
Requirements Quality vs Process and
Stakeholders’ Well-being: A Case of a Nordic

Bank

Emil Lind1, Javier Gonzalez-Huerta1[0000−0003−1350−7030], and Emil
Alégroth1[0000−0001−7526−3727]

Software Engineering Research Lab SERL, Blekinge Institute of Technology,
371 79, Karlskrona, Sweden

emil.lind@bth.se, javier.gonzalez.huerta@bth.se, emil.alegroth@bth.se

Abstract. Requirements are key artefacts to describe the intended pur-
pose of a software system. The quality of requirements is crucial for
deciding what to do next, impacting the development process’s effective-
ness and efficiency. However, we know very little about the connection
between practitioners’ perceptions regarding requirements quality and
its impact on the process or the feelings of the professionals involved in
the development process.
Objectives: This study investigates: i) How software development prac-
titioners define requirements quality, ii) how the perceived quality of re-
quirements impact process and stakeholders’ well-being, and iii) what
are the causes and potential solutions for poor-quality requirements.
Method: This study was performed as a descriptive interview study at a
sub-organization of a Nordic bank that develops its own web and mobile
apps. The data collection comprises interviews with 20 practitioners, in-
cluding requirements engineers, developers, testers, and newly employed
developers, with five interviewees from each group.
Results: The results show that different roles have different views on
what makes a requirement good quality. Participants highlighted that,
in general, they experience negative emotions, more work, and overhead
communication when they work with requirements they perceive to be
of poor quality. The practitioners also describe positive effects on their
performance and positive feelings when they work with requirements that
they perceive to be good.

Keywords: Requirements Engineering· Requirements Quality · Human Factors
· Empirical Study

1 Introduction

Requirements are crucial for developing software-intensive products and services
since they are the main link between the business value and its implementation.
As such, the consequences of issues—Poor quality such as incompleteness or
ambiguity—with requirements might lead to a project or product failure [8,9,13].

ar
X

iv
:2

21
1.

06
12

2v
1

 [
cs

.S
E

]
 1

1
N

ov
 2

02
2

2 Lind, Gonzalez-Huerta, and Alégroth

Requirements are used by multiple roles, including developers, testers, and user
experience designers in their daily work [7]. Therefore, requirements quality has
a profound, direct impact on the outcome of the different downstream activities
in the development process and on the quality of the final product itself [7].

Moreover, changes to requirements have an intrinsic relationship to project
failure and results in projects not being finished within time or budget con-
straints [20]. Changes to requirements, before and after release, affect the differ-
ent development activities [12], for instance, by forcing the re-prioritization of
tasks and effort allocation.

Several standards define how to write good requirements (e.g., ISO29148 [11]
or IREB [2]) and have also been studied in several research works (e.g., [7, 9]).
These works aim to provide an objective, general view of how a good quality
requirement should be. However, from a practitioner’s view, there is a lack of
understanding regarding what they perceive as good - or bad- requirements and
how they affect their daily work. Following Femmer’s and Vogelsang’s activity-
based view on requirements and their quality [7], it is highly relevant to identify
the practitioners’ view on requirements quality and how practitioners subjec-
tively define it. The reason is that standards are often too general or imprecise
to be applied in different industries. Following this reasoning, eliciting develop-
ers’, testers’, and requirements engineers’ experiences and how they are affected
by what they perceive to be bad requirements - compared to what they perceive
to be good requirements - is therefore of importance. The reason is that the prac-
titioners’ needs may not align with what is prioritized in the standards. Thus,
research into the phenomenon provides insights into these practitioners’ ways of
working and inputs for future improvements to said requirements standards.

There are research works that analyze the impact of good/bad requirements
on the project outcomes (e.g., [4,8,9,13,17]). However, these are either based on
questionnaire surveys or directly based on static analysis techniques. Thereby
leaving a gap in knowledge from empirical case studies that go deeper, through
interviews and focus groups, to understand the consequences of good and bad
quality requirements as the practitioners perceive them.

This study investigates the differences in how practitioners from different
roles define good and bad requirements, i.e., what characteristics make require-
ments good quality. Additionally, the study aims to determine the impact prac-
titioners experience from good or bad quality requirements in their work, work-
load, and well-being. Furthermore, the study also aims to find the perceived
causes and potential solutions to poor quality requirements. The goal is also to
gain an understanding of requirements quality, which is essential first to align
with existing standards but also to understand what are good-enough require-
ments that allow organizations to prioritize requirements for implementation
that add value to the product [5].

The remainder of the paper is structured as follows: Section 2 discusses re-
lated research in the area. Section 3 describes the researfch methodology followed
in the interview study. Section 4 reports the main results of the study. Section 5
discusses the main findings. In Section 6 we discuss the limitations and threats to

Requirements Quality vs Process and Stakeholders’ Well-being 3

the validity. Finally, Section 7 draws the main conclusions and discusses further
works.

2 Related Work

Requirements Engineering (RE) in general and specific RE methods are well
represented in the body of scientific knowledge. There are also recommendations
and guidelines for working with RE and even quality standards for requirements
(e.g., [2, 11]).

The NaPiRE [8, 9] project, which involves more than 200 companies in 10
countries, has mapped several kinds of bad requirements with factors for project
failure or linked these requirements problems with project delays or budget over-
runs. Similarly, several studies (e.g., [4,12,13,20]) has tried to find relationships
between requirements quality to requirements (i.e., requirements smells [6]).
However, what is still unclear is what the impact of these smells would be. Fem-
mer and Vogelsang [7] found a relationship between the quality of requirements
and the quality in use of the software system being developed.

However, neither the NaPiRE project nor the studies mentioned above have
considered the different perceptions of what good or bad requirements are for
different roles or the effect that bad requirements might have on the practitioners’
work, workload and well-being. Well-being, specially stress has been found as an
important factor for hindering collaborative work and technical practices [16].
All these aspects are essential to define good-enough requirements that allow
organizations to prioritize requirements for implementation that add value to
the product [5], thus motivating their study in the area of RE.

3 Research Methodology

The study addressed the following research questions:

– RQ1 How do software development practitioners define requirements qual-
ity?

– RQ2 How does the perceived quality of requirements impact the work of
practitioners in software development?

– RQ3 What are the perceived causes and potential solutions of the poor
quality of requirements?

