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Abstract. We present new results on community recovery based on the
PageRank Nibble algorithm on a sparse directed stochastic block model
(dSBM). Our results are based on a characterization of the local weak
limit of the dSBM and the limiting PageRank distribution. This charac-
terization allows us to estimate the probability of misclassification for any
given connection kernel and any given number of seeds (vertices whose
community label is known). The fact that PageRank is a local algorithm
that can be efficiently computed in both a distributed and asynchronous
fashion, makes it an appealing method for identifying members of a given
community in very large networks where the identity of some vertices is
known.

Keywords: PageRank Nibble · directed stochastic block model · local
weak convergence · community detection.

1 Introduction

Many real-world networks exhibit community structure, where members of the
same community are more likely to connect to each other than to members
of different communities. Stochastic block models are frequently used to model
random graphs with a community structure, and there are many problems where
the goal is to identify the members of a given community, often based only on
the graph structure, i.e,, on the vertices and the existing edges among them.
A two community symmetric SBM is described by two parameters α and β,
which determine the edge probabilities, with α corresponding to the probability
that two members from the same community connect to each other, and β to
the probability that two members from different communities connect to each
other. In [6], the authors work on the semi-sparse regime α = a log n/n and β =
b log n/n, where n is the number of vertices in the graph, and show that the exact
recovery of communities is efficiently possible if |

√
a −
√
b| > 2 and impossible

otherwise. When recovery is possible, the authors use spectral methods to get an
initial guess of the partition and fine tune it to retrieve the communities. Similar
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work has been done in the sparse regime, where α = a/n and β = b/n. In [7],
the authors show that recovery is impossible when (a− b)2 < 2(a+ b). In [8], it
was proved that recovery is efficiently possible when (a− b)2 > 2(a+ b) through
the use of the spectral properties of a modified adjacency matrix B that counts
the number of self avoiding paths of a given length l between two vertices in the
graph. Further, the authors of [9] show that it is possible to recover a fraction
(1−γ) of the vertices of community 1 if a and b are sufficiently large and satisfy
(a − b)2 > K1 log(γ−1)(a + b) for some constant K1 . The clustering methods
in [6,8,9] all rely on finding eigenvectors of the adjacency matrix (or a modified
adjacency matrix), which is computationally expensive for large networks.

Although the literature on community detection is vast, and there are in
fact many methods that work remarkably well, many of those methods become
computationally costly for very large networks. In some important cases like
the web graph and social media networks, the networks of interest are so large
and constantly changing that it becomes difficult to implement some of these
methods. Moreover, in many cases, one has more information about the network
than just its structure, e.g., vertex attributes that tell us the community to
which certain vertices belong to. The question is then whether one can leverage
knowledge of such vertices to help identify other members of their community
using a computationally efficient method that does not require information about
the entire network. One such problem was studied in [12], where the authors
consider community detection in a dense (average degree of vertices scale linearly
with the size of the network) SBM in which information about the presence or
absence of each edge was hidden at random. Here, we will analyze a setting
where the labels of some prominent members of the community of interest are
known.

The PageRank Nibble algorithm was introduced in [11] as a modification of
the Nibble algorithm described in [10] that uses personalized PageRank. This al-
gorithm provides a cheap method for identifying the members of one community
when a number of individuals in that community have been identified. PageR-
ank based clustering methods were also proposed in [4] for the two-commmunity
SBM, as a special case of a more general method of combining random walk
probabilities using a “discriminant” function.

The intuition behind PageRank Nibble is that random walks that start with
the individuals that are known to belong to the community we seek will tend
to visit more often members of that same community. PageRank Nibble works
by choosing the personalization parameter of the known individuals, which we
refer to as the “seeds”, to be larger than for all other vertices in the network,
and then choosing a damping factor c sufficiently far from either 0 or 1. This
choice of the personalization values makes the PageRanks of close neighbors of
the seeds to be larger, compared to those of individuals outside the community.
Once the ranks produced by PageRank Nibble have been computed, a simple
threshold rule can be used to identify the likely members of the community of
interest. PageRank based methods can generally be executed quickly due to the
availability of fast, distributed algorithms [13].
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PageRank Nibble on the undirected SBM was studied in [1] under regimes
where personalized PageRank (PPR) concentrates around its mean field approx-
imation. The idea proposed there was to use the mean field approximation to
identify vertices belonging to the same community as the seeds. In particular,
the authors of [1] show that concentration occurs provided the average degrees
grow as a(n) log n for some a(n) → ∞ as n → ∞, and is impossible for the
sparse regime where average degrees remain constant as the network size grows.
Our present work focuses on the directed stochastic block model (dSBM) in the
sparse regime, and our results are based on the existence of a local weak limit
and, therefore, of a limiting PageRank distribution. Once we have this charac-
terization, we can compute the probability that an individual will be correctly
or incorrectly classified, and choose the threshold that minimizes the misclassi-
fication probability.

