-based anomaly detection.

We also propose a new standard in the benchmarking and evaluation of real-
world video anomaly detection. Included is a detailed discussion on metrics, the
benefits and disadvantages of each, and how the use of all three is needed to
truly understand an algorithm’s performance. To demonstrate the efficacy of
CHAD, we train two SotA skeleton-based approaches, report both single camera
and multi-camera performance, and compare to those methods trained on other
datasets. Additionally, we perform cross-validation on CHAD, and the Shang-
haiTech Campus Dataset [17], demonstrating CHAD’s suitability for enabling
generalization and revealing it to be more challenging than its peers.

In summary, this paper has the following contributions:

– We introduce CHAD, a high resolution, multi-camera video anomaly detec-
tion dataset in a parking lot setting. With over 1.15 million frames of a single
context and detection, tracking, and pose annotations, CHAD positions it-
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self as the best-in-class dataset for both unsupervised and skeleton-based
anomaly detection methods.

– We propose a new standard in real-world video anomaly detection bench-
marking and evaluation. We provide a detailed discussion on the metrics
used, including the insights they provide.

– To validate the efficacy of CHAD, we train and evaluate two SotA skeleton-
based models with our proposed methodology. We further perform cross-
validation on CHAD and ShanghaiTech Campus [17], demonstrating that
CHAD is robust enough for generalization while being more challenging.

2 Related Work

Anomaly Detection Algorithms Appearance-based methods utilize appear-
ance and motion features generated directly from pixel data for detecting anoma-
lies [6, 11, 12, 18, 27, 30, 32, 35]. These methods generally achieve high accuracies
in their context at the cost of high computation. Skeleton-based methods uti-
lizes high-level, low-dimensional human pose skeletons [14, 20, 23, 24, 28]. These
skeletons are informative in the context of human behavior while requiring far
less computation than working with raw video data. They are more privacy pre-
serving, and they remove demographic biases. As such, researchers have found
significant success in skeleton-based anomaly detection.

Anomaly Detection Datasets The CUHK Avenue Dataset [19] consists of
nearly 31K frames captured from a single camera. Abnormal objects, walking in
the wrong direction, and sudden movements are examples of anomalous behav-
iors in this dataset.

The UCSD Anomaly Detection Dataset [22] consists of 19K frames overlook-
ing pedestrian walkways. UCSD has been categorized into two subsets, each one
covering a different view. UCSD Ped1 sees pedestrian movement perpendicular
to the camera, while UCSD Ped2 sees movement parallel to the camera. UCSD
contains positional information for localizing anomalies.

The Subway dataset [2] consists of two surveillance videos, the subway en-
trance, and exit. With a combined total of 139 minutes of video, this dataset
counts behaviors such as running, loitering, and walking in the opposite direction
of the crowd as anomalous behaviors.

Street Scene [26] is a single scene anomaly detection dataset captured from
a bird’s eye view of a two lane street. Compared to most other datasets, Street
Scene is relatively large at over 200K frames. Street Scene also contains non-
human anomalies, such as illegally parked cars, dogs on the sidewalk, and cars
making u-turns.

The ShanghaiTech Campus dataset [17] contains 13 different scenes taken
from a campus setting. With over 317K frames, ShanghaiTech is one of the
largest and most popular anomaly detection datasets available. However, Shang-
haiTech has relatively few frames per context.
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IITB-Corridor [28] was the largest single-stationary-camera anomaly detec-
tion dataset that existed before CHAD. It contains nearly 440K frames in a
campus setting. Recorded in high-resolution 1080p, it is the only continuous
video anomaly detection dataset with a resolution comparable to CHAD.

The ADOC dataset [25] is captured from a single high-resolution camera
over 24 hours in a campus setting. ADOC consists of 260K frames and adopts
an approach of considering any low-frequency behavior to be anomalous. As-
suming only walking is normal, they consider all other behaviors as anomalous,
even relatively commonplace activities like walking with a briefcase, having a
conversation, or a bird flying through the air. While this categorization works
for ADOC’s context, it is inconsistent with how other datasets define anomalous
behaviors.

Specifically for supervised anomaly detection, UBnormal [1] is comprised
entirely of synthetically generated videos. With a total of 236,902 frames, UB-
normal is moderately large compared to other anomaly datasets, though with
29 scenes the average number of frames per scene is fairly low.