The intent is to map the effects of low-quality requirements (as per RQ1), as
perceived by requirements engineers, developers, and testers, to the enjoyment of
work, stress, and well-being in general, as the perception of their colleagues, orga-
nization, and workload. Hence, the results lean into the human factors domain
of software engineering or behavioural software engineering [14]. Such results,
albeit often less tangible than technical factors, are essential for the general
understanding of software engineering.

4 Lind, Gonzalez-Huerta, and Alégroth

3.1 Context, Case, and Unit of Analysis

To address the research questions mentioned above, we conducted an interview
study in an industrial setting comprising twenty interviews with software devel-
opment practitioners. We conducted the study in a sub-organization of a Nordic
bank1 which develops mobile and web apps for the bank’s end-users, therefore
belonging to the financial technology (fintech) domain.

The organization has development teams organized into different areas, such
as product areas or business/domain areas, referred to as value streams. On
average, the development teams consist of 10 to 12 employees and contain roles
such as requirements engineers, testers, developers, UX designers, and scrum
masters. Note that the studied organization carries out requirements engineering,
development and software testing in a downstream process, i.e., there is a hand-
over between requirements engineers to developers and later a hand-over from
developers to testers. Fig. 1 provides a visual, brief overview of the development
workflow used at the organization.

In this study, we focus on four different units of analysis, i.e., requirements
engineers, testers, software developers with more than one year of experience
at the organization and recently recruited software developers. Employees from
each group were selected, by a hybrid of convenience and random sampling [15],
from different projects and geographic locations to acquire a more representa-
tive sample inside the organization. The hybrid sampling consisted of using a
list of employees with suitable characteristics for the study provided by man-
agers at the organization. We refer to this as hybrid sampling since the authors
had limited control over which participants were added to the list, i.e. the par-
ticipants’ managers ultimately were the ones suggesting their participation in
the study. We selected the organization also by convenience since it is one of
the partner companies in an ongoing research project that focuses, among other
topics, on addressing the quality degradation of software assets. Table 1 details
the participants’ demographic information.

The recently recruited developers were an opportunity-based unit of analysis,
interviewed to complement the results from the study’s three central units of
analysis (i.e., requirements engineers, testers, and developers). We sampled these
participants following the same approach as the other participants. However, the
sample frame of potential participants was much smaller, i.e. only employees with
less than four months of employment were eligible. However, since we exercised
no control over the selection, we still classify it as hybrid convenience and random
selection.

In total, we conducted interviews with 20 participants; five requirements
engineers, five developers, five testers, and five recently recruited developers. We
interviewed the recently recruited developers twice, the first time when they had
finished or were close to finishing their onboarding at the organization and the

1 Fictitious name to preserve anonymity

Requirements Quality vs Process and Stakeholders’ Well-being 5

Stakeholders
•Stakeholders identify a need to

fulfill.
•Needs are evaluated and

prioritized.
•Creation of high abstract level

requirements

Requirements engineers
•Requirements engineers

break the high level
requirements into more
detailed requirements by
performing investigation
tasks, involving different
stakeholders (including
developers)

Software engineering
team
•Sanity checks are performed

for the requirements
through refinement
meetings with all
practitioners involved.

Developers
•Developers implement the

functionality and graphic
described in the
requirements.

•If a defect is found by the
tester the requirements and
the defect description are
sent back to developers to
correct the defect.

Testers
•Testers check the

implementation to ensure it is
according to requirements
and there are no defects.

•If a defect is found, the tester
sends the implementation,
the requirements and the
defect description back to
developers to correct the
defect.

Upon completion
•When the implementation

seems correct the requirements
are marked as completed and
ready for release.

•Future tests will be performed
as regression tests to ensure
that functionality and graphics
are still according to
requirements.

Fig. 1. Requirements work-process-related codes

second time when they had worked for a few more months at the organization2

Therefore the total number of interviews conducted in the study was 25.
To ensure anonymity, we clustered the participants’ experience into groups

of more than five years, less than five years (the requirement for participating
was at least a year in the organization), and three months or less for the recently
recruited developers.

3.2 Data Collection

Data for this interview study was collected using semi-structured interviews. The
first part of the interview guide aimed at answering RQ1, whilst the second part
of the interview aimed at answering RQ2 and RQ3.

Each interview took thirty to sixty minutes, following a predefined interview
guide3, recorded with audio and video, and later transcribed to text. The inter-
view guide consisted of 16 predefined questions for the testers and developers
that had worked in the organization for at least one year. For requirements en-
gineers, the interview guide consisted of 24 predefined questions, 19 predefined
questions for the first interview with the recently recruited developers and 15
predefined questions for the second interview with the recently recruited devel-
opers. Although the interview guides varied depending on the interviewees’ roles,

2 Although the analysis of the differences between these two interview instances is out
of the scope of this paper.

3 The interview guide is available in the companion materials in Zenodo
DOI:10.5281/zenodo.7306032

https://doi.org/10.5281/zenodo.7306032

6 Lind, Gonzalez-Huerta, and Alégroth

Table 1. Demographic information of the interview participants, including interviewee
Id, participant’s working location, and years of experience within the organisation

¡

Interviewee Id (including role) Location Experience
Requirements Engineering 1 Sweden <5 years
Requirements Engineering 2 Sweden >5 years
Requirements Engineering 3 Baltic Country >5 years
Requirements Engineering 4 Sweden <5 years
Requirements Engineering 5 Sweden >5 years
Developer 1 Sweden <5 years
Developer 2 Sweden <5 years
Developer 3 Sweden >5 years
Developer 4 Sweden <5 years
Developer 5 Sweden <5 years
Tester 1 Sweden >5 years
Tester 2 Baltic Country <5 years
Tester 3 Baltic Country <5 years
Tester 4 Sweden <5 years
Tester 5 Baltic Country <5 years
Recently recruited developer 1 Sweden <3 months
Recently recruited developer 2 Sweden <3 months
Recently recruited developer 3 Sweden <3 months
Recently recruited developer 4 Sweden <3 months
Recently recruited developer 5 Sweden <3 months

the semantic information gathered aimed at providing complementing answers
to the research questions. The guides also had questions that are not mapped
to any specific research question. We added these additional questions to gather
supplementary information to understand the context and to interpret the inter-
view results that contributed to the research questions. The number of predefined
questions was decided to give enough time to ask follow-up questions.

3.3 Data Analysis

The interviews were analyzed using thematic analysis [1, 3]. Open coding was
used, where codes were generated based on the semantic meaning of statements
from the interview transcripts, using mainly a deductive approach [3]. We used
the coded information and the associated quotes to synthesize evidence from the
collected data. This evidence-driven analysis approach was suitable for answering
the research questions due to the study’s descriptive nature.