2 Main Results

Let Gn = G(Vn, En) be a dSBM on the vertex set Vn = {1, . . . , n} with two
communities. To start, each vertex v ∈ Vn is assigned a latent label Cv ∈ {1, 2}
identifying its community. We assume that these labels are unknown to us. De-
note by C1 and C2 the subsets of vertices in communities 1 and 2 respectively.
Then, each possible directed edge is sampled independently according to:

p(n)vw := P((v, w) ∈ En|Cv, Cw) =

{
a
n ∧ 1 if Cv = Cw
b
n ∧ 1 if Cv 6= Cw.

The edge probabilities can be written as p
(n)
vw = (n−1κCv,Cw) ∧ 1, where

κ =

[
a b
b a

]
is called the connection probability kernel for the dSBM.

For i = 1, 2, we define

π
(n)
i =

1

n

n∑
v=1

1(Cv = i)

to be the proportion of vertices belonging to each community. We focus specifi-

cally on the case where π
(n)
1 = π

(n)
2 = 1/2, but the techniques used here can be

applied to more general dSBMs.
To describe the setting for our results, start by fixing a constant 0 < s < 1,

and assume there exists a subset S ⊆ C1, with |S| = nπ
(n)
1 s, for which the com-

munity labels are known. In other words, we assume that we know the identities
of a fixed, positive proportion of the vertices in community 1. We refer to the
vertices in S as the seeds. In a real-world social network one can think of the
seeds as famous individuals whose community label or affiliation is known or
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easy to infer. Given the seed set S, the goal is to identify the vertices v ∈ C1 \S,
i.e., to recover the remaining members of community 1.

In order to describe the PageRank Nibble algorithm, we start first with the
definition of personalized PageRank. On a directed graphG = (V,E), the PageR-
ank of vertex v ∈ V is given by:

rv = c
∑

w∈V :(w,v)∈E

1

D+
w
rw + (1− c)qv, (1)

where D+
w is the out-degree of vertex w ∈ V , qv is the personalization value of

vertex v, and c ∈ (0, 1) is a damping factor.
PageRank is one of most popular measures of network centrality, due to

both its computational efficiency (it can be computed in a distributed and asyn-
chronous way), and its ability to identify relevant vertices. When q = (qv : v ∈ V )
is a probability vector, the PageRank vector r = (rv : v ∈ V ) is known to corre-
spond to the stationary distribution of a random walk that, at each time step,
chooses, with probability c, to follow an outbound edge uniformly chosen at
random, or with probability 1 − c, chooses its next destination according to q
(if the current vertex has no outbound edges, the random walk always chooses
its next destination according to q). PageRank is known to rank highly vertices
that either have a large in-degree, or that have close inbound neighbors whose
PageRanks are very large [14], hence capturing both popularity and credibility.
Since on large networks the PageRank scores will tend to be very small, it is of-
ten convenient to work with the scale-free (graph-normalized) PageRank vector
R = |V |r instead.

For the two community dSBM Gn = (Vn, En) described above, let Qv = nqv
and define

µn(B) =
1

n

n∑
v=1

1((Cv, Qv) ∈ B)

for any measurable set B. We assume that there exists a limiting measure µ with
πi := µ({i} × R+) > 0 for i = 1, 2 such that

µn ⇒ µ (2)

in probability. Here and in the sequel,⇒ denotes weak convergence. Further, for
any measurable A, let

σ
(n)
i (A) =

1

nπ
(n)
i

∑
v∈Vn

1(Cv = i, Qv ∈ A), i = 1, 2, (3)

denote the empirical distribution of Qv conditionally on Cv = i for i = 1, 2. Due
to assumption (2), we get the existence of limiting distributions σi, given by

σi(A) =
µ({i} ×A)

πi
, i = 1, 2,

such that σ
(n)
i ⇒ σi in probability as n→∞.
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As mentioned in the introduction, our analysis is based on the existence of a
local weak limit for the dSBM, and the fact that if we let I be uniformly chosen
in Vn, independently of G(Vn, En), and let RI denote the scale-free PageRank of
vertex I, then RI converges weakly to a random variable R as n→∞. In order
to characterize the distribution of R, first define R(1) and R(2) to be random
variables satisfying

P
(
R(i) ∈ ·

)
= P (RI ∈ ·|CI = i) , i = 1, 2.