The NOLA dataset [9] is another new dataset. Collected over an entire week,
NOLA contains over 1.4 million frames including both day and night scenes. In
contrast to most other anomaly datasets, NOLA uses a single moving camera
instead of stationary cameras. The rapid movement of the camera introduces
a massive change of context, making the video anomaly detection more chal-
lenging. Due to the way annotations are presented in the dataset and the lack
of clarifying documentation, it is impossible to ascertain what constitutes an
anomaly in the context of NOLA. As such, it is difficult to determine the effi-
cacy of this dataset for anomaly detection, and fair comparison to other datasets
is not feasible.

UCF Crime [30] and X-D Violence [34] collect video clips from many different
sources in varying contexts, as opposed to continuous recordings. This allows
them to be enormous by anomaly dataset standards but is so fundamentally
different in problem formulation that it could be considered a different task
altogether. XD-Violence provides both video and audio, making it unique among
video anomaly datasets.

All of these datasets bring their own benefits and have helped advance
the field of video anomaly detection. However, while they all have their own
strengths, each of them also provides its own challenges when it comes to train-
ing networks for the real-world. Some datasets are too small, either in overall
frames or frames per scene. Some of them have strict definitions of normal be-
haviors that would be undesirable in a real-world context. Some have to contend
with domain shift, either from taking a large amalgamation of clips from entirely
different contexts or from training with synthetic actors and moving to real per-
sons and objects when used in a real-world context. And while many of these
datasets provide multiple contexts, none of them provide different views of the
same context, as would be fairly common in a surveillance setting. Further, none
of these datasets provide the human detection, tracking, and pose annotations
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needed for skeleton-based anomaly detection. It is impossible for a single dataset
to fit every possible scenario.

3 Data Collection and Setup

Since anomaly detection is such a context-specific task, it is important that the
data used to train algorithms is representative of their real-world environments.
Often the disconnect between training data, and inference data leads to unsatis-
fying performance in the real-world [3]. CHAD was designed to accurately mimic
a real-world parking lot surveillance setting. The four cameras, as seen in Fig. 1,
were positioned to cover the same general scene, though their perspectives give
them each a unique context compared to the others. Each video is recorded in
full HD (1920x1080, 30fps), except camera 4 which is in standard HD (1280x720,
30fps), as seen in Table 3.

There are thirteen actors present in CHAD. The actors represent diverse
demographics (gender, age, ethnicity, etc.) and each participates in both normal
and anomalous clips. There are 22 classes of anomalous behaviors in CHAD,
which can be seen in Table 1. This list has been curated in line with other state-
of-the-art datasets [2,17,19,22]. All other actions present in CHAD (e.g. walking,
waving, talking, etc.) are considered normal.

Table 1: Anomalous behaviors present in CHAD.
Type of Anomalous Behavior

Group Activities Individual Activities
Fighting Punching Throwing Running
Kicking Pushing Riding Falling
Pulling Slapping Littering Jumping

Strangling Body Hitting Hopping Sleeping
Theft Pick-Pocketing

Tripping Playing with Ball
Chasing Playing with Racket

4 Annotation Methodology

CHAD contains four types of annotations: frame-level anomaly labels, person
bounding boxes, person ID labels, and human keypoints.

4.1 Anomaly Annotations

We annotate anomalous behaviors at the frame level. This is, we mark the frame
where the anomalous behavior begins, the frame where it ends, and every frame
in between. This is done by hand, accounting for all the behaviors defined in
Section 3. These frame-level labels are needed for both appearance-based and
skeleton-based approaches. CHAD does not include anomaly localization labels.
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(a) Birds-eye View

(b) Camera View
Fig. 1: Approximate position and the views of the cameras.
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4.2 Person Annotations

One of the innovations that sets CHAD above its peers is the inclusion of person
annotations. In real-world scenarios, there is no access to hand-annotated data.
The annotations must be generated through available tools and are not always
perfect. We include generated person-annotations to ensure they are more repre-
sentative of a real-world situation. This is by design, as a certain amount of noise
is desirable in the dataset to assist models in learning how to deal with unclean
data inherent in real-world situations [5]. It also allows skeleton-based anomaly
detection methods to have access to the processed data they need without having
to spend time extracting it themselves. We hope this will make skeleton-based
anomaly detection more accessible to researchers, leading to more innovation.
It also sets a standard previously unavailable for how to generate this human
detection, tracking, and pose information. With this standard, the variability
based on the quality of input data is removed, leading to more precise and fair
comparisons between approaches.

