Skip to main content

Establishing Herd Immunity is Hard Even in Simple Geometric Networks

  • Conference paper
  • First Online:
  • 279 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13894))

Abstract

We study the following model of disease spread in a social network. In the beginning, all individuals are either infected or healthy. Next, in discrete rounds, the disease spreads in the network from infected to healthy individuals such that a healthy individual gets infected if and only if a sufficient number of its direct neighbours are already infected.

We represent the social network as a graph. Inspired by the real-world restrictions in the current epidemic, especially by social and physical distancing requirements, we restrict ourselves to networks that can be represented as geometric intersection graphs.

We show that finding a minimal vertex set of initially infected individuals to spread the disease in the whole network is computationally hard, already on unit disk graphs. Hence, to provide some algorithmic results, we focus ourselves on simpler geometric graph families, such as interval graphs and grid graphs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Rectilinear embedding of a planar graph with maximum degree 4 is planar embedding with vertices at integer coordinates and edges are drawn so that they are made up of line segments of the form \(x=i\) or \(y=j\), where \(i,j\in \mathbb {Z}\) [34].

References

  1. Araújo, R.T., Sampaio, R.M., dos Santos, V.F., Szwarcfiter, J.L.: The convexity of induced paths of order three and applications: complexity aspects. Discret. Appl. Math. 237, 33–42 (2018). https://doi.org/10.1016/j.dam.2017.11.007

    Article  MathSciNet  MATH  Google Scholar 

  2. Ben-Zwi, O., Hermelin, D., Lokshtanov, D., Newman, I.: Treewidth governs the complexity of target set selection. Discrete Optim. 8(1), 87–96 (2011). https://doi.org/10.1016/j.disopt.2010.09.007

    Article  MathSciNet  MATH  Google Scholar 

  3. Bessy, S., Ehard, S., Penso, L.D., Rautenbach, D.: Dynamic monopolies for interval graphs with bounded thresholds. Discret. Appl. Math. 260, 256–261 (2019). https://doi.org/10.1016/j.dam.2019.01.022

    Article  MathSciNet  MATH  Google Scholar 

  4. Blažej, V., Knop, D., Schierreich, Š.: Controlling the spread of two secrets in diverse social networks (student abstract). In: AAAI 2022, pp. 12919–12920. AAAI Press (2022). https://ojs.aaai.org/index.php/AAAI/article/view/21596

  5. Breu, H., Kirkpatrick, D.G.: Unit disk graph recognition is NP-hard. Comput. Geom. 9(1), 3–24 (1998). https://doi.org/10.1016/S0925-7721(97)00014-X

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, N.: On the approximability of influence in social networks. SIAM J. Discrete Math. 23(3), 1400–1415 (2009). https://doi.org/10.1137/08073617X

    Article  MathSciNet  MATH  Google Scholar 

  7. Chiang, C.Y., Huang, L.H., Li, B.J., Wu, J., Yeh, H.G.: Some results on the target set selection problem. J. Comb. Optim. 25(4), 702–715 (2013). https://doi.org/10.1007/s10878-012-9518-3

    Article  MathSciNet  MATH  Google Scholar 

  8. Chopin, M., Nichterlein, A., Niedermeier, R., Weller, M.: Constant thresholds can make target set selection tractable. Theory Comput. Syst. 55(1), 61–83 (2013). https://doi.org/10.1007/s00224-013-9499-3

    Article  MathSciNet  MATH  Google Scholar 

  9. Cicalese, F., Cordasco, G., Gargano, L., Milanič, M., Vaccaro, U.: Latency-bounded target set selection in social networks. Theor. Comput. Sci. 535, 1–15 (2014). https://doi.org/10.1016/j.tcs.2014.02.027

    Article  MathSciNet  MATH  Google Scholar 

  10. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discrete Math. 86(1), 165–177 (1990). https://doi.org/10.1016/0012-365X(90)90358-O

    Article  MathSciNet  MATH  Google Scholar 

  11. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The complexity of multiterminal cuts. SIAM J. Comput. 23(4), 864–894 (1994). https://doi.org/10.1137/S0097539792225297

    Article  MathSciNet  MATH  Google Scholar 

  12. Dimitrov, D.: The social choice approach to group identification. In: Herrera-Viedma, E., García-Lapresta, J.L., Kacprzyk, J., Fedrizzi, M., Nurmi, H., Zadrożny, S. (eds.) Consensual Processes, pp. 123–134. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20533-0_7

    Chapter  Google Scholar 

  13. Dreyer, P.A., Roberts, F.S.: Irreversible \(k\)-threshold processes: graph-theoretical threshold models of the spread of disease and of opinion. Discret. Appl. Math. 157(7), 1615–1627 (2009). https://doi.org/10.1016/j.dam.2008.09.012

    Article  MathSciNet  MATH  Google Scholar 

  14. Dvořák, P., Knop, D., Toufar, T.: Target set selection in dense graph classes. SIAM J. Discrete Math. 36(1), 536–572 (2022). https://doi.org/10.1137/20M1337624

    Article  MathSciNet  MATH  Google Scholar 

  15. Erdélyi, G., Reger, C., Yang, Y.: The complexity of bribery and control in group identification. Auton. Agent. Multi-Agent Syst. 34(1), 1–31 (2019). https://doi.org/10.1007/s10458-019-09427-9

    Article  Google Scholar 

  16. Farber, M.: Independent domination in chordal graphs. Oper. Res. Lett. 1(4), 134–138 (1982). https://doi.org/10.1016/0167-6377(82)90015-3