Our first result establishes the weak convergence of R(i) for i = 1, 2 and char-
acterizes the limiting distributions as the solutions to a system of distributional
fixed-point equations.

Theorem 1. Let Gn = (Vn, En) be a sequence of dSBM as described above such
that (2) holds. Then, there exist random variables R(1) and R(2) such that for
any x ∈ R that is a point of continuity of the limit,

R(i) ⇒ R(i) and
2

n

∑
v∈Vn

1(Rv ≤ x, Cv = i)
P−→ P

(
R(i) ≤ x

)
,

as n→∞, i = 1, 2. Moreover, the random variables R(1) and R(2) satisfy:

R(1) d
= c

N (11)∑
j=1

R(1)
j

D(1)
j

+ c

N (12)∑
j=1

R(2)
j

D(2)
j

+ (1− c)Q(1) (4)

R(2) d
= c

N (21)∑
j=1

R(1)
j

D(1)
j

+ c

N (22)∑
j=1

R(2)
j

D(2)
j

+ (1− c)Q(2) (5)

where Q(1) and Q(2) are random variables distributed according to σ1 and σ2
respectively, N (kl) are Poisson random variables with means πlκlk, (D(i)

j − 1 :
j ≥ 1), i = 1, 2, are i.i.d. sequences of Poisson random variables with mean

π1κi1 + π2κi2, and (R(i)
j : j ≥ 1), i = 1, 2, are i.i.d. copies of R(i), with all

random variables independent of each other.

Remark 1. Note that the (D(i)
j ) are size-biased Poisson random variables that

represent the out-degrees of the inbound neighbors of the explored vertex I.

The above result holds in more generality for a degree-corrected dSBM with
k-communities, but for the purposes of this paper, we restrict ourselves to the
k = 2 case. We will only outline a sketch of the proof, and focus our attention
instead on the following theorem about the classification of the vertices.

Equations (4) and (5) are the key behind our classification method. Observe
that in the PageRank equations (1), the parameters within our control are the
damping factor c and the personalization vector Q = (Qv : v ∈ Vn). If we choose
Q that results in R(1) ≥s.t. R(2), we can identify vertices in community 1 as the
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ones having higher PageRank scores. With that in mind, we set Qv = 1(v ∈ S),
choose an appropriate cutoff point x0 (which might depend on c, s and κ), and
classify as a member of community 1 any vertex v ∈ Vn such that its scale-
free PageRank, Rv, satisfies Rv > x0. The algorithm requires that we choose
c sufficiently bounded away from both zero and one, since from the random
walk interpretation of PageRank, it is clear that we want to give the random
surfer time to explore the local neighborhood, while at the same time ensuring
that it returns sufficiently often to the seed set. In practice, a popular choice
for the damping factor is c = 0.85. In the context of the dSBM, we have that
when a >> b, the random surfer ends up spending more time exploring the
vertices in community 1, and the probability that it escapes to community 2
before jumping back to the seeds is much smaller. As a result, the stationary
distribution ends up putting more mass on the community 1 vertices, and the
proportion of misclassified vertices diminishes when a+b is large and b/a is close
to zero. We formalize this in the theorem below. Note that Theorem 1 gives that
the miscalssification probabilities satisfy:

P (Rv ≤ x0| v ∈ C1) ≈ P
(
R(1) ≤ x0

)
and

P (Rv > x0| v ∈ C2) ≈ P
(
R(2) > x0

)
.

Our local classification algorithm with input parameters c and x0 is then
described as follows:

1. Set Qv = 1 if v ∈ S, and zero otherwise.
2. Fix the damping factor c ∈ (0, 1) and compute the personalized scale-free

PageRank vector R.
3. For a threshold x0, the estimated members of C1 are the vertices in the set
Ĉ1(x0, c) = {v ∈ Vn : Rv > x0}.

The theorem below can be used to quantify the damping factor c and the clas-
sification threshold x0, and the corollary that follows shows that the proportion
of misclassified vertices becomes small with high probability as n→∞.

Theorem 2. Let Gn = (Vn, En) be a 2-community dSBM with

κ =

[
a b
b a

]
and π1 = π2 = 1/2. Assume a, b satisfy 8b/(a+ b) < 1/2 and e−(a+b)/2 < b/4a.
Let Qv = 1(v ∈ S) for v ∈ Vn, and take any c ∈ (1/2, 1− 8b/(a+ b)]. Then, for
x0 = 5s/8, we have

P
(
R(1) <

5s

8

)
≤ 256c2

(a+ b)(1− c2)
+

64(1− c)(1− s)
(1 + c)s

, (6)

P
(
R(2) >

5s

8

)
≤ 256c2

(a+ b)(1− c2)

(
1 +

(1− c)(1− s)
2(1 + c)s

)
. (7)
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Naturally, the misclassification errors get smaller as s increases, i.e., as more
members of community 1 are known. Also, we get better bounds for the misclas-
sification errors when a + b is large (strong connectivity within a community)
and b/(a+b) is small (equivalently, a/(a+b) close to one), i.e., when the network
is strongly assortative.

Note that the assumptions in Theorem 2 do not involve s (proportion of
seeds). As the proof indicates, our classification errors involve Chebychev bounds
which crucially depend on: (i) the mean PageRank scores of the two communities
being sufficiently different, and (ii) the ratio of the variance of the PageRank
scores of vertices in each community to the square of the mean community
PageRank being small. By Lemma 1 below, the ratio of the mean community
PageRank scores is independent of s and hence their separation required by (i)
is ensured by conditions involving a, b but not s. Moreover, as seen in Lemma 2,
the scaled fluctuations in (ii) depend more significantly on the ‘sparsity’ of the
underlying network, quantified by a+ b (expected total degree of a vertex), than
s. Thus, the dependence on s arises mainly through the choice of the threshold
x0 in our classification algorithm (see Corollary 1).

As a direct corollary to Theorem 2, we have

Corollary 1. Let x0 = 5s/8, c ∈ (1/2, 1− 8b/(a+ b)],

δ1 =
256c2

(a+ b)(1− c2)
+

64(1− c)(1− s)
(1 + c)s

and

δ2 =
256c2

(a+ b)(1− c2)

(
1 +

(1− c)(1− s)
2(1 + c)s

)
.

Then, under the hypothesis of Theorem 2, for δ = δ1 + δ2 and any ε > 0, we
have

lim
n→∞

P
(
|C14Ĉ1(x0, c)| >

(δ + ε)n

2

)
= 0.

Proof. For notational convenience, we drop the dependence of Ĉ1 on x0 and c.
Observe that |C14Ĉ1| = |C1\Ĉ1|+ |Ĉ1 ∩C2|, and we have C1\Ĉ1 = {v ∈ C1 : Rv <
5s/8} and Ĉ1 ∩ C2 = {v ∈ C2 : Rv > 5s/8}. So we get that for x0 = 5s/8,

P
(
|C14Ĉ1| >

(δ + ε)n

2

)
= P

(
2

n

∑
v∈C1

1(Rv < x0) +
2

n

∑
v∈C2

1(Rv > x0) > δ + ε

)
.

Then the result follows since

2

n

∑
v∈C1

1(Rv < x0) +
2

n

∑
v∈C2

1(Rv > x0)

P−→ P(R(1) < x0) + P(R(2) > x0) = δ

as n→∞.
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Remark 2. Our proof of Theorem 2 uses Chebyshev’s inequalities based on mean
and variance bounds for the limiting (scale-free) personalized PageRank distri-
bution obtained from the distributional fixed-point equations in Theorem 1.
The choice of x0 above is rather ad hoc and mainly for simplicity of the as-
sociated misclassification error bounds. One can check that the choice of x0
which minimizes the sum of the Chebyshev error bounds is given by x∗0 =

(r1v
1/3
2 + r2v

1/3
1 )/(v

1/3
1 + v

1/3
2 ), where r1, r2 are the expected limiting PageRank

values obtained in Lemma 1 and v1, v2 are the corresponding variances obtained
in Lemma 2. Further, x0 = 5s/8 is independent of the kernel parameters a and b,
which are often unknown in practice. Moreover, although the range of c depends
on a, b, the results above hold for any c in the given range. Hence, in practice,
when a, b are not known, then any c > 1/2 which is not too close to one should
work provided the network is not too sparse (b/(a+ b) is sufficiently small).

3 Proofs

As mentioned earlier, Theorem 1 holds in considerably more generality than the
one stated here, so we will only provide a sketch of the proof that suffices for
the simpler dSBM considered here. The proof of Theorem 2 is given later in the
section.

Proof. Theorem 1 (Sketch). The proof consists of three main steps.

