
This is a pre-print.
Aside from formatting differences, it is identical to the version published

in Springer Lecture Notes for Computer Science Vol. 13886

Out-of-Distribution Detection for Adaptive
Computer Vision

Simon Kristoffersson Lind1 – simon.kristoffersson_lind@cs.lth.se,
Rudolph Triebel3,4 – rudolph.triebel@dlr.de,
Luigi Nardi1,2 – luigi.nardi@cs.lth.se, and
Volker Krueger1 – volker.krueger@cs.lth.se

1 Lund University LTH
2 Stanford University

3 German Aerospace Center DLR
4 Technical University of Munich

Corresponding Author: Simon Kristoffersson Lind

Abstract. It is well known that computer vision can be unreliable
when faced with previously unseen imaging conditions. This paper pro-
poses a method to adapt camera parameters according to a normalizing
flow-based out-of-distibution detector. A small-scale study is conducted
which shows that adapting camera parameters according to this out-of-
distibution detector leads to an average increase of 3 to 4 percentage
points in mAP, mAR and F1 performance metrics of a YOLOv4 object
detector. As a secondary result, this paper also shows that it is possible
to train a normalizing flow model for out-of-distribution detection on the
COCO dataset, which is larger and more diverse than most benchmarks
for out-of-distibution detectors.

Keywords: Autonomous Systems · Out-of-Distribution Detection · Nor-
malizing Flows · Object Detection.

1 Introduction

In the past decade computer vision has become a de facto component in au-
tonomous systems. However, it is well known that vision can be unreliable when
faced with new, previously unseen situations. Uncertainty is especially abundant
in the field of robotics, where the autonomous agents are expected to perform
tasks in real-world scenarios that often differ significantly from any training data.

There is an abundance of research to suggest that Out-of-Distribution (OOD)
detection can help improve the reliability of vision algorithms [6]. Relevant litera-
ture reasons that OOD detection allows systems to take action when uncertainty

ar
X

iv
:2

30
5.

09
29

3v
1 

 [
cs

.C
V

] 
 1

6 
M

ay
 2

02
3



2 S. Kristoffersson Lind et al.

is encountered [6]. However, there is little research to show that OOD detection
helps the reliability of autonomous systems in practice. Most literature on OOD
detection tends to focus either on synthetic benchmarks, or controlled real-world
scenarios where in- and out-of-distribution examples are very distinct. Neither of
these scenarios are reflective of the diverse situations that may be encountered
by autonomous systems in practice [6].

OOD detectors are commonly used by setting a threshold OOD score [9], and
simply discarding any input that falls beyond this threshold. While this makes
intuitive sense, on the basis that vision systems tend to be unreliable when faced
with OOD data, it only utilises one end of the OOD scores. We hypothesize that
a machine learning model will on average perform more reliably when an input
has a lower OOD score. Therefore we propose to use an OOD detector as a
quality metric, or un-normalized confidence; the lower the OOD score, the more
certain we can be about our vision system’s output.

1.1 Our Contributions

– We expand the current knowledge on OOD detection by showing that it is
possible to train normalizing flow models for OOD detection on large, diverse
datasets while getting sensible results.

– We introduce a novel method for utilising OOD detection as a quality metric
in autonomous systems and show that it can lead to reliability improvements
for vision tasks.

2 Related Work

There has been some previous work investigating the uses of OOD detection
in autonomous systems. For example Wellhausen et al. [17] perform anomaly
detection on image data collected from a robot in real-world terrain. However,
their main purprose is the evaluation of different OOD detection algorithms, and
not an application of OOD detection to real-world operation.

Yuhas et al. [20] evaluate OOD detection as an emergency breaking system
for an autonomous car, though not in real-world operation, but on a custom test
track.

McAllister et al. [12] perform real-world crash avoidance experiments with
an autonomous car. However, their method does not perform OOD detection
directly. Instead they use a variational autoencoder to generate in-distribution
samples from an out-of-distribution image, which they use as a measure of un-
certainty.

Additionally, there is an abundance of work on OOD detection where the
authors have taken care to ensure that in- and out-distributions are disjoint, for
example [4, 7, 10, 18, 15, 13]. These works either use entirely different datasets as
in- and out-distributions, or separate classes as in- and out-distributions. It is
our belief that neither of these scenarios are reflective of real-world operation.