We added the codes incrementally from the interview results. As stated, the
codes were formulated based on the semantic meaning of the interviewees’ state-
ments. When another statement was found to contain similar semantic informa-
tion, said the statement was marked with the same code. We did not restrict
coding to a 1-to-1 mapping between codes and statements. Hence, we could code
a statement with one or several codes. We stored all extracted statements from
the transcripts with the codes in the code books for consistency.

The rationale for using coding was to provide an overview of the data to con-
nect statements and observations to draw higher-level conclusions. For example,
the statement ”Requirements are changed with time. We do not work in water-
fall projects when a requirement is thought to be completed, cannot be changed,

Requirements Quality vs Process and Stakeholders’ Well-being 7

and then handed over to the developer. We have a parallel work in which we
often realize that something was not expressed in a good way, it is often that we
change the wording or more things a bit.” was coded with the code ”Changes
during development”. Similarly, the statement; ”We mostly work with drafting
the requirements during the sprint as they are not complete when we bring them
into the sprint, so a part of our task is to make an investigation” were coded
with the same code.

The coding resulted in synthesized themes organized in a document with
related codes and key sentences. After the themes had been defined, they were
used to draw conclusions on the appropriate level of abstraction to answer the
research questions.

As thematic coding, with semantic equivalence partitioning, is subject to
researcher bias, the first author validated the coding scheme with the second and
third authors. We conducted this validation in the early stages of the analysis
process. This was achieved by providing the second and third authors with an
interview transcript and the codebook. The authors coded the corresponding
transcript using the codebook. After the coding, the results were compared based
on similarity. Results showed a high similarity: 74% of the codes matched. We
calculated this percentage as the number of sentences tagged with the same
codes divided by the total number of coded sentences. This result was considered
sufficient for the first author to proceed with the rest of the coding.

4 Results

This section presents the results of the interview study. First, we summarize how
requirements are handled and utilized in Nordic Bank, and the perceived preva-
lence of bad requirements. The results that aim at answering research questions
RQ1, R2, and RQ3 are presented in subsections 4.2, 4.3, and 4.4, respectively.

4.1 Requirements Engineering Process at Nordic Bank

This subsection presents the results that the participants provided in regard
to the ways Nordic Bank utilizes requirements during the development process.
We also include a brief analysis of the prevalence of bad requirements in the
organization.

Workprocess Fig. 2 presents the code book for the codes related to how re-
quirements are handled during the development process. Four testers reported
that they were involved in the requirements engineering process and performed
requirements quality assurance activities. The developers also mentioned that
within their teams, they carry out requirements refinement activities—Activities
aimed at improving the content and understandability of the requirements—
before the requirement reaches the status of ready-to-develop.

Participants also mentioned that it is possible to update the requirements
once the development has started, but in those cases, all stakeholders should be

8 Lind, Gonzalez-Huerta, and Alégroth

Work Process: The process that the employees
have in their work, the project form that is

followed, and the different steps that they take
to complete their work.

Updated Requirements: Requirements changed during development
should, according to the established way of working, be updated with new
information promptly and effectively conveyed to all affected
stakeholders.

Break Requirements into tasks: A step in the process for the developer
can be to split a requirement into tasks before starting the coding.

Involved in RE- process: Interviewee is not employed as a requirements
engineer but is involved in the RE process in more ways than through the
refinement meetings, e.g., by performing QA on the requirements or writing
requirements that are then reviewed by a requirements engineer.

Refining requirements before dev ready: A step in the process before
development starts is the refinement meetings before the requirements are
released for development. The requirement will not be sent to
development until defined as ready.

Fig. 2. Requirements work-process-related codes

informed about the change. Finally, it was also reported that it is a common
practice to split requirements into smaller tasks to be carried out by the team
or other teams.

Bad Requirements Prevalence The testers involved in the quality assurance
process for the requirements stated that the requirements, in general, in their
understanding, were of good quality. Additionally, they stated that they write
preliminary test cases for all requirements, including edge case tests. Despite
these efforts, they still discover many defects when they test the implementation.
One interviewee stated, “I think the quality is quite high, but that does not mean
that if the requirements are good, the developers won’t make mistakes and bugs
[. . .] It would seem that we have bad user stories if I say that I give back 75%
of the stories for fixing because I find bugs”. The same tester thought that it
was mostly the developers’ own fault and not caused by bad requirements, “It
is not that they don’t understand or that might not mean that the requirements
are bad, but this is just that they might not read the story enough or maybe
interpret something differently.”

A statement from a tester that did not perform QA checks on requirements
before handing them to developers stated,“It’s important that I as a tester and
the developers both understand it [the requirement] as it is written” when de-
scribing good requirements. Another interviewee stated, regarding requirements
quality, “If you are new in an area and in your role, then there is a higher de-
mand on the quality of the requirements.” Another tester involved with the RE
process experienced that defects, in one-third to half of the times, were caused
by bad requirements “It’s like 50-50. It doesn’t need to be bad requirements; it
might be that some developer has missed something. But maybe less than 50%,
maybe 30% are bad requirements”. However, because the actual requirements
were not analyzed in the study, the testers’ experiences are still unverified.

Requirements Quality vs Process and Stakeholders’ Well-being 9

Clea
r

Com
ple

te

Pu
rpo

se

Re
lev

an
t fo

r s
tak

eh
old

ers

Sh
ort

 de
scr

ipt
ion

Well
str

uct
ure

d

Con
cre

te

Corr
ect

Ea
sy

to
ad

jus
t

Tes
tab

le

Ter
mino

log
y

Fea
sib

le
Log

ica
l

Not-
an

-ep
ic

Not-
too

-de
tai

led

Tra
cea

ble
0

2

4

6

8

10

12

14

16

18

20

of

 m
en

tio
ns

Requirements Engineers
Developers
Testers
Recently-Recruited Developers

Fig. 3. Quality Characteristics of Good and Bad Requirements

The developers, testers, and requirements engineers agreed upon one point:
refinement meetings are part of their RE-process. Still, they estimated the fre-
quency of bad requirements to be about 10-25% of the requirements.

4.2 RQ1: How Software Development Practitioners Define
Requirements Quality?

Figure 3 illustrates the requirements quality characteristics mentioned by the
participants. The number of mentions accounts for each interviewee that men-
tioned each quality characteristic during the interviews.