    Article  MathSciNet  MATH  Google Scholar 

  17. Finbow, S., MacGillivray, G.: The firefighter problem: a survey of results, directions and questions. Australas. J. Comb. 43, 57–77 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Fleischner, H., Sabidussi, G., Sarvanov, V.I.: Maximum independent sets in 3- and 4-regular hamiltonian graphs. Discrete Math. 310(20), 2742–2749 (2010). https://doi.org/10.1016/j.disc.2010.05.028

    Article  MathSciNet  MATH  Google Scholar 

  19. Fomin, F.V., Heggernes, P., van Leeuwen, E.J.: The firefighter problem on graph classes. Theor. Comput. Sci. 613, 38–50 (2016). https://doi.org/10.1016/j.tcs.2015.11.024

    Article  MathSciNet  MATH  Google Scholar 

  20. Gallai, T.: Über extreme punkt- und kantenmengen. Ann. Univ. Sci. Budapest 2, 133–138 (1959)

    MathSciNet  MATH  Google Scholar 

  21. Hartmann, T.A.: Target set selection parameterized by clique-width and maximum threshold. In: Tjoa, A.M., Bellatreche, L., Biffl, S., van Leeuwen, J., Wiedermann, J. (eds.) SOFSEM 2018. LNCS, vol. 10706, pp. 137–149. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73117-9_10

    Chapter  Google Scholar 

  22. Hartnell, B.L.: Firefighter! an application of domination (1995)

    Google Scholar 

  23. Hliněný, P., Kratochvíl, J.: Representing graphs by disks and balls (a survey of recognition-complexity results). Discrete Math. 229(1), 101–124 (2001). https://doi.org/10.1016/S0012-365X(00)00204-1

    Article  MathSciNet  MATH  Google Scholar 

  24. Huson, M.L., Sen, A.: Broadcast scheduling algorithms for radio networks. In: MILCOM 1995, vol. 2, pp. 647–651 (1995). https://doi.org/10.1109/MILCOM.1995.483546

  25. Kang, R.J., Müller, T.: Sphere and dot product representations of graphs. Discrete Comput. Geom. 47(3), 548–568 (2012). https://doi.org/10.1007/s00454-012-9394-8

    Article  MathSciNet  MATH  Google Scholar 

  26. Kasher, A., Rubinstein, A.: On the question “who is a J?” a social choice approach. Logique et Analyse 40(160), 385–395 (1997)

    Google Scholar 

  27. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. Theory Comput. 11(4), 105–147 (2015). https://doi.org/10.4086/toc.2015.v011a004

    Article  MathSciNet  MATH  Google Scholar 

  28. Mathieson, L.: The parameterized complexity of editing graphs for bounded degeneracy. Theor. Comput. Sci. 411(34–36), 3181–3187 (2010). https://doi.org/10.1016/j.tcs.2010.05.015

    Article  MathSciNet  MATH  Google Scholar 

  29. Matsui, T.: Approximation algorithms for maximum independent set problems and fractional coloring problems on unit disk graphs. In: Akiyama, J., Kano, M., Urabe, M. (eds.) JCDCG 1998. LNCS, vol. 1763, pp. 194–200. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-540-46515-7_16

    Chapter  MATH  Google Scholar 

  30. Nichterlein, A., Niedermeier, R., Uhlmann, J., Weller, M.: On tractable cases of target set selection. Soc. Netw. Anal. Min. 3(2), 233–256 (2013). https://doi.org/10.1007/s13278-012-0067-7

    Article  MATH  Google Scholar 

  31. Peleg, D.: Majority voting, coalitions and monopolies in graphs. In: SIROCCO 1996, pp. 152–169. Carleton Scientific (1996)

    Google Scholar 

  32. Reddy, T.V.T., Krishna, D.S., Rangan, C.P.: Variants of spreading messages. In: Rahman, M.S., Fujita, S. (eds.) WALCOM 2010. LNCS, vol. 5942, pp. 240–251. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11440-3_22

    Chapter  Google Scholar 

  33. Richardson, M., Domingos, P.: Mining knowledge-sharing sites for viral marketing. In: KDD 2002, pp. 61–70. ACM, New York (2002). https://doi.org/10.1145/775047.775057

  34. Valiant, L.G.: Universality considerations in VLSI circuits. IEEE Trans. Comput. 30(02), 135–140 (1981). https://doi.org/10.1109/TC.1981.6312176

    Article  MathSciNet  MATH  Google Scholar 

  35. Yang, Y., Dimitrov, D.: How hard is it to control a group? Auton. Agent. Multi-Agent Syst. 32(5), 672–692 (2018). https://doi.org/10.1007/s10458-018-9392-1

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the Czech Science Foundation Grant No. 22-19557S. MD and ŠS were additionally supported by the Grant Agency of the Czech Technical University in Prague, grant No. SGS23/205/OHK3/3T/18. MD was also supported by the Student Summer Research Program 2021 of FIT CTU in Prague.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Šimon Schierreich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dvořák, M., Knop, D., Schierreich, Š. (2023). Establishing Herd Immunity is Hard Even in Simple Geometric Networks. In: Dewar, M., Prałat, P., Szufel, P., Théberge, F., Wrzosek, M. (eds) Algorithms and Models for the Web Graph. WAW 2023. Lecture Notes in Computer Science, vol 13894. Springer, Cham. https://doi.org/10.1007/978-3-031-32296-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32296-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32295-2

  • Online ISBN: 978-3-031-32296-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics