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Abstract

Parallel programming remains a daunting challenge, from struggling to express a parallel algorithm
without cluttering the underlying synchronous logic to describing which devices to employ to calculate
correctness. Over the years, numerous solutions have arisen, requiring new programming languages,
extensions to programming languages, or adding pragmas. Support for these various tools and exten-
sions is available to varying degrees. In recent years, the C++ standards committee has worked to
refine the language features and libraries needed to support parallel programming on a single com-
putational node. Eventually, all major vendors and compilers will provide robust and performant
implementations of these standards. Until then, the HPX library and runtime provide cutting-edge
implementations of the standards and proposed standards and extensions. Because of these advances,
it is now possible to write high performance parallel code without custom extensions to C++. We pro-
vide an overview of modern parallel programming in C++, describing the language and library features
and providing brief examples of how to use them.
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1 Introduction

Parallel programming is essential to modern soft-
ware development and is supported in recent
programming languages like Julia or Rust. How-
ever, in older languages such as C++, parallel
programming features were not originally included
as language or library features.

To address this omission, POSIX threads [1],
so-called pthreads, a C library, was created for
the Unix operating system. The application pro-
gram interface (API) for pthreads was defined
by the POSIX.1C thread extension (IEEE Std

1003.1¢-1995). Likewise, with the C++ 11 stan-
dard [2], std::thread was added in C++ as a
low level interface. At a higher abstraction layer,
std::async and std::future for asynchronous
programming were added.

In addition, the standard supplied parallel pro-
gramming utilities, which aided in writing parallel
programs (e.g. smart pointers and lambda func-
tions). With the C++ 14 standard [3], these utili-
ties were further augmented with generic lambda
functions and shared mutexes.

To make parallel programming more accessi-
ble and less error-prone, the C++ 17 standard [4]
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introduced parallel algorithms, allowing program-
mers to execute most of the algorithms from the
C++ 98 standard in parallel (e.g. std::sort or
std: :reduce)

Coroutines were added with the C++ 23 stan-
dard to support asynchronous programming. The
keywords co_return, co_yield, and co_await
added functionality to suspend and resume func-
tions. Also, in the C++ 23 standard, the ranges
library was added, which can be seen as the gen-
eralization and extension of the algorithm library.
Finally, utilities such as semaphores, latches, and
barriers were added. Soon, it is expected that std
: :async will become deprecated to be succeeded
by the sender and receiver library (which has yet
to be accepted).

The C++ standard library for parallelism and
concurrency (HPX) implements all the latest fea-
tures, both proposed and accepted in the C++
standard. In addition, HPX provides extensions
to the functionality of the standard, providing
mechanisms for distributed parallel programming,
alternative ways to create asynchrony, and more.

What is HPX? HPX is an asynchronous many-
task runtime system. HPX employs light-weight
(user-level) threads that are cooperatively sched-
uled on top of operating system threads and per-
forms context switches to enable blocked threads
to get back to work.

For more details about HPX, we refer to
Section 3. Because HPX conforms to the C++
standard, any conforming C++ code can be eas-
ily converted to HPX by changing some headers
and namespaces. To conclude, while single node
parallelism is included in the C++ standard and
no external libraries or language extensions are
needed, HPX provides a reliable way to stay on
the cutting edge of the standard.

In this paper, we will introduce asynchronous
programming, parallel algorithms, and coroutines,
senders and receivers (see P2300), and compare
the performance between (standard) C++ using
operating system threads and HPX using light-
weight threads. Finally, we will discuss the bene-
fits of each approach.

The paper is structured as follows: Section 2
gives a brief overview of related work. Section 3
introduces HPX and the features described in this
paper. In Section 4, four approaches to implement-
ing the Taylor series of the natural logarithm are
provided. Section 5 compares the programming

paradigms used in these approaches. Section 6
compares the performance of the approaches on
Intel, AMD, and A64 FX CPUs. Finally, Section 7
concludes the work.

2 Related work

In the past, parallelism in C++ was usually
achieved by using the OpenMP [5] and Cilk [6] as
language extensions. Alternatively, Intel Thread
Building Blocks (TBB), Microsoft Parallel Pat-
terns Library (PPL) provided access to parallelism
through libraries. More recently, Kokkos [7] has
provided a library interface for parallel and het-
erogeneous computing. While all these approaches
have different advantages, they also have different
interfaces, and none are part of the C++ stan-
dard. Conforming to the standard might mean
that future versions of a conforming code compile
and run more reliably, and this is a critical consid-
eration among many in constructing a new parallel
program or adding parallelism to an existing code.

Another longtime player in the asynchronous
many-thread library arena is Charm++ [8]. Like
HPX, Charm++ also provides facilities for dis-
tributed programming (for which, at present, the
C++ provides no standard). For a comparison of
Charm++ and HPX with OpenMP and MPI (a
widely accepted standard for distributed parallel
programming) using Task Bench, we refer to [9].
Other notable AMTS are: Chapel [10], X10 [11],
and UPC++ [12]. For a more detailed comparison
of AMTs, we refer to [13]. Table 1 lists the support
of approaches, namely, futures and futurization
(Section 4.1), coroutines (Section 4.2), parallel
algorithms (Section 4.3), and senders & receivers
(Section 4.4); by other AMTs. We left X10 out,
since the last release was made in 2019.Charm++
provides futures but not coroutines. The function-
ality similar to senders and receivers is available,
however. A Chare can be used somewhat like a
scheduler, and a Charm++ callback can provide
similar functionality to then().

Chapel provides futures. Parallel algorithms
are partially supported, e.g. parallel for loops.
Coroutines and sender & receivers are not sup-
ported. UPC++ has futures but does not support
the other features.



C++ 11 C++ 14 C++ 17 C++ 20
std: :thread Generic lambda Parallel Coroutines
std::async shared mutex algorithms Ranges
Smart pointer Semaphores
Lambda functions Latch
Barrier

Fig. 1 timeline of the parallel features added to the C++ standard from C++ 11 to C++ 20.

Table 1 Availability of the studied approaches in other run time systems. However, solely HPX is studied in this paper.
Therefore, HPX is the basis for the comparison of the features. With . we indicated that the features are only partially

supported.
Approach | Futurization Coroutines Parallel Algorithms Sender & Receivers
HPX v v v v
Charm++ v ~ X X
Chapel v X ~ X
UPC++ v X X X

3 HPX

HPX [14] is an Asynchronous Many-task Run-
time System (AMT) that exposes an ISO C++
standards conforming API for shared memory par-
allel programming, and extensions to that API
library that enable distributed computing. This
APT enables asynchronous parallel programming
through futures, senders and receivers, channels,
and other synchronization primitives. This API
also eases the burden on a new programmer
while learning how to use HPX. It also guaran-
tees application portability in terms of code and
performance. HPX employs a user-level thread-
ing system that can fully exploit available parallel
resources through fine-grain parallelism on vari-
ous contemporary and emerging high-performance
computing architectures. HPX makes it possible
to create scalable parallel applications that expose
excellent parallel efficiency and high resource uti-
lization. HPX’s asynchronous programming model
enables intrinsic overlapping of computation and
communication, prefers moving work to data over
moving data to work, and does so while exposing
minimal overheads.

In the context of this paper, we focus on assess-
ing the performance of HPX’s implementation of
futures and parallel algorithms as mandated by
the C++ 17, 20, and 23 standards.

4 Approaches

To showcase the various approaches to shared
memory parallelism, we will implement the Tay-
lor series for the natural logarithm in parallel. The
Maclaurin series for the natural logarithm In with
the basis e reads as

In(l+zx)=
e n 2 3
Z(—l)"""lw— =x-— % + % — ..., with |z| < 1.
n
n=1

(1)

For simplicity, we will omit the main method and
all headers from the code examples. However, we
will mention the specific headers in the text, and
we provide the complete code for all examples on
GitHub®.

4.1 Futures and Futurization

The current abstractions for parallel program-
ming in C++ are low-level threads std: :thread,
std::async, and std::future. However, in a
future C++ standard, it is expected that some of
these facilities will become deprecated and will be
replaced by sender and receivers. HPX, however,
will continue to support an extended version of
futures which share many of the capabilities of



senders and receivers, including a then () method,
a when_all () method, executors, and so on.

Futures represent a proxy for a result that may
not yet be computed and provide a relatively intu-
itive way to express asynchronous computations.
The C++ standard allows programmers to retrieve
the value of futures using the get () method, but
HPX allows programmers to attach a continuation
to the future using the then(std::function<
T>) method. This capability, combined with a
when_all() method for waiting for future groups,
makes it possible to write asynchronous subrou-
tines and algorithms that never block. This is an
essential consideration for libraries that rely on a
pool of workers to carry out parallel computations.
Blocking one or more of them might lead not only
to slower code, but also blocked code. Routines
that are rewritten in this way to run in parallel
but without calling get () are said to be futurized.
As of this writing, futurized code is only possible
with HPX, and not with the C++ standard.

Listing 1 shows the implementation. The
amount of work is divided equally among threads.
In Line 14, a lambda function is launched to act
on each chunk of work asynchronously and an hpx
: :future<double> is returned. Note that we do
not need to wait for the lambda function to be
finished, and the for loop proceeds. This happens
because the hpx: :future is a placeholder for the
result of the lambda function, freeing us from the
need to wait for it to be computed. In Line 29 a
barrier is introduced to collect the partial results
using hpx::when_all. Here, the HPX runtime
waits until all futures are ready, which means that
the computation in the lambda function has fin-
ished. In Line 30 we specify which lambda function
is called. We use the .get() function to collect
all the partial results. If the result is not ready,
HPX would wait here for the result to be ready.
However, due to the hpx: :when_all all results are
ready. In Line 36, we need to call .get() since
hpx: :when_all returns a future for integration in
the asynchronous dependency graph.

4.2 Coroutines

With C++ 20 coroutines, functions that can be
suspended and resumed were added. The three
following return types are available for corou-
tines: co_return which is similar to return, but
the function is suspended; co_yield returns the

expression to the caller and suspends the cur-
rent coroutine; and co_await which suspends the
coroutine and returns the control to the caller.

A coroutine version of Listing 1 can be found
in Listing 2 In Line 5 of Listing 2 we define
the function run as our coroutine by having it
return an hpx: : future. Next, we copied the code
from Listing 1 for the evaluation of the Taylor
series, however, we changed three lines to use the
new coroutine features. First, in Line 33, we use
co_await while we wait for all futures. Second,
in Line 36, we use co_await to collect the partial
results of all futures. Note in Listing 1, we had
to call .get () here to wait for the futures. Third,
in Line 36, we call co_return at the end of our
coroutine. Note that internally HPX will call . get
() where we use co_await, so the code is easier
to read but will not run faster.

4.3 Parallel algorithms

The algorithms within the C++ standard library
introduced with the C++ 98 standard were
extended with parallel execution in the C++ 17
standard. Listing 3 shows the complete code. In
Line 15 we use the algorithm std::for_each to
iterate over each element of the std::vector
to evaluate the value x of the Taylor series. In
Line 21 the algorithm std::reduce is used to
compute the sum of all evaluations. Note that the
only difference between the parallel version and
the original C++ 98 standard is the first argu-
ment of both algorithms, the execution policy.
The following execution policies in the header
#include <execution> [15] are currently avail-

able:

® std::execution::par: The algorithm is exe-
cuted in parallel using multiple operating sys-
tem threads.

® std::execution::seq: The algorithm is exe-
cuted in parallel using one operating system
thread.

® std::execution::par_unseq: The algorithm
is executed in parallel using multiple operating
system threads and vectorization for additional
optimizations.

Note that this is still an experimental feature
and, as of this writing, only the GNU compiler
collection (GCC) > 9 and Microsoft Visual C++
compiler > 15.7 support this feature. Intel’s One
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Listing 1 Parallel implementation of the natural logarithm using hpx: :async and hpx: :future.

double run(size_t n, size_t num_threads,
std::vector<double> parts(n);
std::iota(parts.begin(), parts.end()

size_t partition_size =

double x) {

, 1)

n / num_threads;

std::vector<hpx::future<double>> futures;

for (size_t i
size_t begin =
size_t end =

0;
i * partition_size;

i < num_threads;

if (i == num_threads - 1) end = n;
hpx::future<double> f = hpx::async
[begin, end, x, &parts]() -> d

i++) {

(i + 1) * partition_size;

(
ouble {

std::for_each(parts.begin() + begin,

parts.begin() + end,
e + 1) * std::pow(x,

e =

1

std::pow(-1.0,

return hpx::reduce(parts.begin()
parts.begin ()
B

futures.push_back (std::move (f));
}

double result = O0;

:when_all (futures)

.then ([&] (auto&& f) {
auto futures = f.get();

hpx:

for (size_t i = 0; i < futures
result += futures[i].get ()
b
.get () ;

return result;

[x] (double& e) {

e) / (e);
+ begin,
+ end, 0.);
.size () ; i++)

s

API compiler uses Thread Building Blocks (TBB)
to implement this feature.