Every interviewee mentioned clear as a characteristic of a good requirement.
However, as clear might have multiple interpretations of what it means, which
also can vary among roles, some interviewees might have mentioned this charac-
teristic as a collective term for other characteristics, e.g., unambiguous and/or
complete. Regardless, it seems that clarity, associated with ease of understand-
ing, is considered a pivotal characteristic for all interviewees. A tester said when
describing good characteristics of requirements that “Clarity is, as mentioned,
a keyword here, and there can be several different aspects that can make it [a
requirement] clear.”

The characteristic complete was described by every developer, and most
testers agreed that requirements have to be complete when they receive them.
Some testers pointed out that changing a requirement while in testing would
make the process much more complex. Only three requirements engineers ex-
plicitly mentioned complete as a characteristic of good requirements. However,
one of those three requirements engineers pointed out that they accept, in their
team, changing parts of requirements after developers receive them if they are
aware of those likely changes. Fig. 4 presents the codebook with the description
of the quality characteristics as discussed with the interviewees.

10 Lind, Gonzalez-Huerta, and Alégroth

RQ1: Requirements
Quality

Characteristics

Short Description: A requirement that has a
short description does not cover more than what
is needed for it to be understood and used.

Testable: A requirement that is written in a way
that removes the eases the writing of test
cases.

Well Structured A requirement that is
structured in a way that facilitates the work for
other stakeholders (e.g., developers and testers).

Terminology: A requirement that is written with
correct terminology as well as with terms
that are used in correct way,Logical: A requirement that is logical and

describes the content, implementation, and
interactions in a logical way.

Not too Detailed: A requirement that is written
on a suitable level of detail for the stakeholders
to understand, without inhibiting the stakeholders’
(e.g.,developers) creativity.

Traceable: A requirement that is easy to trace,
even if it is in the future when the feature
is completed, or the team has ended, been
replaced, or moved on to another
project/value stream

Complete: A requirement should contain its entire
description and include all complementing resources,

e.g., screenshots, wireframes.

Clear: A clear requirement is perceived to be easy to
understand, read and use.

Purposeful: A clear purpose or goal, e.g., why it
should be developed, reducing the risk of

misinterpretations and why it should be implemented.

Easy to adjust: A requirement that makes it
easy to
be adjust later in the work process (beyond
development)

Feasible: A requirement that is feasible,
practicable, or viable. What it

describes can be developed and/or released.

Concrete: a requirement that is written in an
unambiguous way, is exact

and strict, and covers how to complete it.

Relevant for Stakeholders: A requirement that
contains information that is relevant for stakeholders

that are intended to use it.

Correct: A requirement that contains the correct
content, wireframes, links, and

information.

Not- an- epic: A requirement that is written on a
level that is appropriate for the
implementation work and testing.

Fig. 4. Codebook: Characteristics of “good” requirements, with codes and descriptions
of “good” requirements. Opposite descriptions would characterize “bad” requirements.

4.3 RQ2: How does the perceived quality of requirements impact
the work of practitioners of software development?

In general, the participants experience that bad requirements cause delays in
the development, that activities take longer time, and that they need to perform
tasks that they perceive someone else should have done. One possible cause of
these experiences is the lack of communication within the team or with other
teams or stakeholders. The interviewees also reported that good requirements
positively impact in general, e.g., on code quality, shorten development time, or
improve work satisfaction. In contrast, bad requirements have a negative impact
on code quality, cost or work satisfaction. Fig. 5 presents the codebook with
the main themes that emerged from the interview transcript analysis regarding
RQ2.

4.4 RQ3: What are the perceived causes and potential solutions of
the poor quality of requirements?

Fig. 6 reports the code book with descriptions of the themes related to causes,
challenges, potential solutions and process improvements to address low-quality
requirements. The requirements engineers’ most common suggestion for the
cause of the poor requirements quality was that they got too tight deadlines

Requirements Quality vs Process and Stakeholders’ Well-being 11

RQ2

Challenges with bad requirements: Development is
delayed or parts of the process take longer time. They have to
do work that (they perceive) someone else should have done.

Difficulties when working with bad requirements: Some
experience work with requirements to be easy, other

moderate, other that it is difficult.

Changes on Requirements during development: Changes to
quality of requirements, such as UX, look and feel, performance,
text, or security, and how it affects the development and
testing.

Feelings when working with requirements: The feelings
that the interviewee experience when they work with

requirements of different qualities, both good and bad.

Requirements Engineering Training: The training and
education that the interviewee has with requirements
engineering and the processes in creating requirements.

No bad requirements: The interviewee expresses not
having experienced any bad requirements. (Does not mean
that they does not change their mind after)

View on Requirements: The interviewee expresses their view
on requirements and their experience of other’s views on
requirements and any similarities or differences

Effects of Good or Bad Requirements: Artefacts
developed based on good/bad requirements are affected by

their quality.

Slow Process: The development process and/or its practices
are considered time- consuming or slow. For instance, more
time consuming compared to other companies or contexts.

Ripple effects: Changes to requirements, e.g. changed or
added information, can have ripple effects in amount of work
required by developers. For instance, requiring developers to
track multiple artefacts, e.g. pull requests.

Reasons for bad requirements: The interviewee describes
the reasons they have experienced that cause bad

requirements as well as the reasons they speculate might
cause bad requirements.

Communication good vs bad requirements: difference in
communication when working with good vs bad requirements,

e.g. increased need to contact different team members and
stakeholders to find out lacking information from a bad

requirement.

Fig. 5. Codebook: Codes Related to the impact of the quality of requirements

that the team did not have any control over. Another plausible cause was stated
to be a lack of agreement on what constitutes a good (or bad) requirement.

One of the improvements suggested by the interviewees was retrospective
meetings for requirements engineers between different teams. Another alternative
is to have some form of forum or other platforms for the requirements engineers to
share knowledge, experience, and ideas and have workshops to share knowledge
within the organization. Lastly, a suggestion was to move the responsibility and
control over deadlines from managers to the development teams.

5 Discussion

5.1 RQ1: How do software development practitioners define
requirements quality?

In this subsection, we discuss the main quality characteristics highlighted by
the participants, mapping them to the quality characteristics included in the
ISO [11] and IREB [2].

Table 2 shows the mapping between the different characteristics highlighted
by the participants to the ones in the standards.