Bounding Boxes The bounding box of a person refers to the upper and lower
x and y coordinate limits they occupy in an image. Having quality bounding
boxes for each individual and for every frame is doubly important for CHAD, as
this localization is needed for the extraction of both person ID labels and human
keypoints as well. For this reason, CHAD utilizes the popular object detection
algorithm YOLOv4 [4] for generating quality bounding boxes. Since CHAD is
focused on anomalous human behavior, only the bounding boxes for people are
used.

Person ID Labels Anomaly detection algorithms often utilize temporal infor-
mation to understand the behaviors of people. Particularly for skeleton-based
methods, it is necessary to be able to associate the different poses of a person
to that specific person across frames. Person ID labels provide this information,
allowing for temporal tracking of individual persons in each video clip. Given the
bounding box information generated previously, DeepSORT [33] was utilized to
provide tracking for persons through frames, generating unique person ID labels
for each person in a video clip. For label stability, a three frame warm-up is used
by DeepSORT before providing person ID labels. As such, the first two frames
of each video clip are absent of person annotations.

Human Keypoints CHAD contains pose information in the form of human
pose skeletons. These skeletons are made up of human keypoints, or points of
interest on the human body. While there are several methods for defining what
keypoints to use, CHAD follows the 17 keypoint methodology proposed by MS
COCO [16]. Using the localization provided by the previously generated bound-
ing boxes, keypoints are extracted using HRNet [31], a prolific algorithm for
human pose estimation used by many. To ensure we only provide quality key-
point annotations, we remove any person with low confidence (<50%) for at
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least half of their keypoints (9+). While this leads to some frames where people
are not detected, it helps reduce the overall noise of the data that is present.

4.3 Annotation Smoothing

The algorithms used to annotate CHAD are imperfect, and there are instances
where people are completely missed at either the object detection or keypoint
extraction stage. Combined with our purposeful removal of overly noisy data,
this results in an undesirable number of missed persons. To compensate for this,
we introduce annotation smoothing to CHAD, using high confidence annotations
to help fill in the missing information.

Given the relatively high frame rate of CHAD at 30 frames per second, it
is a reasonable assumption that the positions and skeletons of a person will
not drastically change between consecutive frames. As such, we can use linear
interpolation to approximate the bounding box coordinates of each individual,
assuming we have accurate detection at the start and end of the missing frames,
and the number of missing frames is not too large. We choose 15 frames, or
half a second, as a qualitative analysis showed this to be long enough to provide
a significant benefit to annotation consistency, but not so long that the data
it produced became unreliable. We apply the same smoothing technique to the
keypoint annotations, with the same frame limitations. The details of smoothing
are provided in the following equation:

Xi = (
XN − XM

N −M
)× i+ XM (1)

where Xi refers to a missing point (either bounding box or keypoint coordi-
nate) at frame i, XM and XN refer to the two nearest matching points at frames
M and N respectively, and where M < i < N and N −M+ 1 ≤ 15.

The added consistency in annotations created by this smoothing is partic-
ularly useful in the context of unsupervised learning. However, the confidence
scores of keypoints generated by this smoothing are set to Null, so they can be
easily discarded if undesired.

5 CHAD Statistics

With over 1.15 million frames, CHAD is the largest anomaly detection dataset
available that is recorded from continuous videos captured from stationary cam-
eras, and includes person annotations. As shown in Table 4, CHAD has more
than 2× the number of frames as the next largest dataset, providing a substan-
tial amount of learnable data. Additionally, CHAD has over 1 million frames
of purely normal behaviors, which are required for unsupervised methods that
rely on learning the normal to understand the anomalous. This is nearly 3×
more than can be found in other datasets. The 59K anomalous frames in CHAD
are comprised of the 22 anomalous behaviors presented in Table 1. To facilitate
supervised, unsupervised, and semi-supervised approaches, CHAD includes two
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Table 2: Annotation availability in ShanghaiTech [17], CUHK [19], UCSD [22],
Subway [2], IITB [28], Street Scene [26], UBnormal [1], and CHAD (Ours). *
partially annotated, − not annotated.