The same functionality for execution of par-
allel algorithms is available within HPX.

4.3.1 Additional HPX features

However, HPX extends the current features avail-
able in the C++ 17 standard, allowing execution
policies with chunk sizes to specify the amount
of work each thread is operating on at once. The
following chunk sizes are available:

® hpx::execution::static_chunk_size: The
container elements are divided into pieces of a
given size and then assigned to the threads.

® hpx::execution::auto_chunk_size: Chunk
size is determined after 1% of the total
container elements were executed.

® hpx::execution::dynamic_chunk_size:
Dynamically scheduled among the threads
and if one thread is done it gets dynamically
assigned a new chunk.
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Listing 2 Example for the computation of the Taylor series for the natural logarithm using HPX’s futures and coroutines.

#include <coroutine >

hpx::future<double> run(size_t n,

size_t num_threads,

double x) {
std::vector<double> parts(n);
std::iota(parts.begin(), parts.end(),

size_t partition_size =

1);

n / num_threads;

std::vector <hpx::future<double>> futures;

for (size_t i =
size_t begin =

0; i < num_threads;
i * partition_size;

size_t end = _

if (i n;

num_threads - 1) end =
hpx::future<double> f = hpx::async(

[begin, end, x, &parts]()

i++) {

(i + 1) * partition_size;

-> double {

std::for_each(parts.begin() + begin,

parts.begin() + end,
e = std::pow(-1.0, e + 1)

)

* std::pow(x,

[x] (double& e) {
e) / (e);

return hpx::reduce(parts.begin() + begin,

parts.begin() + end,

B

futures.push_back(std::move(f));

double result

0;

auto futures2 =

0; i < futures2.size();
co_await futures2[il];

for (size_t i =
result +=

co_return result;

0.);

co_await hpx::when_all (futures);

i++)

For details about the effect of chunk sizes on
performance, we refer to [16]. A machine learning
approach to determining chunk size is presented
here [17, 18]. With respect to vectorization, HPX
provides the execution policy hpx::execution
::simd to execute the algorithm using vector-
ization. In addition, HPX provides a combined
execution policy hpx::execution: :par_simd to
combine parallelism and vectorization. Here, std
: rexperimental:simd [19], Vc [20], and Eve are
possible backends. Furthermore, HPX’s parallel

algorithms can be combined with asynchronous
programming. Here, an hpx: :future is returned
and can be integrated into HPX’s asynchronous
execution graph.

Listing 4 shows the usage of the chunk size fea-
ture. In Line 4 a static chunk size of ten is defined
and passed to the hpx::for_each in Line 9 by
using .with(). In Line 12 the parallel algorithm
hpx::reduce is wrapped into a future, which
can be integrated within HPX’s asynchronous
dependency graph.
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Listing 3 Implementation of the Taylor series of the natural logarithm using C++ parallel algorithms.

#include <iostream>
#include <future>
#include <vector>
#include <algorithm >
#include <numeric>
#include <execution >
#include <cmath>

double run(size_t n, size_t num_threads, double x) {
std::vector<double> parts(n);
std::iota(parts.begin(), parts.end(), 1);

std::for_each(std::execution::par,
parts.begin(),
parts.end (), [x](double& e) {
e = std::pow(-1.0, e+1) * std::pow(x, e) / e;
B

double result = std::reduce(std::execution::par,
parts.begin(),
parts.end (), 0.);
return result;

Listing 4 Implementation of the Taylor series of the natural logarithm using parallel algorithms.

#include <hpx/execution/executors/static_chunk_size .hpp>

double run(size_t n, size_t num_threads, double x) {
hpx::execution::static_chunk_size scs(10);
std::vector<double> parts(n);
std::iota(parts.begin(), parts.end(), 1);
hpx::for_each(
hpx::execution::par.with(scs),
parts.begin(), parts.end(),
[x](double& e) { e = std::pow(-1.0, e+1) * std::pow(x, e) / e;

hpx::future<double> f =
hpx::reduce (hpx::execution::par (hpx::execution::task),
parts.begin(), parts.end(), 0.);
return f.get ();

int main() {

int n = 1000;

double x = .1;

double result = run(n,10,x);

std::cout << "Result_ is:_ " << result << std::endl;

std::cout << "Difference of_ Taylor_ and, C\texttt{++} ,result,"
<< result - std::loglp(x) << "jafter,"
<< n << " jiterations." << std::endl;

»;




4.4 Senders and Receivers

A new framework for writing parallel codes is
currently being debated by the C++ standards
committee: senders and receivers. One of the goals
of this framework is to make it easier to exe-
cute codes on heterogeneous devices. The various
devices are expressed as schedulers. In principle,
these could be GPUs, different NUMA domains,
or arbitrary groups of cores.

Each step of a calculation is expressed as
a sender. Senders are typically chained together
using the pipe operator in analogy to the bash
shell. Values, error conditions (exceptions), as well
as requests to stop a computation, can be carried
through the pipeline.

By default, building the pipeline does nothing.
Execution begins only when ensure_started(),
sync_wait(), or start_detached() is called.

Receivers are usually implicit, hidden in the
call to sync_wait() at the end.

We note that this proposal was not accepted
into the C++ 23 standard, partly because it was
proposed too close to the deadline. It may also
need further development. In our experiments
writing short codes to use senders and receivers,
we attempted to write a recursive Fibonacci rou-
tine that took a sender as input and produced a
sender as output and did not itself call sync_wait
() to get the result. In order to write it, we needed
to make use of the any_sender<T> class provided
in the HPX implementation but not specified in
the standard yet. Whether additions of this kind
turn out to be necessary, or whether the proposal
itself will ultimately be accepted, remains for the
committee to decide.

5 Comparison of the
approaches

In the previous section, the focus was on how
to implement the Taylor series for the natural
logarithm, see Equation (1), using the various
approaches.

The fundamental difference in the approaches
lies in where the various codes block and how
much overhead they introduce. For the standard
library, calls to future.get() will potentially
block. In our parallel future listing 1 we use
when all() which defers most of the calls to

Concepts

Parallelism

Concurrency

Future Senders Parallel
Async & Algorithms
Receivers

C++ features

Fig. 2 On the top: The two concepts, namely, concurrency
and parallelism. Where concurrency describes the structure
of the sequences, like suspending tasks ad resuming tasks,
and parallelism describes the execution. On the bottom, the
approaches to implement concurrency and parallelism in
Modern C++: Futures + Async (Section 4.1); Parallel Algo-
rithms (Section 4.3); Senders and Receivers (Section 4.4);
and Coroutines + Async (Section 4.2).

get () until all futures are ready. Thus, ony the
final call to get () can block.

For HPX, anything that would normally block
will instead be suspended and switched out, simi-
lar to what C++ Coroutines would do.

Which leads us to the explicit coroutine code.
Performing the suspend and resume operations are
sure to introduce overheads, but they should not
be as large as they seem to be from our data.
This was easily the slowest version of the code. See
Listing 2.

The parallel library approach does not attempt
to suspend or resume, it performs a simple fork-
join on evenly divided threads. This avoids the
overheads of suspending and resuming, but poten-
tially causes threads to wait unnecessarily at the
joins. Listing 3 shows this approach.

Finally, senders and receivers, Listing 5 shows
the most recent proposed method of implementing
asynchrony in C++4. This represents an effort to
provide ways to express asynchrony while avoiding
the overheads of futures and coroutines. Our data
shows that it is fairly successful as, for most core
counts, this was the fastest.

Let us transfer this example to the C++ pro-
gramming language. Figure 2 shows the classifica-
tion of the C++ approaches concerning parallelism
and concurrency. For parallelism, the C++ stan-
dard provides three approaches. First, the parallel
algorithms introduced with the C++ 17 standard,
see Section 4.3. However, the parallel algorithms
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Listing 5 Implementation of the Taylor series of the natural logarithm using sender and receivers.