As mentioned in Section 4.2, most developers and testers agree that a re-
quirement has to be complete when they receive it. However, some testers do
not necessarily agree that the requirements must be complete when the develop-
ers receive them. Requirements engineers argue that requirements are artefacts
that can change during development. Testers do not mind if changes occur, but
when the functionality is implemented and sent to them for testing, the require-
ments should be complete so that they can be verified.

12 Lind, Gonzalez-Huerta, and Alégroth

RQ3

Solutions

Improvement

Design to accommodate future requirements
changes: The implementation is designed to
accommodate future changes to the requirements.

Support from the team: When working with bad
requirements the interviewee messages requirements
engineers and other team members to inform about it,
ask questions and to receive help.

Overcome challenges by learning: learn from
mistakes and challenges to prevent them in future
work or to solve them more quickly in future work.

Not start working on bad requirements: not to
start the development based on a requirement that is
perceived to be bad until it is reworked and improved.

Local branches to overcome the challenge: create
local branches to continue the development while
waiting for approvals and code reviews on their pull
requests.

RE retrospectives: Retrospective meetings
dedicated to the requirements engineering process
and the requirements quality for each sprint.
Requirement Templates: A template that contains
all the relevant elements and parts of a
requirement that the stakeholders that will work
with it might need.

Deadlines controlled by project teams: Move the
control and responsibility for the deadline from
management to the project teams

Executable requirements: Requirements written in a
way that makes it possible to automatically execute
tests to ensure their quality and/or to test the impact
they might have on the existing flows and features of
the product.

Causes /
Challenges

Design: Incomplete, faulty or not accessible design
description hinders understanding or development tasks.

For e.g. incomplete UI- wireframes not available.

Technical Limitations: Technical artefacts associated with
the requirements (e.g. APIs or code) are not available or

properly described.

Process and Practices: The process, or its practices, are
described as ine �ective or ine � cient. For instance, code

reviews not performed at a reasonable pace.

Dependencies with other teams: They or their team have
dependencies with other team members, other teams or

other stakeholders which have an impact on their work, e.g.
delays

Wrong or not- valid information: When requirements have
wrong information or not correct information the

interviewee have experienced issues

Complex environment: The interviewee experienced that
the environment they work with, e.g., the testing

environment, business rules, or code base, is complex and
results in challenges for their work.

Stakeholders, knowledge and responsibility: Hard to
reach relevant stakeholders, get necessary knowledge, or

to find out who is responsible for certain areas of the
business domain or code base.

No Norms: The interviewee has not experienced and has
no knowledge about any organization- wide norm for

requirements engineering in the organization.

Fig. 6. Codebook: Codes related to causes, solutions and improvements for “bad”
requirements

Table 2. Mapping of the Characteristics from the Codebook to the ISO [11] and
IREB [2] standards.

Codes from
Codebook

ISO [11] Characteristics
& Attributes

IREB [2] Characteristics
& Attributes

Clear Unambiguous, Comprehensible. Unambiguous, Understandable
Concrete - -
Complete - -
Correct Correct -
Purpose Necessary Necessary
Feasible - -
Easy to adjust - -
Relevant for
Stakeholders

Appropiate -

Short Description - Short and well-structured sentences
Not-too-detailed - -
Well Structured - -
Terminology Avoid open-ended non-verifiable

terms, avoid subjective
Defining and consistently using a uni-
form terminology, avoid vague or, am-
biguous terms and phrases

Logical - -
Traceable - Traceable
Testable Verifiable Verifiable
Not-an-epic - -

Requirements Quality vs Process and Stakeholders’ Well-being 13

One developer expressed that they worked in a team with a requirement
standard that did not require the requirements to be complete when the devel-
opers received them. Instead, the norm in this team was that the requirements
engineer would perform their own investigations while working on parts of the
requirement that were considered to be “done”. Similarly, other interviewees
stated that working with incomplete requirements in their team was possible.

Some interviewees said that a requirement needs to give the stakeholders
insight into the requirement’s purpose and when it is considered done, i.e., the
definition of done. Some quotes are “The ones that make developers understand
the scope,”. “To understand the purpose of what we want to achieve”. Hence, not
only should the requirements describe the functionality but also the acceptance
criteria.

One could argue that the requirements engineers should focus on domain
knowledge and present requirements to the developers and testers that convey
this knowledge. One participant expressed that the consequence of the lack of
technical knowledge is that the requirements engineers do not know what is
possible to implement and what is not, nor what limitations exist in one platform
but not in another when they create features for both.

A subject that most interviewees brought up was that they perceived that a
requirement should be written for the Stakeholders that will use it. “It depends
on the developer, the business analyst or the tester how they want it written”.
“In our team are several different roles that should understand it; our APO [agile
product owner] looks at different parts than what our developer does”. Regarding
how to deem a requirement, whether it is good or bad, a developer said: “Maybe
it’s not the ones that have the most insight in a user story [requirement] that
should judge if it’s ready for development, but maybe those that have lesser
knowledge in the area are the better persons to ask if it’s clear enough for them
to understand what they are supposed to do.” They base their subjective view
on their technical and domain knowledge about the subject, which allows them
to deal with assumptions more accurately.

5.2 RQ2: How does the perceived quality of requirements impact
the work of practitioners of software development?

Bad requirements require more communication Communication among
requirements engineers, developers, testers, or other development teams, was the
go-to practice for solving issues with the requirements for developers and testers.
The logical outcome of this way of working is longer development time and an
additional burden placed on the development team. A burden that could have
been mitigated if the requirement had been better upfront. A developer stated,
“Like I said earlier, a lot of the time that I want to put on programming is instead
put on communication with BA:s [Business Analysts], UX [user experience] and
other developers that have knowledge about what I’m working on. One does not
develop so much; it is very much investigation work”.

Most interviewees, independent of role, have described that communication
is different when working with good requirements compared to working with

14 Lind, Gonzalez-Huerta, and Alégroth

bad ones. One of the most mentioned differences is that more communication is
needed within the team or with other stakeholders when working with a require-
ment perceived as bad. As stated by one of the interviewees, “Bad requirements
generally result in that the time you could have put into making a good require-
ment from the beginning is instead spent on setting up meetings or communicate
on the fly.”

Another consequence of bad requirements commonly mentioned was ripple
effects. As expressed by one of the requirements engineers: “If I get questions
[about a requirement] then I understand that I have forgotten something or
haven’t been clear with something. That will make it take more time, there will
be user stories [requirements] that stays, sprint after sprint, and will have to be
brought back to me for further investigations.”

Another essential aspect is understanding of the area, domain and business
rules for the requirements. This includes all the work connected to them, directly
affecting the team’s communication. A statement from the interviews was: “A
lot of the understanding of a requirement is that you create a form of consensus.
If you have a basic understanding of what needs to be done and how to solve
it, then the requirements don’t need to be formulated in the same way as if you
didn’t have it [the basic understanding].”

According to Zowghi and Nurmul [20], the more often developers and cus-
tomers communicate during the RE process, the less volatile the requirements
become. In the organization where this study was performed, the requirements
engineers acted as product owners (customers).

Increased Workload and Doing Someone Else’s Work Participants de-
scribed that additional work with incorrect information resulted in having to
redo the work after correcting the information. The quality of the requirement
impacts this challenge, e.g. a clear, well-written and complete requirement might
be easier to implement and test than one where the information is faulty.

Bad requirements can cause ripple effects in overhead communication, espe-
cially incomplete requirements cause such ripple effects and increased workload.
As stated by the interviewees: “This slows us down. So, it’s kind of a joint work
with the whole team, how we are coping with bad requirements, it’s kind of
more work for the developers then of course for the testers.”, “Bad requirements
create more work for us, testers because then we need to return to the business
people, and the developers might have to rework something, so it leads to more
work or rework.”

A severe consequence of receiving bad requirements is when a bad require-
ment is misunderstood by both the developer and tester, implemented, and then
released. As expressed by one of the interviewees, “Then you realize that what
came out in production is not correct, but we both [developer and tester] thought
that it looked correct because ‘that is how it should work,’ then it can end up
very wrong”. A requirements engineer said, “Sometimes one can write bad re-
quirements, and it is developed according to them, and then you have to redo
the work.”

Requirements Quality vs Process and Stakeholders’ Well-being 15

Four out of five requirements engineers have described those bad requirements
they create also impact their work. The requirements engineer who did not
experience an impact described that the questions did not impact them and that
they viewed a part of their work as being prepared to explain the requirements
to developers and testers. “You can foresee that you might get questions and
that you are the one that will get the bad feedback on the requirements.”

Interviewees experience not enough analysis performed on some of the re-
quirements perceived as bad before handing them over to developers. In these
cases, developers have to do work that they consider someone else should have
done but which is required to overcome the lack in quality of the requirements.
Most often, they need to perform investigations by going through documenta-
tion or contacting colleagues or other stakeholders, similar to what requirements
engineers do when creating the requirements. The implications of this additional
work are increased workload and work time in the development process, reduced
work satisfaction and increased cost. Additionally, sometimes, the developers
find out that someone else has to perform work before they can do anything
leading to dependencies and blocking of requirements.

5.3 Effects on Morale

The Interviewees were asked to express how they feel when they work with bad
and good requirements. We asked the requirements engineers to how it feels to
work with creating requirements. Three of them mentioned that, when working
with challenging requirements or receiving requirements from stakeholders that
they perceive are bad, they feel frustration, stress, anger, and exhaustion. “Ex-
hausting is a word that comes to mind first.” “It can be anger and understanding
that some people don’t have the same approach you have.”

Two requirements engineers did not mention receiving bad requirements.
However, when describing how it felt when they created challenging require-
ments, they experienced it to be educational but also challenging in a positive
way as they learn from the challenge, “The challenge is in itself educational. I
don’t see it as something negative but rather something that I learn from.” One
of the reasons for the big difference in the positive and negative experiences of
challenges when creating requirements could be related to the type of challenge
they encountered. The challenges that the two requirements engineers described
a positive view and feelings from working with challenging requirements were:
(i) finding out stakeholders to contact for information; (ii) challenges with some
terminology; (iii) how to get all the information from different sources together;
and (iv) to write the requirements in a clear way for the developers and testers.

The three requirements engineers that had a negative experience when work-
ing with challenging requirements described challenges such as: (i) technical debt,
e.g., legacy code, that affected the creation of requirements, (ii) that the test en-
vironment was perceived as unstable, (iii) that some areas of the organization
do not have any clear owner, (iv) that legal and compliance aspects are difficult
to work with, and (v) that the roadmap can be drastically changed without any
heads-up by the managers.

16 Lind, Gonzalez-Huerta, and Alégroth

When the requirements engineers are working with requirements they have
made that the developers or testers perceive to be bad requirements, they de-
scribe that it feels sad and stressful, that it impacts their self-esteem, and that it
drains their energy. “It results in that I feel more stressed, I get less good work
done, and it affects one’s own self-esteem.”

When working with requirements that they did not experience as challenging
and when creating requirements that developers and testers perceived to be good,
the requirements engineers describe it as fun and satisfying.

Most testers described that they experienced stress, frustration, a feeling of
disappointment or dissatisfaction, and a loss of interest when they worked with
bad requirements. As stated by two interviewees: “When you have to talk with
people, or when insecurity arises, you have to read it over and over again, you get
frustrated. I lose interest if it is too bad”; “Frustrating, and stressful. I might
be maybe angry, or I might be disappointed.” They also explained that their
work became less efficient and often resulted in more work because they had to
communicate to other team members and often perform their tests again.

Feelings described by the interviewed developers when they received require-
ments they perceived as bad were: exhaustion, stress, frustration, a feeling of
sadness, that they get feeling of doing something pointless, ineffective, and a
waste of time, and that it was not fun when they worked with bad requirements.
As stated by one interviewee: “Facepalm [interviewee put their hand on their
forehead], it’s a waste of time. Just a waste of time, resources, and energy”,
“One gets sad and feels simply unproductive. You want the hours you put down
on your work to be meaningful”.On the contrary, in general, the developers
said they experienced positive feelings and that more work was done when they
worked with good requirements.

One from each of the two developer groups, newly employed developers and
developers that have worked for at least a few years, said they were not negatively
emotionally affected by the bad requirements. One interviewee stated: “Business
as usual [laughing]. You can usually do something about bad requirements be-
fore you start working on them.” Still, one of the interviewees described strong
positive feelings when working with good requirements, “Effective. It’s stronger
feelings when you have a clear good requirement that you can just work through”.

It is generally believed that morale has an impact on productivity. How-
ever, it has been difficult to prove in software engineering since both morale
and productivity are difficult to measure [18,19]. Work morale can also affect a
company’s attraction and retention of employees. One possible consequence of
lowered work morale could be that employees decide to leave the organization,
“Our developers are the ones that produce something of value, and if they are
angry or sad over something possible to go live with, then we risk losing them.
To onboard new developers is not a dance of roses”. The quality of requirements
that a requirements engineer work with might affect their and other Stakehold-
ers’ morale. However, work morale can also be affected by more factors such as
work environment or compensation.