Dataset
Anomaly Annotations Person Annotations
Frame-level Pixel-level Bounding Box ID Number Keypoints

ShanghaiTech ✓ ✓ − − −
CUHK ✓ ✓ − − −
UCSD ✓ * − − −
Subway ✓ ✓ − − −
IITB ✓ ✓ − − −

Street Scene ✓ ✓ − − −
UBnormal ✓ ✓ ✓ − −

CHAD (Ours) ✓ − ✓ ✓ ✓

splits for training and testing. The unsupervised split has a training set comprised
only of normal behaviors, while the test set contains both normal and anomalous
behaviors. The details of the unsupervised split can be found in Table 4. For the
supervised split, the normal and anomalous frames were distributed uniformly
between the training and test sets, with 60% of each belonging to the training
set and 40% to the test set.

More than just the amount of data, CHAD benefits from having high quality
image data. As discussed in Section 3, CHAD was recorded from four high-
resolution cameras with an overlapping view of a scene. Recorded at 30 FPS,
CHAD not only boasts a higher resolution and frame rate than other datasets,
shown in Table 3, but also presents data in a format representative of modern
real-world surveillance systems. While resolution and frame rate are indicators
of overall video quality and the amount of data present in each frame, they can
not convey how much of that data is actually useful for learning. Difference of
Gaussian [7] is an image processing method that has been used to simulate how
the human eye extracts visual details of an image for neural processing [21].
More simply, it creates a visual illustration of the density and richness of the
features in an image. This allows us to visually analyze the quality of the data
present in each dataset by comparing the Difference of Gaussian between them.

We visualize the Difference of Gaussian for a single frame of each dataset in
Fig. 2. We set a Gaussian blur radius of one pixel to maximize the precision of
the resulting representation. Looking at the images, CHAD very clearly presents
the most detail. This was anticipated due to its high resolution, but the amount
by which it surpasses the other datasets far exceeded expectations. Fine details
in the persons, clothing, vehicles, and the environment are clear, granting an
accurate perception of the original image. IITB-Corridor [28] is the only other
dataset with 1080p images. However, the Difference of Gaussian tells a different
story. While there are details present in the environment, they are comparably
indistinct. Even in the brightened image, it is difficult to tell there is a person
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in the image. This demonstrates a surprising lack of rich features in the IITB-
Corridor, despite the resolution.

Table 3: Resolution and frame rate in Shanghai [17], CUHK [19], UCSD [22],
Subway [2], IITB [28], Street Scene [26], UBnormal [1], and CHAD (Ours). N/A
means Not Available.

Dataset Resolution (Pixels) Frame Rate (FPS)

Shanghai 856*480 N/A
CUHK 640*360 25

UCSD
Ped1 238*158 N/A
Ped2 360*240 N/A

Subway N/A N/A
IITB 1920*1080 25

Street Scene 1280*720 15
UBnormal varies 30

CHAD (Ours)
Scene 1-3 1920*1080 30
Scene 4 1280*720 30

Street View, at the next highest resolution, shows much more detail and
clarity than IITB-Corridor, though nowhere near the level of CHAD. What is
most interesting is that while the building, car, and street boundaries are clear,
it is difficult to notice the two people in the bottom left of the image. This
is perhaps due to their relative size compared to the other objects mentioned
and not necessarily indicative of a lack of features. Unsurprisingly, the lower
resolution datasets, UCSD and CUHK Avenue, show sharp focal points (bright
white pixels) but very little overall detail. Interestingly for ShanghaiTech [17],
despite its slightly higher resolution, it presents a similar level of detail as Street
Scene. However, due to the different camera perspectives, this translates into
Shanghai providing better features for people, which is beneficial for its context.

Overall, we can see that CHAD not only has the best-in-class resolution and
frame rate among anomaly detection datasets but also that the videos in CHAD
are extremely feature rich, unrivaled among its peers. Additionally, there is a
significant amount of background information irrelevant to person behaviors.
The brightest spot in the Difference of Gaussian for CHAD is the foliage in the
bottom left. This is noise - a distractor from information pertinent to anomaly
detection. This means CHAD is not only more informative than other datasets
but also suggests that it is more challenging as well. This level of challenge
is needed if algorithms are to perform well in real-world scenarios, which are
notorious for being more demanding than dataset benchmarks.

6 Metrics and Measurements

There are three main metrics used for evaluating performance on anomaly de-
tection datasets: Area Under the Receiver Operating Characteristic Curve, Area
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CHAD (Ours) ShanghaiTech

IITB Corridor UCSD Street View

CUHK Avenue

Fig. 2: Visualization of Difference of Gaussian in Shanghai [17], CUHK [19],
UCSD [22], IITB [28], Street Scene [26], and CHAD (Ours). UCSD cropped to
fit. All brightened for readability.