1. Establish the local weak convergence of the dSBM: For the 2-community
dSBM considered here, one can modify the coupling in [3] (which works for
an undirected SBM) to the exploration of the in-component of a uniformly
chosen vertex. The coupled graph is a 2-type Galton-Watson process, with
the two types corresponding to the two communities in the dSBM, and all
edges directed from offspring to parent. The number of offspring of type j
that a node of type i has is a Poisson random variable with mean m−ij = πjκji
for j = 1, 2. For each node i in the coupled tree, denote by Ci its type, and
assign it a mark Xi = (Di, Qi), where (Di − 1)|Ci = j is a Poisson random
variable with mean m+

j = π1κj1 + π2κj2, and Qi|Ci = j has distribution
σj as defined in (3). The construction of the coupling follows a two step
exploration process similar to the one done for inhomogeneous random di-
graphs in [5]. First the outbound edges of a vertex are explored, followed by
the exploration of its inbound neighbors, assigning marks to a vertex once
we finish exploring both its inbound and outbound one-step neighbors. This
establishes the local weak convergence in probability of the dSBM to the
2-type Galton-Watson process.

2. Establish the local weak convergence of PageRank: Once we have the
local weak convergence of the dSBM, let R∗ denote the personalized PageR-
ank of the root node of the 2-type Galton-Watson process in the coupling.
The local weak convergence in probability of the PageRanks on the dSBM
to R∗, i.e.,

1

n

∑
v∈Vn

1(Rv ≤ x)
P−→ P(R∗ ≤ x)
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as n→∞, follows from Theorem 2.1 in [2]. Note that the random variables
R(1) and R(2) correspond to the conditional laws of R∗ given that the root
has type 1 or type 2, respectively. And since the two communities are as-
sumed to have the same size, the probability that the root has type 1 is 1/2,
hence,

1

n

∑
v∈Vn

1(Rv ≤ x, Cv = i)
P−→ P(R(i) ≤ x)

1

2
,

as n → ∞. The weak convergence result follows from the bounded conver-
gence theorem.

3. Derive the distributional fixed point equations: If the nodes in the
first generation of the 2-type Galton-Watson process are labeled 1 ≤ j ≤ N ,
where N denotes the number of offspring of the root node, then

R∗ = c
N∑
j=1

Rj
Dj

+ (1− c)Q,

where Q denotes the personalization value of the root, (Dj : j ≥ 1) corre-
spond to the out-degrees of the offspring, and the (Rj : j ≥ 1) correspond
to their PageRanks. Conditioning on the type of the root, as well as on the
types of its offspring, gives the two distributional fixed-point equations (4)
and (5). In particular, conditionally on the root having type i, N (ik) corre-
sponds to the number of offspring of type k, Q(i) has distribution σi, and

D(k)
1 and R(k)

1 are independent random variables having the distribution of
D1 and R1 conditionally on node 1 having type k.

We prove Theorem 2 through the second moment method. First we prove
the following lemmas establishing bounds on the mean and variance of R(1) and
R(2).

Lemma 1. Let ri = E
[
R(i)

]
, λ = 1− e−(a+b)/2 and

∆ =

(
1− cλa

a+ b

)2

−
(
cλb

a+ b

)2

.

Then, we have

r1 =

(
1− cλa

a+b

)
s(1− c)

∆
(8)

r2 =

(
cλb
a+b

)
s(1− c)

∆
. (9)

Further, if 1− λ = e−(a+b)/2 ≤ b/4a and c > 1/2, we have the bounds

r1 ≥ s
(

1− 2b

(1− c)(a+ b)

)
, (10)

r2 ≤
s

2
. (11)
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Proof. Recall the distributional equations satisfied by R(1) and R(2) from The-
orem 1. Taking expectation on both sides gives us

E[R(1)] = cE

N (11)∑
j=1

R(1)
j

D(1)
j

+

N (12)∑
j=1

R(2)
j

D(2)
j

+ (1− c)E[Q(1)],

E[R(2)] = cE

N (21)∑
j=1

R(1)
j

D(1)
j

+

N (22)∑
j=1

R(2)
j

D(2)
j

+ (1− c)E[Q(2)].

First, note that with our choice of Q, E[Q(1)] = s and E[Q(2)] = 0. Further

(R(i)
j ,D(i)

j )j≥1 (resp. (R(i)
j ,D(i)

j )j≥1) are independent of N (1i) (resp. N (2i)), and
of each other, for i = 1, 2. So the above expressions can be simplified to

r1 = c

(
E[N (11)]E

[
1

D(1)

]
r1 + E[N (12)]E

[
1

D(2)

]
r2

)
+ (1− c)s,

r2 = c

(
E[N (21)]E

[
1

D(1)

]
r1 + E[N (22)]E

[
1

D(2)

]
r2

)
,

where N (ij) and (D(i)−1) are Poisson random variables with means as described
in Theorem 1. Therefore we can further reduce the equations to

r1 = c

(
a

2
· (1− e−(a+b)/2)

(a+ b)/2
· r1 +

b

2
· (1− e−(a+b)/2)