Out-of-Distribution Detection for Adaptive Computer Vision 3

3 Background

3.1 Out-of-Distribution Detection

Conceptually, out-of-distibution detection is simple. First an in-distribution is
defined, for example the training data for a machine learning-based vision sys-
tem. Then, everything that deviates from said in-distribution is said to be out-
of-distribution [19].

More formally, we assume that our vision system operates on data that is
sampled I.I.D from some distribution Ptrain(x). In practice, however, the system
may encounter data that comes from a different distribution, in which case the
system will produce unreliable results. Therefore, it is desirable to detect when
data lies outside of the original distribution Ptrain(x).

3.2 Normalizing Flows

This section aims to provide a basic introduction to normalizing flows. For more
details we refer to Papamakarios et al. [14].

Normalizing flows have emerged in the last decade as a way to model complex
probability distributions [14]. Let us assume that we want to evaluate or sample
from a distribution px(x), x ∈ RD, and that px is intractable to evaluate or
sample from. A normalizing flow can allow us to evaluate or sample from px by
transforming px(x) into a tractable distribution pu(u), u ∈ RD.

In order to model px(x), an invertible transformation T is constructed such
that

x = T (u), u = T−1(x)

where u ∼ pu(u). Here, we are free to define pu(u), for example u ∼ N (0,1).
By additionally requiring both T and T−1 to be differentiable, it is possible

to recover px(x) from pu(u) [16, 3, 14]:

px(x) = pu(u)|det JT (u)|−1 = pu(T
−1(x))|det JT−1(x)| (1)

where JT and JT−1 are the Jacobians of T and T−1 respectively.
This type of transformation is called a diffeomorphism. It has been shown

that it is always possible to construct a diffeomorphism T under reasonable
assumptions about px(x) and pu(u) [14]. However, analytically constructing T
is often infeasible in practice. Therefore, it is desirable to learn an approximation
of T . Henceforth we will denote T (x;Θ) as an approximation of T with learnable
parameters Θ.

An important property is that the composition of two diffeomorphisms T2◦T1
is also a diffeomorphism [14]:

(T2 ◦ T1)−1 = T−11 ◦ T−12

det JT2◦T1
(u) = detJT2

(T1(u)) · det JT1
(u)



4 S. Kristoffersson Lind et al.

This property opens up for many ways to construct powerful approximations
T (x;Θ). In this work, we focus on a particular model of so-called affine coupling
layers [14].

Affine coupling layers first split the input x into two parts [14]:

x = [xi | i ∈ I], I = 1, 2, . . . , D

x1 = [xi | i ∈ A], x2 = [xi | i ∈ B], A ∪ B = I, A ∩ B = ∅.

While A and B can be chosen arbitrarily, the most common choice is to simply
split x into two halves:

A = 1, 2, . . . ,
D

2
, B =

D

2
+ 1,

D

2
+ 2, . . . , D.

Then, x1 is transformed as a function of x2, while x2 is left as-is:

x′1 = [x′i|i ∈ A] = ααα · x1 + βββ,

where ααα = exp(F1(x2;Θ1)), βββ = F2(x2,Θ2).

Here, · denotes element-wise multiplication, and F1, F2 are arbitrary functions,
for example neural networks. The output of the coupling layer is then simply
the reconstruction of x from x′1 and x2:

Tcoupling(x;Θ1,Θ2) = x′ = [x′i|i ∈ I], where x′i = xi∀i ∈ B

It is trivial to see that this construction results in an invertible and differential
transformation, since x1 is subject to an affine transformation and x2 remains
the same. Coupling layers also offer the benefit of a simple Jacobian [14]:

JTcoupling
= 1F1(x2;Θ1)

where 1 denotes a row vector of ones – in other words, summing the elements of
F1(x2;Θ1).

A common way to construct powerful learnable transformations is to simply
compose several of these coupling layers, while changing which parts of x are
modified [14]. This approach is used in for example RealNVP [5], and it is what
we use in our experiments.

3.3 Normalizing Flows for Image Out-of-Distribution Detection

Formulating OOD detection using normalizing flows is simple since we can di-
rectly compute the likelihood using (1), which represents the belief that an ex-
ample x is in-distribution [9]. Note that a high value for px(x) equals a low
likelihood of being OOD. It is otherwise common for OOD detection systems to
use the opposite formulation, where a high value equals high likelihood of being
OOD.



Out-of-Distribution Detection for Adaptive Computer Vision 5

Training a normalizing flow for OOD detection is done by minimizing the KL-
divergence between px(x) and pu(u), which results in the following loss function
[14]:

L = − 1

N

N∑
n=1

log pu(T
−1(xn)) + log |det JT−1(xn)|+ C

where C is a constant.
Since we only need the inverse transformation T−1 for OOD detection, we

simply let T−1 denote the forward pass of our affine coupling layers.
Despite seeming like perfect candidates for OOD detecion, since equation (1)

allows for the direct computation of the approximate probability distribution,
normalizing flows often fail in the OOD detection setting [9]. Kirichenko et al.
[9] suggest that common image flow models, such as RealNVP[5], simply learn
pixel correspondences, and as such fail to grasp any semantic information that
makes up the distribution. Instead of training a flow model on images directly,
Kirichenko et al. suggest training a flow model on features extracted from another
pretrained image network.

4 Our Method

Based on our hypothesis that a lower OOD score would lead to better reliability,
we propose to let a vision system adapt, instead of simply discarding OOD data.
In order to bring this into practice, we create a framework for adaption around
an existing vision task, namely object detection with a YOLOv4 [2] network.

Most commercially available cameras expose a number of parameters that
can alter the visual appearance of a captured image. Common examples are:
saturation, contrast, and exposure. These camera parameters are a natural can-
didate for adapting to various imaging conditions.

Our proposed method is to simply adapt camera parameters in order to
minimize the OOD score. Intuitively, our method can be deployed in two ways:

– either: if an image is marked as OOD, adapt camera parameters to minimize
OOD score,

– or: continuously adapt camera parameters to minimize OOD score.

While most cameras have some built-in measures to adapt, for example auto-
exposure, these are often not sufficient. Figure 1 shows two images of the same
scene to illustrate this. In one picture, the camera’s default settings fail to pro-
duce an image suitable for object detection. With hand-tuned parameters how-
ever, a more suitable image is acquired. Note also the yellow bounding box
indicates that YOLOv4 can detect the dog in the hand-tuned image, which is
not possible with the camera’s default settings.

5 Experiments and Results

In this section we outline our two main experiments. Section 5.1 outlines the
normalizing flow model used in our experiments. For our first experiment, in



6 S. Kristoffersson Lind et al.

Fig. 1. Left: camera’s default parameters, auto-exposure and auto-white-balance en-
abled. Right: hand-tuned camera parameters.

section 5.3, we train and validate a normalizing flow model as an OOD detector
using the COCO dataset [11] as our in-distribution. Then, in section 5.4, we take
the model from section 5.3 and apply it to a real-world experiment testing our
proposed method from section 4.

5.1 Normalizing Flow Model

For our experiments we construct a normalizing flow model from affine coupling
layers. We use a model very similar to the one used by Kirichenko et al. [9].
Our model consists of a series of 10 affine coupling layers, alternating between
transforming the first and second half of the input vector. Each coupling layer
consists of two shared linear layers with 512 hidden units followed by two parallel
linear layers, one for ααα and one for βββ. This is illustrated in Figure 2.

Linear | tanh

Linear

x Linear | ReLU Linear | ReLU

ααα

βββ

Fig. 2. Illustration of coupling layer layout.

We train our model on features extracted from a YOLOv4 [2] object detection
network. Training is done for 200 epochs with a batch size of 128, using the Adam
[8] optimizer with a learning rate of 10−4.



Out-of-Distribution Detection for Adaptive Computer Vision 7

5.2 Intel RealSense D435

Our experiments use an Intel RealSense D435[1], which is a RGB+Depth cam-
era. In our experiments, however, we only utilise the RGB sensor. Like most
commercially available cameras, the D435 exposes a number of parameters that
affect the resulting image in various ways. For our experiments we manipulate
a selection of these parameters, specifically: backlight compensation, brightness,
contrast, exposure, gain, saturation, and sharpness.

5.3 Training Normalizing Flows on a Large Diverse Dataset

In this section, we train a normalizing flow model using the entire COCO train-
ing dataset as our in-distribution. We then test the model by comparing the
log-likelihood outputs from different input image distributions. Specifically, we
divide this section into two smaller experiments:

– One where we compare log-likelihoods of COCO images to randomly gener-
ated images.

– One where we capture many images of a static scene with randomized camera
parameters, and compare their log-likelihood to COCO images.

For our first experiment we run the trained model on all images in the COCO
training, validation and testing datasets, and record the resulting log-likelihood
scores. In order to show that the model can distinguish images that are definitely
not part of the in-distribution, we also record log-likelihood scores from randomly
generated images. These random images were generated according to:

σ ∼ Uniform(1, 256)

vi,j ∼ N (0, σ)

pixeli,j = min(255, |vi,j |), ∀ i, j.

Our primary motivation behind using this formula is to generate images with
varying pixel ranges, while also generating some mostly-black and mostly-white
images. By varying σ per image, we vary the pixel range in different images.
When σ is small, we get mostly-black images, and when σ is large we get
mostly-white images due to the min operation. Figure 3 shows histograms of ran-
domly generated images, along with the COCO training, validation, and testing
datasets.

For our second experiment we explore whether our normalizing flow can
distinguish between different real images. We place a stationary D435 camera
in our lab, and capture a large number of images. For each image, all camera
parameters are randomized according to a uniform distribution. In order to be
certain that all variance in log-likelihood scores are caused by changing camera
parameters, we take precautions to minimize the amount of natural light entering



8 S. Kristoffersson Lind et al.

Fig. 3. Normalized histogram plot of log-likelihoods from COCO training, validation
and test datasets, as well as random images. The histogram has been cut at -1000
log-likelihood for improved readability.

our lab. Then, we capture 10000 images with the ceiling lamp on, and 10000 with
the ceiling lamp off. The number 10000 was chosen arbitrarily. Figure 4 shows the
corresponding histograms of log-likelihood scores, along with the COCO training
data for comparison.

5.4 Parameter Optimization

Here, we present results from a small-scale experiment conducted in one of our
robot labs. In order to make the experiment as realistic as possible, the experi-
ment was set up using one of our robots. Our robot has an industrial arm with
an Intel Realsense D435 camera attached at the gripper.

For this experiment, we set up an optimization procedure using camera pa-
rameters as our input, and the log-likelihood from our normalizing flow model
as output, as illustrated in Figure 5. More formally, let θ denote the camera pa-
rameters, and C(θ) denote the camera (a function that takes camera parameters
and produces an image x), then we solve:

argmax
θ

log px(C(θ))



Out-of-Distribution Detection for Adaptive Computer Vision 9

Fig. 4. Normalized histogram plot of log-likelihood values. Blue: COCO training im-
ages. Orange: 10000 images in our lab with randomized camera parameters, without
any lights on. Green: 10000 images in our lab with randomized camera parameters,
with ceiling lights on.

= argmax
θ

log pu(T
−1(C(θ))) + log |det JT−1(C(θ))|.

For the optimization procedure, we used a very simple evolutionary optimiza-
tion with elitism selection, a population of 50, and a mutation rate of 20%. No
crossover was used. Optimization was carried out for a total of 200 evaluations.
Population size, mutation rate, and number of evaluations were chosen based on
prior experience with evolutionary optimization. A small number of trial runs
confirmed that these values work well.

In our lab, we set up 13 different scenarios with varying COCO objects,
viewing angles, and lighting conditions. We took care to make the scenarios
as challenging as possible by introducing difficult lighting conditions, reflective
surfaces, and background clutter. With the robot stationary, optimization was
performed as described above. During optimization, the images with the high-
est and lowest log-likelihood scores were saved along with their corresponding
parameters, and compared to images captured with the camera’s default pa-
rameter settings. Henceforth, these will be referred to as best, worst and default
parameters, respectively.