Table 4: Dataset comparison for ShanghaiTech [17], CUHK [19], UCSD [22], Sub-
way [2], IITB [28], Street Scene [26], UBnormal [1], and CHAD (Ours). CHAD
uses unsupervised split. N/A means Not Available.

Dataset Number of Frames Scene(s) Camera(s)Total Train Test Normal Anomalous
ShanghaiTech 317,398 274,515 42,883 300,308 17,090 13 13

CUHK 30,652 15,328 15,324 26,832 3,820 1 1
UCSD 18,560 9,050 9,210 12,919 5,641 2 2
Subway 208,925 27,500 181,425 205,805 3120 2 2
IITB 483,566 301,999 181,567 375,288 108,278 1 1

Street Scene 203,257 56,847 146,410 N/A N/A 1 1
UBnormal 236,902 116,087 28,175 147,887 89,015 29 -

CHAD (Ours) 1,152,649 1,026,174 126,475 1,093,477 59,172 1 4

Under the Precision-Recall Curve, and Equal Error Rate. While none of these
metrics are truly representative of overall performance, they each have their
strengths and weaknesses, and, taken together, they can provide a comprehen-
sive understanding of how an algorithm truly performs.

6.1 Receiver Operating Characteristic Curve

The Area Under the Receiver Operating Characteristic Curve (AUC-ROC) is
simply the area under the curve when plotting the True Positive Rate (TRP)
over the False Positive Rate (FPR) over various thresholds. This metric is spe-
cific to binary classification, such as determining if a video does or does not
contain anomalous behavior. Generally, a higher AUC-ROC indicates that the
model is better at separating inputs into their corresponding classes. The ROC
curve itself also helps give insight into the trade-off between TPR and FPR
at different thresholds [10]. However, AUC-ROC is not indicative of the final
decisions of a model. The metric reports a final calculated number, and conclud-
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ing useful information about the actual amount of False Negative Rate (FNR),
when an anomaly is classified as normal is almost unfeasible. FNR is particu-
larly important for real-world applications, and reporting it separately is crucial.
Additionally, AUC-ROC is very sensitive to imbalances in data [13], making it
sub-optimal if one class is over represented, as is often the case with normal
behaviors in anomaly datasets [8].

6.2 Precision-Recall Curve

Precision is the fraction of correct positive guesses over all positive guesses, while
Recall is the fraction of correct positive guesses over all positive samples. The
Precision-Recall Curve (PR) is useful for understanding how to balance Precision
and Recall, while the area under this curve summarizes all the information repre-
sented in it. While AUC-PR heavily focuses on the positive class, it still accounts
for the False Negative Rate (FNR) – that is when the model classifies an anomaly
as normal. As such, AUC-PR is a better metric for understanding the prediction
ability of a model when compared to AUC-ROC [29]. Additionally, AUC-PR is
better suited for highly imbalanced data [29], making it better at evaluating the
minority class [13]. As the minority class in anomaly detection usually refers
to anomalous behaviors, this is an important quality for this context. However,
AUC-PR is a final calculated number and it does not provide direct insight into
the correct classification of negative samples, nor does it provide a measure for
the number of incorrect decisions a model makes. Thus, much like AUC-ROC,
AUC-PR provides an incomplete understanding of a model’s performance.

6.3 Equal Error Rate

Another useful metric is the Equal Error Rate (EER) [15]. Plotting the FNR
and FPR over various thresholds produces two curves that intersect at one point.
The value at the intersection is the EER and shows what threshold value allows
the model to achieve a balance between FNR and FPR. In the context of video
anomaly detection, the EER illustrates how many false alarms a model will
raise and how many anomalous frames it will miss when at equilibrium. On
its own, this metric offers little insight into the overall performance of a model
[30]. However, when used as a complement to AUC-ROC and AUC-PR, a more
complete understanding can be achieved.

7 Evaluation

All experiments were conducted on a server containing two Intel Xeon Silver
4114, one V100 GPU, and 256 GB of RAM. We performed each experiment
(training and testing) five times, averaging the results to remove any poten-
tial skew due to variability. For each model, training is performed exactly as
described in their respective papers unless otherwise specified.
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7.1 Standard Validation

To demonstrate CHAD’s viability as an anomaly detection dataset, we train
and evaluate two state-of-the-art skeleton-based models using the unsupervised
split. We select Graph Embedded Pose Clustering (GEPC) [23] and Message-
Passing Encoder-Decoder Recurrent Neural Network (MPED-RNN) [24] for their
high accuracy and model availability. GEPC utilizes a spatio-temporal graph
autoencoder, while MPED-RNN uses a two-headed structure with reconstruction
and prediction.