(a+ b)/2
· r2
)

+ (1− c)s,

r2 = c

(
b

2
· (1− e−(a+b)/2)

(a+ b)/2
· r1 +

a

2
· (1− e−(a+b)/2)

(a+ b)/2
· r2
)
,

or in matrix form, and after substituting λ = (1− e−(a+b)/2),[
1− caλ

a+b −
cbλ
a+b

− cbλ
a+b 1− caλ

a+b

] [
r1
r2

]
=

[
(1− c)s

0

]
. (12)

Solving (12), we get[
r1
r2

]
=

1

∆

[
(1− cλa/(a+ b)) s(1− c)

cλbs(1− c)/(a+ b)

]
,

where

∆ =

(
1− cλa

a+ b

)2

−
(
cλb

a+ b

)2

as required. Note that since cλ < 1, we have ∆ > 0, and so the above quantities
are well defined. From here, the bound for r2 is a straightforward calculation.

r2 =
cλb
a+b (1− c)s

∆
≤

b
a+b (1− c)s

(1− cλ)
(

1− cλa−ba+b

) ≤ sb

(a+ b)

1(
1− a−b

a+b

) =
s

2
.
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To get the bound for r1, we proceed as follows

r1 =

(
1− cλa

a+b

)
(1− c)s

∆

≥ s(1− c)
1− cλa

a+b

=
s(1− c)
a+b
a+b −

cλa
a+b

=
s(1− c)

b
a+b + a

a+b (1− λ+ λ(1− c))

≥ s(1− c)
b
a+b + a

a+b

(
e−(a+b)/2 + (1− c)

) =
s(1− c)

(1− c) + cb
a+b + a

a+be
−(a+b)/2

≥ s(1− c)
1− c+ 2bc

a+b

≥ s
(

1− 2b

(1− c)(a+ b)

)
,

where for the last inequality we used fact that e−(a+b)/2a/(a+ b) ≤ b/4(a+ b) ≤
cb/(a+ b) due to our assumptions on λ and c, and 1−x2 ≤ 1 for all x ∈ R. This
completes the proof.

The next lemma provides a result for the variances.

Lemma 2. Define vi = Var(R(i)) for i = 1, 2, then, if we let v = (v1, v2)′, and
r2 = (r21, r

2
2)′, then

v =
1

2(1− g1)(1− g2)

(
Kr2 + (1− c)2s(1− s)k

)
,

where g1 = c2E[1/(D(1))2](a− b)/2, g2 = c2E[1/(D(1))2](a+ b)/2,

K =

[
g1 + g2 − 2g1g2, g2 − g1

g2 − g1, g1 + g2 − 2g1g2

]
, and k =

[
2− g1 − g2
g2 − g1

]
.

Furthermore,

v1 ≤
4c2s2

(a+ b)(1− c2)
+

1− c
1 + c

s(1− s),

v2 ≤
4c2s2

(a+ b)(1− c2)

(
1 +

(1− c)(1− s)
2s(1 + c)

)
.

Proof. To calculate the variance of R(1) and R(2), we will rely on the law of
total variances, i.e., for any two random variables X and Y ,

Var(X) = Var[E(X|Y )] + E[Var(X|Y )].

Applying this to equation (4), along with the fact that ri < 1 for i = 1, 2, we
get the following bound for Var(R(1)):

Var(R(1)) = c2Var

(
r1N (11)E

[
1

D(1)

]
+ r2N (12)E

[
1

D(2)

])
+ c2E

[
N (11)Var

(
R(1)

D(1)

)
+N (12)Var

(
R(2)

D(2)

)]
+ (1− c)2Var(Q(1)).



12 Banerjee, Deka and Olvera-Cravioto

Now use the observation that Var(N (11)) = E[N (11)] = a/2, Var(N (12)) =
E[N (12)] = b/2, and Var(Q(1)) = s(1− s), to obtain that for vi = Var(R(i)),

v1 = c2

(
r21 ·

a

2
·
(
E
[

1

D(1)

])2

+ r22 ·
b

2
·
(
E
[

1

D(2)

])2
)

+ c2
(
a

2
Var

(
R(1)

D(1)

)
+
b

2
Var

(
R(2)

D(2)

))
+ (1− c)2s(1− s)

= c2

(
r21 ·

a

2
·
(
E
[

1

D(1)

])2

+ r22 ·
b

2
·
(
E
[

1

D(2)

])2
)

+ (1− c)2s(1− s)

+
c2a

2

(
Var

(
1

D(1)
r1

)
+ E

[
1

(D(1))2
Var(R(1))

])
+
c2b

2

(
Var

(
1

D(2)
r2

)
+ E

[
1

(D(2))2
Var(R(2))

])
= c2

(
r21 ·

a

2
·
(
E
[

1

D(1)

])2

+ r22 ·
b

2
·
(
E
[

1

D(2)

])2
)

+ (1− c)2s(1− s)

+
c2a

2

(
r21Var

(
1

D(1)

)
+ E

[
1

(D(1))2

]
v1

)
+
c2b

2

(
r22Var

(
1

D(2)

)
+ E

[
1

(D(2))2

]
v2

)
= (1− c)2s(1− s) +

c2a

2
E
[

1

(D(1))2

]
(r21 + v1) +

c2b

2
E
[

1

(D(2))2

]
(r22 + v2).

Similarly, using Q(2) ≡ 0 and

v2 = c2Var

(
r1N (21)E

[
1

D(1)

]
+ r2N (22)E

[
1

D(2)

])
+ c2E

[
N (21)Var

(
R(1)

D(1)

)
+N (22)Var

(
R(2)

D(2)

)]
+ (1− c)2Var(Q(2))

=
c2b

2
E
[

1

(D(1))2

]
(r21 + v1) +

c2a

2
E
[

1

(D(2))2

]
(r22 + v2).

Writing the above in matrix notation we obtain for v = (v1, v2)′ and r2 =
(r21, r

2
2)′,

v = c2M(v + r2) + h,

where (note that D(1) d
= D(2)),

M =
E
[
1/(D(1))2

]
2

[
a b
b a

]
and h =

[
(1− c)2s(1− s)

0

]
.
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Moreover, use the observation that

M = BAB, A =
E[1/(D(1))2]

2

[
(a− b) 0

0 (a+ b)

]
, B =

1√
2

[
−1 1
1 1

]
,

so the maximum eigenvalue of M is E[1/(D(1))2]E[D(1) − 1]. Since for a Poisson
random variable N with mean µ we have that

E[1/(N + 1)2]E[N ] =

∞∑
n=1

e−µµn

n · n!
= E

[
1

N ∨ 1

]
− e−µ ≤ 1, (13)

then the matrix I − c2M is invertible, and we obtain

v = (I − c2M)−1(c2Mr2 + b) =
∞∑
k=0

c2kMk(c2Mr2 + b)

= B

[
c2A11

1−c2A11
0

0 c2A22

1−c2A22

]
Br2 +B

[ 1
1−c2A11

0

0 1
1−c2A22

]
Bb.

Setting gi = c2Aii for i = 1, 2, and computing the product of matrices gives:

v =
1

2(1− g1)(1− g2)

(
Kr2 + (1− c)2s(1− s)k

)
,

for K and k defined in the statement of the lemma.
Further, if we let ∆2 = 2(1− g1)(1− g2) and expand the above equation, we

obtain

v =
1

∆2

([
(g1 + g2 − 2g1g2)r21 + (−g1 + g2)r22
(−g1 + g2)r21 + (g1 + g2 − 2g1g2)r22

]
+ (1− c)2s(1− s)

[
(2− (g1 + g2))

(−g1 + g2)

])
.

From equations (8) and (9) we also get that ri ≤ s for i = 1, 2, so we can reduce
this to

v ≤ 1

∆2

[
2g2(1− g1)s2 + (2− (g1 + g2))(1− c)2s(1− s)

2g2(1− g1)s2 + (−g1 + g2)(1− c)2s(1− s)

]
.

Plugging in ∆2 = 2(1− g1)(1− g2), and noting that g2 ≥ g1, we get

v1 ≤
g2s

2

1− g2
+

1

2

(
1

1− g2
+

1

1− g1

)
(1− c)2s(1− s)

≤ g2s
2

1− g2
+

1

1− g2
(1− c)2s(1− s),

and

v2 ≤
g2s

2

1− g2
+

1

2

(
1

1− g2
− 1

1− g1

)
(1− c)2s(1− s)
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≤ g2s
2

1− g2
+

g2
2(1− g1)(1− g2)

(1− c)2s(1− s).

Finally, using E[1/(D(1))2] ≤ 8/(a+ b)2 and (13), we have g2 ≤ min{c2, 4c2/(a+
b)}, and so

v1 ≤
4c2s2

(a+ b)(1− c2)
+

1− c
1 + c

s(1− s),

v2 ≤
4c2s2

(a+ b)(1− c2)

(
1 +

(1− c)(1− s)
2s(1 + c)

)
.

We are now ready to prove Theorem 2.

Proof (Proof of Theorem 2). For any z > 0, Chebyshev’s inequality gives

P(R(1) ≤ r1 − z) = P(R(1) − r1 ≤ −z)

≤ v1
z2

≤ 1

z2

(
4c2s2

(a+ b)(1− c2)
+

1− c
1 + c

s(1− s)
)
. (14)

A similar application of Chebyshev’s inequality for any w > 0 with R(2) gives

P
(
R(2) >

s

2
+ w

)
≤ P(R(2) > r2 + w) ≤ v2

w2

≤ 1

w2

4c2s2

(a+ b)(1− c2)

(
1 +

(1− c)(1− s)
2s(1 + c)

)
, (15)

where the first inequality follows from equation (11). Choosing c ∈ (1/2, 1 −
8b/(a+ b)] results in r1 ≥ 3s/4, so choosing z = w = s/8 and plugging into the
bounds from equations (14) and (15) gives

P
(
R(1) <

5s

8

)
≤ 256c2

(a+ b)(1− c2)
+

64(1− c)
1 + c

· 1− s
s

,

P
(
R(2) >

5s

8

)
≤ 256c2

(a+ b)(1− c2)

(
1 +

(1− c)(1− s)
2s(1 + c)

)
.

4 Results from simulations

We illustrate the algorithm with some simulation experiments. First, we calcu-
lated the personalized PageRank scores for a 2-community dSBM with n = 20000
vertices, a = 150, b = 10, s = .2 and c = .85. The plot shows a clear separation
of the PPR scores of the seeds, the rest of community 1 and the vertices in
community 2.

We also investigated the role of the damping factor c and the best way to
choose it. One natural way of doing so is to find the value of c that maximizes
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Fig. 1. A plot of the personalized PageRank scores for a 2-community dSBM with
a = 150, b = 10, n = 20000, s = 0.2, and c = .85. The first 2000 vertices are
the seeds, vertices 2001-10000 are the rest of community 1, and vertices 10001-20000
are community 2. The horizontal black line is our cutoff level 5s/8. Proportion of
misclassified community 1 vertices is 0.0935.

the difference between the mean PPR scores for the two communities. Note that
r1−r2 is strictly monotone in c, but if we let r̂1 to be the mean of the non-seeded
members of community 1, we see in Fig. 2 that r̂1 − r2 is strictly convex with
a maximum attained at c = .86. We have a description for the optimal c∗ as
follows.

Lemma 3. Let r̂1 and r2 be as described above. Then

c∗ := argmaxc{r̂1(c)− r2(c)} =
1−
√

1− E
E

,

where

E =
a− b
a+ b

(
1− e−(a+b)/2

)
.

Proof. To calculate r̂1, we consider the dSBM to have 3 communities, where we
separate the seeds and the rest of the vertices in community 1. Then, Theorem 1
gives us a system of 3 distributional fixed-point equations. Using those, and
calculations similar to the ones we did for Lemma 1, we get

r̂1 = (1− c)s

 1− cλa
a+b

(1− cλ)
(

1− cλ
(
a−b
a+b

)) − 1

 (16)

r2 = (1− c)s

 cλb
a+b

(1− cλ)
(

1− cλa−ba+b

)
 .
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Now substitute E = λ(a− b)/(a+ b) to obtain that

r̂1 − r2 =
(1− c)s
1− cE

,

and use calculus to compute the optimal

c∗ =
1−
√

1− E
E

.

Note that the value E is the second eigenvalue of the matrix on the left hand
side of equation (12).

Fig. 2. Plot of r̂1 − r2 as c varies from .5 to 1 for a smaller dSBM with n = 2000,
a = 100, b = 2 and s = .15.

5 Remarks and conclusions

In the sparse regime, we have proposed a cutoff level to identify vertices of com-
munity 1 based on their personalized PageRank scores and provided theoretical
bounds on the probability of misclassifying a vertex. Our bounds are not tight,
and simulations indicate that we might be able to use a lower threshold to fur-
ther reduce the error (see also Remark 2). Another possible threshold option in
the case of the symmetric SBM (π1 = π2) is the median of PageRank scores. We
also believe that the proposed method should work for asymmetric dSBMs with
π1 6= π2, but the expressions for the mean and variance of PageRank become
too complicated to compute clean bounds. Possible future work could include
trying to show that the π1-th quantile of the limiting PageRank distribution is
a good threshold in the case π1 6= π2, or trying to find a threshold independent
of π so that we can recover communities even when we do not have information
about their sizes. Another interesting direction would be to investigate whether
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the inference can be strengthened if the seed set contains members from both
communities and/or the connectivity structure of the subgraph spanned by the
seeds is fully or partially known.
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