10 S. Kristoffersson Lind et al.

backlight
compensation

brightness

contrast

exposure

gain

saturations

sharpness

D435
Camera YOLOv4 Normalizing

flow
log px(x)

Image Features

Fig. 5. Parameter optimization setup.

After the optimization procedure, all images were annotated with bounding
boxes for the COCO objects present. They were then fed through YOLOv4.
Mean-Average-Precision (mAP), mean-Average-Recall (mAR), and F1 scores
were computed and compared between the worst, default, and best camera pa-
rameters.

Table 1 shows average mAP, mAR, and F1 scores for best, default and worst
camera parameters. In table 2 we show statistics for the improvement in mAP,
mAR, and F1 scores of the best parameters compared to the default parameters.
Similarly, Table 3 shows statistics for the improvement of the best compared to
the worst parameters.

Table 1. Average mAP, mAR, and F1 score for best, default, and worst parameters.

mAP mAR F1
Best 0.7977 0.3283 0.4605

Default 0.7591 0.2977 0.4219
Worst 0.1731 0.0431 0.0687

Table 2. mAP, mAR, and F1 improvement. Best compared to default parameters.

Min Max Average
mAP -0.2889 +0.5778 +0.0386
mAR -0.1083 +0.25 +0.0306

F1 -0.1056 +0.349 +0.0386



Out-of-Distribution Detection for Adaptive Computer Vision 11

Table 3. mAP, mAR, and F1 improvement. Best compared to worst parameters.

Min Max Average
mAP -0.104 +0.95 +0.6247
mAR +0.1375 +0.4278 +0.2852

F1 +0.1794 +0.5703 +0.3918

Figure 6 shows box plots of the improvements in mAP, mAR, and F1 scores
for the best parameters compared with the default and worst parameters respec-
tively.

Fig. 6. Boxplot of mAP, mAR, and F1 improvement. Left: Best compared to default
parameters. Right: Best compared to worst parameters.

In Figures 7, 8, and 9 we show example scenarios where optimization led to
varying degrees of success. Each figure includes images along with the respective
F1 scores from YOLOv4. Figure 7 shows examples where parameter optimiza-
tion resulted in better object detection than the default parameters. Figure 8
shows examples where optimiztion resulted in no significant difference in object
detection. Finally, Figure 9 shows the only scenario where optimization resulted
in significantly worse object detection.

6 Discussion

6.1 Training on the COCO Dataset

When training on the full COCO dataset we see two important indicators that
the model is learning properly. First, as seen in Figure 3, the output log-likelihoods
span a wide range of values. It would be a red flag if all log-likelihoods were too
similar, indicating that the learned probability distribution might be flat. Sec-
ond, we observe that the validation and test datasets are distributed the same



12 S. Kristoffersson Lind et al.

Worst Default Best

F1: 0.0 F1: 0.4464 F1: 0.5595

F1: 0.0 F1: 0.0 F1: 0.3490

Fig. 7. Examples where parameter optimization resulted in an improvement in object
detection. Left: lowest log-likelihood. Center: default parameters. Right: highest log-
likelihood.

Worst Default Best

F1: 0.3864 F1: 0.6127 F1: 0.6289

F1: 0.0 F1: 0.4793 F1: 0.4865

Fig. 8. Examples where parameter optimization resulted in no significant difference in
object detection. Left: lowest log-likelihood. Center: default parameters. Right: highest
log-likelihood.

way as the training set, while the random images are given distinctly lower log-
likelihood scores.



Out-of-Distribution Detection for Adaptive Computer Vision 13

Worst Default Best

F1: 0.0 F1: 0.6172 F1: 0.5115

Fig. 9. Example where parameter optimization resulted in worse performance in object
detection. Left: lowest log-likelihood. Center: default parameters. Right: highest log-
likelihood.

In figure 4, we see that the model is able to distinguish between real images
from different distributions. As such, we have found no evidence to suggest that
the size and diversity of the COCO dataset should pose any problems for OOD
detection. This in turn suggests that normalizing flow models can be readily
applied to diverse real-world scenarios.

Additionally, figure 4 shows that varying parameters in the D435 over the
same scene can result in a wide range of log-likelihood values. This gives merit
to the idea that camera parameters form a good basis for adapting to various
imaging conditions.

6.2 Parameter Optimization Experiment

Table 1 tells us at a glance that our optimized camera parameters acheived the
best average scores across the board. Looking at Table 2, we see an average
improvement of 3 to 4 percentage points in terms of all metric scores. From the
box plot in Figure 6, we see that most scenarios yield only a small difference in
object detection compared to the default parameters. However, most importantly
we see that the trend is a positive improvement. We also observe that the positive
outliers are significantly larger than the negative outliers, again suggesting a
positive trend.

Perhaps unsurprisingly, Table 3 shows a massive improvement (28 to 62 per-
centage points on average) between the best and worst parameters found. The
box plot in Figure 6 further highlights this improvement.

In Figures 7, 8, and 9 we note that some of the parameter-optimized pictures
look better to the human eye, while others look worse despite resulting in better
object detection. This highlights the important fact that there is no equivalence
between images that look good to the human eye, and images that are good for
object detection.

Perhaps the most important result of this experiment is not the fact that
parameter-optimization can lead to better object detection, but instead that it
seems feasible to adapt and recover from a very poor visual scenario. Extrap-
olating from the fact that different camera parameters could result in images



14 S. Kristoffersson Lind et al.

where YOLO performs well, and where it fails almost completely on the same
scenario, it seems feasible that these parameters have the necessary capacity to
adapt to a wide range of difficult visual conditions. This is given further merit
by the fact that the varying camera parameters resulted in widely varying log-
likelihood values in figure 4. As such, when the normalizing flow model detects
something with extremely low log-likelihood value, it is most likely possible to
adapt camera parameters to get an image more suitable for object detection.
While these experiments have only been concerned with object detection, we
expect that this behaviour generalises to other vision tasks as well.

7 Conclusion

In this paper we have shown that it is possible to train a normalizing flow
model for OOD detection on a large and diverse dataset such as COCO. We
have also conducted a real-world experiment which shows that a normalizing
flow OOD detector can be used as a quality metric for a vision task. Optimizing
camera parameters with respect to the output from our normalizing flow OOD
model yielded, on average, a 3 to 4 percent unit improvement in the reliability
of YOLOv4 in terms of object detection performance.

8 Future Work

This paper lays the groundwork for a larger framework of quality metrics for vi-
sion task. In order to further expand this framework, a larger benchmark dataset
is beneficial. It is also an interesting research direction to explore whether im-
age improvements can be learned based on this OOD metric, rather than going
through the somewhat slow optimization process used in our experiments.

Acknowledgements This research is funded by the Excellence Center at Linköping-
Lund in Information Technology (ELLIIT), and the Wallenberg AI, Autonomous
Systems and Software Program (WASP). Computations for this publication were
enabled by the supercomputing resource Berzelius provided by the National Su-
percomputer Centre at Linköping University and the Knut and Alice Wallenberg
foundation. Additionally, Luigi Nardi was supported in part by affiliate members
and other supporters of the Stanford DAWN project – Ant Financial, Facebook,
Google, Intel, Microsoft, NEC, SAP, Teradata, and VMware.

References

1. Intel realsense depth camera d435, https://www.intelrealsense.com/depth-camera-
d435/

2. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: Optimal speed and ac-
curacy of object detection (2020). https://doi.org/10.48550/ARXIV.2004.10934,
https://arxiv.org/abs/2004.10934



Out-of-Distribution Detection for Adaptive Computer Vision 15

3. Bogachev, V.I., Ruas, M.A.S.: Measure theory, vol. 1. Springer (2007)
4. Deecke, L., Vandermeulen, R., Ruff, L., Mandt, S., Kloft, M.: Image anomaly detec-

tion with generative adversarial networks. In: Berlingerio, M., Bonchi, F., Gärtner,
T., Hurley, N., Ifrim, G. (eds.) Machine Learning and Knowledge Discovery in
Databases. pp. 3–17. Springer International Publishing, Cham (2019)

5. Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using real nvp. (2016),
https://arxiv.org/abs/1605.08803

6. Gawlikowski, J., Tassi, C.R.N., Ali, M., Lee, J., Humt, M., Feng, J., Kruspe,
A., Triebel, R., Jung, P., Roscher, R., Shahzad, M., Yang, W., Bamler,
R., Zhu, X.X.: A survey of uncertainty in deep neural networks (2021).
https://doi.org/10.48550/ARXIV.2107.03342, https://arxiv.org/abs/2107.03342

7. Hsu, Y.C., Shen, Y., Jin, H., Kira, Z.: Generalized odin: Detecting out-of-
distribution image without learning from out-of-distribution data. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) (June 2020)

8. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization (2014),
https://arxiv.org/abs/1412.6980

9. Kirichenko, P., Izmailov, P., Wilson, A.G.: Why normalizing flows fail to detect
out-of-distribution data. Advances in neural information processing systems 33,
20578–20589 (2020)

10. Liang, S., Li, Y., Srikant, R.: Principled detection of out-of-
distribution examples in neural networks. CoRR abs/1706.02690 (2017),
http://arxiv.org/abs/1706.02690

11. Lin, T.Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J.,
Perona, P., Ramanan, D., Zitnick, C.L., Dollár, P.: Microsoft coco: Com-
mon objects in context (2014). https://doi.org/10.48550/ARXIV.1405.0312,
https://arxiv.org/abs/1405.0312

12. McAllister, R., Kahn, G., Clune, J., Levine, S.: Robustness to out-of-
distribution inputs via task-aware generative uncertainty. In: 2019 Interna-
tional Conference on Robotics and Automation (ICRA). pp. 2083–2089 (2019).
https://doi.org/10.1109/ICRA.2019.8793552

13. Mohseni, S., Pitale, M., Yadawa, J., Wang, Z.: Self-supervised
learning for generalizable out-of-distribution detection. Proceed-
ings of the AAAI Conference on Artificial Intelligence 34(04),
5216–5223 (Apr 2020). https://doi.org/10.1609/aaai.v34i04.5966,
https://ojs.aaai.org/index.php/AAAI/article/view/5966

14. Papamakarios, G., Nalisnick, E.T., Rezende, D.J., Mohamed, S., Lakshmi-
narayanan, B.: Normalizing flows for probabilistic modeling and inference. J. Mach.
Learn. Res. 22(57), 1–64 (2021)

15. Ren, J., Liu, P.J., Fertig, E., Snoek, J., Poplin, R., Depristo, M., Dil-
lon, J., Lakshminarayanan, B.: Likelihood ratios for out-of-distribution
detection. In: Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-
Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Informa-
tion Processing Systems. vol. 32. Curran Associates, Inc. (2019),
https://proceedings.neurips.cc/paper/2019/file/1e79596878b2320cac26dd792a6c51c9-
Paper.pdf

16. Rudin, W.: Real and Complex Analysis. Tata McGraw-Hill Education (2006)
17. Wellhausen, L., Ranftl, R., Hutter, M.: Safe robot navigation via multi-modal

anomaly detection. IEEE Robotics and Automation Letters 5(2), 1326–1333
(2020). https://doi.org/10.1109/LRA.2020.2967706



16 S. Kristoffersson Lind et al.

18. Winkens, J., Bunel, R., Roy, A.G., Stanforth, R., Natarajan, V., Ledsam, J.R.,
MacWilliams, P., Kohli, P., Karthikesalingam, A., Kohl, S., Cemgil, A.T., Eslami,
S.M.A., Ronneberger, O.: Contrastive training for improved out-of-distribution
detection. CoRR abs/2007.05566 (2020), https://arxiv.org/abs/2007.05566

19. Yang, J., Zhou, K., Li, Y., Liu, Z.: Generalized out-of-distribution de-
tection: A survey (2021). https://doi.org/10.48550/ARXIV.2110.11334,
https://arxiv.org/abs/2110.11334

20. Yuhas, M., Feng, Y., Ng, D.J.X., Rahiminasab, Z., Easwaran, A.: Em-
bedded out-of-distribution detection on an autonomous robot platform.
In: Proceedings of the Workshop on Design Automation for CPS and
IoT. p. 13–18. Destion ’21, Association for Computing Machinery, New
York, NY, USA (2021). https://doi.org/10.1145/3445034.3460509, https://doi-
org.ludwig.lub.lu.se/10.1145/3445034.3460509