Both models were trained on each of CHAD’s four camera views individually,
the results reported in Table 5. The most obvious observation is that both models
were able to learn on CHAD. GEPC achieved an average AUC-ROC of 0.663 and
AUC-PR of 0.619, while MPED-RNN achieved an average AUC-ROC of 0.718
and AUC-PR of 0.635. For both models, the AUC-ROC is noticeably higher than
the AUC-PR. This is largely due to the overwhelming majority of normal frames
in the data, which if properly classified will a significant boost to the AUC-ROC.
AUC-PR, on the other hand, does not count True Negatives, and as such gives
a more measured result for the imbalanced data. Additionally, GEPC achieved
an EER of 0.378 and MPED-RNN an EER of 0.339. This means that, given the
threshold at equilibrium, both models can expect to see between 34% and 38% of
both normal frames and anomalous frames to be misclassified. This is important
to understand when targeting real-world applications, where misclassification
rates are more important than class separability.

Table 5: Evaluation of GEPC [23] and MPED-RNN [24] on CHAD (Ours).
Model Camera AUC-ROC AUC-PR EER

GEPC

1 0.673 0.636 0.363
2 0.660 0.566 0.382
3 0.661 0.586 0.384
4 0.656 0.688 0.382

1 0.747 0.715 0.303
MPED-RNN 2 0.691 0.567 0.349

3 0.771 0.584 0.331
4 0.662 0.674 0.372

7.2 Cross Validation

To illustrate CHAD’s ability to train models that can generalize, we perform
cross validation experiments with another anomaly dataset in the same domain.
We choose the popular ShanghaiTech Campus Dataset [17] for its relatively
large size, its similar context to CHAD, and its proven track record in anomaly
detection research. For these experiments, we use GEPC, as its multi-camera
training methodology allows for a simple conversion to cross validation. For
both CHAD and ShanghaiTech, a single model is trained for all cameras in one
dataset, then tested on both datasets. The results can be seen in Table 6.
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Table 6: Cross-validation of GEPC [23] on ShanghaiTech [17] and CHAD (Ours).

Model Train Test AUC-ROC AUC-PR EER

GEPC
CHAD (Ours)

CHAD (Ours) 0.649 0.587 0.385
ShanghaiTech 0.728 0.637 0.326

ShanghaiTech
CHAD (Ours) 0.639 0.572 0.399
ShanghaiTech 0.741 0.657 0.315

The first thing to notice is that models trained on CHAD perform well on
ShanghaiTech, and models trained on ShanghaiTech perform well on CHAD.
This is logical, as the contexts for the two datasets (i.e. setting, camera views,
anomalous behaviors) are quite similar. In all metrics, the validation of mod-
els across datasets performs within 1-2% of models validated on their parent
datasets, showing that models trained on either can generalize quite well given
their similar contexts.

Another trend seen in Table 6 is that for all metrics, models tend to achieve
lower scores (or higher in the case of EER) on CHAD than they do on Shang-
haiTech. Since both models performed equally well in cross validation, the logical
assumption is that CHAD’s test set is more challenging than ShanghaiTech’s.
This is in part due to the additional noise and distractors present in CHAD, as
explained in Section 5. The other major factor is the inclusion of very subtle
and complex anomalies in CHAD. Pick-pocketing is subtle by design, as most
pick-pockets are trying not to be seen. Littering is also quite complex to learn,
especially for a model that relies solely on human keypoints. Combined with the
sheer size of CHAD’s test set (3× that of ShanghaiTech’s), this makes for a very
challenging dataset for current anomaly detection algorithms.

8 Conclusion

This paper presented the Charlotte Anomaly Dataset (CHAD). Consisting of
more than 1.15m high-resolution frames of a single scene, CHAD is the largest
available anomaly detection dataset consisting of continuous video from sta-
tionary cameras. In addition to frame-level anomaly labels, CHAD goes further
than other datasets and provides bounding-box, person ID, and human key-
points annotations, enabling a unified benchmarking standard for both skeleton
and appearance-based anomaly detection. Additionally, this paper assesses three
metrics for anomaly detection and proposes their use in combination as a new
standard for real-world video anomaly detection.
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