Requirements Quality vs Process and Stakeholders’ Well-being 17

5.4 RQ3: What are the perceived causes and potential solutions of
the poor quality of requirements?

Potential causes for poor quality requirements The organization has not
adopted any norms for good requirements, and none of the interviewees had
heard or experienced any form of such organization-wide norms or standards.
However, several shared courses in the subject are available to the organiza-
tion’s employees. One requirements engineer said: “I have covered the ones that
come with the courses introduced in this company from different phases, such
as ‘simplify,’ ‘SWAP,’ and now ‘SAFE”’. The closest to a shared norm that a
few interviewees mentioned was ’SWAP’ and the branching that derives from it,
“What we can lean on is ’SWAP’ and the different branches that derive from
it. But I wouldn’t say that there is any statement of ‘this is how you structure
requirements at this company.’ It is more from team to team”.

A developer whose team requires that all requirements have to be complete
before the developers receive them and that no changes are allowed, stated that
they experienced that they still got incomplete requirements. He perceives a lack
of knowledge or information by the requirements engineers.“Then we [the devel-
opers] need to step in and explain technically what is possible and what is not for
the different platforms. It results in us more or less educating our requirements
engineers.” This statement highlights a possible root cause of the low quality of
requirements, i.e., the requirements engineers lack technical knowledge.

Potential Solutions and Improvements Some interviewees had suggestions
for how to solve the different causes for bad requirements that have arisen in
the interviews. One of the long-term solutions is to enable more communication
between requirements engineers across the organization in some form of platform.
One example given was to have retrospective meetings between requirements
engineers, another to have a forum dedicated to RE, and a third would be
to have a form of meeting for sharing knowledge, similar to tech talks that
developers have. As a complement to introducing a knowledge-sharing platform
for requirements engineers, one could argue that a norm for creating requirements
should be shared across the organization. This use of RE fora could be especially
beneficial for organizations with several requirements engineers with different
backgrounds and knowledge of requirements engineering, similar to the studied
organization. One possibility is that such norms might naturally be developed
and polished by the practitioners as a consequence of the activities and sharing
of the knowledge-sharing platform. Another suggestion from interviewees as a
short-term solution was to move the control of the deadlines for projects that
development teams worked on to the development teams. Thus, the requirements
do not get rushed and enable a more agile way of working since fixed deadlines
are more an aspect of the waterfall principles. However, one can speculate that
such a change in the organization might be costly should the deadlines be moved
forward repeatedly with delayed releases. Nevertheless, one can also argue that
it can ease the quality assurance process. In addition, the practitioners would be
less stressed and feel more work satisfaction. Hopefully, there should be fewer

18 Lind, Gonzalez-Huerta, and Alégroth

defects and less rework, possibly covering the extra cost that allows development
teams to move deadlines forward might bring.

The expressed need for a platform dedicated to knowledge sharing between
requirements engineers could indicate that the organization might benefit from
an organization-wide norm for requirements engineering. However, many inter-
viewees expressed a strong willingness to have flexibility and freedom in their
work and their team’s ways of working. Therefore it should be considered to en-
sure that such a norm will be kept on a supporting level that does not encroach
on the practitioners’ creativity.

Almost all interviewees, if not all, concur that if the organization experience
more significant benefits to not having a standard norm, an improvement that
the organization already should consider is a platform for knowledge sharing
between requirements engineers. Imposing an organization-wide norm can hinder
autonomy and heterogeneousness in the teams’ ways of working.

There are several possibilities for how this platform could take shape. A
straightforward example could be to have a forum dedicated to the RE-process
and encouragement to the requirements engineers to use it and share the knowl-
edge amongst themselves. Another example could be to have something similar
to the tech talks that developers have, in which they have regular meetings to
share news, knowledge, and insights. Some requirements engineers interviewed
also asked for retrospectives for the requirements process, which they experi-
enced a lack of.

The participants also suggested the use of templates and quality gates for
requirements (i.e., not starting to work with low-quality requirements until they
reach a certain quality level) as potential solutions to mitigate the effects of
low-quality requirements.

6 Threats to Validity

This section discusses threats to validity from four perspectives: construct va-
lidity, external validity, and reliability.
Construct Validity Construct validity is concerned with whether the studied
measures reflect the constructs the researcher has in mind and what is stated in
the research questions. The first author designed the flexible interview protocol
and then reviewed it with the second and third authors. We acknowledge that
the participants do not include all the relevant stakeholders in the organization.
We tried mitigating this threat by involving participants with different roles and
varying expertise from the companies.
External Validity concerns the extent to which the findings can be generalized
outside of the studied case and whether they apply to other organizations. One
of the misunderstandings about case study research is the inability to generalize
from a single case [10]. However, we have tried to build a theory to understand
requirements quality, the impact of low-quality requirements, and causes and
potential solutions by building analytic generalization through theories instead
of gaining statistical generalizabilty. We have provided the characteristics of the

Requirements Quality vs Process and Stakeholders’ Well-being 19

case under analysis to allow us to evaluate its generalizability. However, still,
further replications are needed to verify the results.
Reliability concerns whether the data and analysis are independent of the re-
searchers. To increase the reliability, the second and third authors validated the
coding scheme and the coding process by independently coding an interview
transcript. The results of this independent coding matched for 74% of the codes.

7 Conclusions and Further Work

In this paper, we have presented an interview study to analyze how: (i) practi-
tioners from different roles define good and bad requirements; (ii) how the quality
of the requirements impacts their work; and (iii) what might be the causes for
poor quality requirements, as well as potential solutions and improvements.

The results regarding the quality characteristics for requirements show that,
although all interviewees agree that requirements should be clear, there is a wide
range of views regarding the need to work with complete requirements. The par-
ticipants highlighted that, in general, they experienced negative emotions, more
work, and overhead communication when they worked with requirements they
perceived to be of low quality. The participants suggested Requirements Engi-
neering retrospectives, the use of templates, and quality gates for requirements
(i.e., not starting to work with low-quality requirements until they reach a certain
quality level) as potential improvements and solutions for low-quality require-
ments. Participants also suggested creating a requirements engineering forum
(or guild) to disseminate requirements engineering knowledge better.

The most relevant further work is the replication of this study in other organi-
zations to verify the results. Our preliminary results highlight some improvement
areas that could be explored through longitudinal case studies or action research.
Examples of those areas are the effects of establishing a knowledge-sharing fo-
rum for requirements engineers in organizations; or evaluating the cost, risk,
and benefits of moving the control of deadlines from management to develop-
ment teams in agile software development companies. These research areas could
bring relevant results for researchers and software development organizations.

Acknowledgements This research was supported by the KKS foundation
through the SHADE KKS Hög project (Ref: 20170176) and through the KKS
SERT Research Profile project (Ref. 2018010) Blekinge Institute of Technology.

References

1. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qualitative Research
in Psychology 3, 77–101 (1 2006). https://doi.org/10.1191/1478088706qp063oa

2. Bühne, S., Glinz, M., van Louenhoud, H., Staal, S.: “IREB Certified Professional
for Requiremetns Engineering. CPRE Foundation Level - Syllabus ”. Standard,
IREB, Karlsruhue, Germany (2022), https://www.ireb.org/content/downloads/
2-cpre-foundation-level-syllabus-3-0/cpre foundationlevel syllabus en v.3.1.pdf

https://doi.org/10.1191/1478088706qp063oa
https://www.ireb.org/content/downloads/2-cpre-foundation-level-syllabus-3-0/cpre_foundationlevel_syllabus_en_v.3.1.pdf
https://www.ireb.org/content/downloads/2-cpre-foundation-level-syllabus-3-0/cpre_foundationlevel_syllabus_en_v.3.1.pdf

20 Lind, Gonzalez-Huerta, and Alégroth

3. Cruzes, D.S., Dyb̊a, T.: Recommended steps for thematic synthesis in software
engineering. In: International Symposium on Empirical Software Engineering and
Measurement. pp. 275–284. Banff, AB, Canada (2011)

4. Damian, D., Chisan, J.: An empirical study of the complex relationships between
requirements engineering processes and other processes that lead to payoffs in
productivity, quality, and risk management. IEEE Transactions on Software Engi-
neering 32(7), 433–453 (2006). https://doi.org/10.1109/TSE.2006.61

5. Ernst, N., Kazman, R., Delange, J.: Technical Debt in Practice: How to Find It
and Fix It. MIT Press (2021)

6. Femmer, H., Fernández, D.M., Wagner, S., Eder, S.: Rapid quality assurance with
requirements smells. Journal of Systems and Software 123, 190–213 (1 2017).
https://doi.org/10.1016/j.jss.2016.02.047

7. Femmer, H., Vogelsang, A.: Requirements quality is quality in use. IEEE Software
36, 83–91 (5 2019). https://doi.org/10.1109/MS.2018.110161823

8. Fernandez, D.M., Wagner, S., Kalinowski, M., et al.: Naming the pain in re-
quirements engineering. Empirical Software Engineering 22, 2298–2338 (10 2017).
https://doi.org/10.1007/s10664-016-9451-7

9. Fernandez, D.M.: Supporting requirements-engineering research that indus-
try needs: The napire initiative. IEEE Software 35, 112–116 (2017).
https://doi.org/10.1109/MS.2017.4541045

10. Flyvbjerg, B.: Five misunderstandings about case-study research. Qualitative In-
quiry 12, 219–245 (2006). https://doi.org/10.1177/1077800405284363

11. ISO/IEC/IEEE: “ISO/IEC/IEEE 29148:2018 international standard – systems
and software engineering – lifecycle processes – requirements engineering”. Stan-
dard, ISO/IEC/IEEE, Geneva, CH (2018)

12. Javed, T., Maqsood, M.e., Durrani, Q.S.: A study to investigate the impact of
requirements instability on software defects. ACM-SIGSOFT Software engineering
notes 29(3), 1–7 (2004). https://doi.org/10.1145/986710.986727

13. Kamata, M.I., Tamai, T.: How does requirements quality relate to project success
or failure? In: 15th IEEE International Requirements Engineering Conference (RE
2007). pp. 69–78 (2007). https://doi.org/10.1109/RE.2007.31

14. Lenberg, P., Feldt, R., Wallgren, L.G.: Towards a behavioral software engineering.
In: Proceedings of the 7th International Workshop on Cooperative and Human
Aspects of Software Engineering. ACM, Hyderabad, India (2014)

15. Lin̊aker, J., Sulaman, S.M., Höst, M., Mello, R.M.D.: Guidelines for conducting
surveys in software engineering v. 1.1. Tech. rep., Department of Computer Science,
Lund University, Lund, Sweden (2015)

16. Meier, A., Kropp, M., Anslow, C., Biddle, R.: Stress in agile software development:
Practices and outcomes. pp. 259–266. Springer (2018)

17. Rempel, P., Mäder, P.: Preventing defects: The impact of requirements traceabil-
ity completeness on software quality. IEEE Transactions on Software Engineering
43(8), 777–797 (2017). https://doi.org/10.1109/TSE.2016.2622264

18. Storey, M.A., Zimmermann, T., Bird, C., Czerwonka, J., Murphy, B.,
Kalliamvakou, E.: Towards a theory of software developer job satisfaction and per-
ceived productivity. IEEE Transactions on Software Engineering 47, 2125–2142
(10 2021). https://doi.org/10.11092FTSE.2019.2944354

19. Weakliem, D.L., Frenkel, S.J.: Morale and workplace performance. Work and Oc-
cupations 33, 335–361 (8 2016). https://doi.org/10.1177/0730888406290054

20. Zowghi, D., Nurmuliani, N.: A study of the impact of requirements volatility on
software project performance. In: Proceedings - Asia-Pacific Software Engineering
Conference, APSEC. pp. 3–11. IEEE, Gold Coast, Australia (2002)

https://doi.org/10.1109/TSE.2006.61
https://doi.org/10.1016/j.jss.2016.02.047
https://doi.org/10.1109/MS.2018.110161823
https://doi.org/10.1007/s10664-016-9451-7
https://doi.org/10.1109/MS.2017.4541045
https://doi.org/10.1177/1077800405284363
https://doi.org/10.1145/986710.986727
https://doi.org/10.1109/RE.2007.31
https://doi.org/10.1109/TSE.2016.2622264
https://doi.org/10.11092FTSE.2019.2944354
https://doi.org/10.1177/0730888406290054

	Requirements Quality vs Process and Stakeholders' Well-being: A Case of a Nordic Bank