#include <hpx/execution.hpp>

using namespace hpx::execution::experimental;

template <typename T> concept sender =

is_sender_v<T>;

namespace tt = hpx::this_thread::experimental;

double run(size_t n,
thread_pool_scheduler sch{};

size_t partition_size = n/num_threads;

size_t num_threads,

double x) {

std::vector<double> partial_results (partition_size);

sender auto s = schedule(sch) |
bulk (num_threads, [&](auto i) {
size_t begin = i * partition_size;
size_t end = (i + 1) * partition_size;
if (i == num_threads - 1) end = n;
double partial_sum = O0;
for(int i=begin; i <= end; i++) {
double e = i+1;
double term = std::pow(-1.0, e+l) * std::pow(x, e) / e;
partial_sum += term;
}
partial_results [i] = partial_sum;
o
then ([&]1 () {
double sum = O;
for(int i=0;i<partition_size ;i++)
sum += partial_results [i];
return sum;
b
auto [result] = *tt::sync_wait(std::move(s));
return result;
}
int main() {
double x = .1;
double r = run(10000,10,x);
double a = log(1+x);
std::cout << "r=" << r << " " << a<< " => " << fabs(r-a) << std::endl;

are very restricted since these algorithms operate
on the elements of containers, e.g. std::vector.
Some algorithms like std: :sort or std: :find_if
are customizable by providing compare opera-
tors like std::greater<double>() or providing
functions or lambda functions.

To summarize, the algorithms (or parallel algo-
rithms) are good for operating on containers in
sequential or parallel using execution policies. A

more flexible option is asynchronous program-
ming using futures. The interface std::async
and std::future and their counterparts hpx::
async and hpx: : future are abstraction interfaces
for low level programming using std::threads
and hpx: :thread, respectively. The principle for
futurization is that the work is split into partitions
and each thread works on its assigned parti-
tion. Here, the programmer distributes the work




as partitions to the threads. Furthermore, HPX
allows combining (parallel) algorithms and asyn-
chronous programming by asynchronously launch-
ing the algorithms while returning a future. The
API for std: :async and std: :future was intro-
duced with the C++ 11 standard, but might be
deprecated soon and be replaced with its succes-
sor senders and receivers. The current outline is
to accept senders and receivers for the C++ 26
standard. However, HPX implements the latest
proposal. See Section 4.4.

For concurrency, coroutines were added with
the C++ 20 standard, see Section 4.2. The
co_return, co_yield, and co_await features
were added to suspend and resume coroutines.
Note that coroutines themselves do not provide
parallelism per se and can be used to create a
generator on a single core. Senders and receivers,
curiously, provide features for concurrency and
parallelism.

Figure 2 could be explicitly extended to HPX.
In that case, the parallel algorithms provide
(though they are parallel) support concurrency
because HPX allows them to return a hpx::
future. Furthermore, HPX’s parallel algorithms
can be integrated within senders and receivers.
However, these features are not specified in the
C++ standard “yet”. For comparing parallelism
and concurrency in Chapel, Charm++, C++, HPX|
Go, Julia, Python, Rust, Swift, and Java for a 1D
heat equation solver, we refer to [21].

6 Performance comparison

For performance measurements on different CPUs,
we compiled all examples using gec 12.1.0 for Arm,
using gce 9.2.0 for AMD and Intel. HPX 1.8.1 was
compiled with the following dependencies: boost
1.78.0, hwloc 2.2.0, and jemalloc 5.2.0. Table 2
summarizes the versions of dependencies and CPU
architectures used for the performance measure-
ments in Figure 3. For all core counts, the code
was executed ten times and the median out of
these runs is plotted. The error bars show the vari-
ances within these ten runs. For some approaches,
we observe high variance for HPX on larger node
counts.

Figure 3 shows the performance obtained for
all four of the programming mechanisms presented
in this paper: for ARM A64FX, AMD EPYC"
7543, and Intel® Xeon® Gold 6140, respectively.

10

To create an artificial work load, we computed the
Taylor series in Equation (1) for n = 1000 000 000.
We used perf on the Intel CPU to obtain the
floating point operations of 100000028 581 on a
single core. For futures using std::future and
hpx: :future (a), we see that on Arm both imple-
mentations perform the same. Similar behavior
is obtained for Intel. However, on AMD hpx: :
future performs better. Here, the overhead of
using HPX is negligible. For more details on
the overheads of HPX and Charm++, we refer
to [9]. For HPX’s parallel algorithms using hpx
::for_each (b), AMD performed better as Intel
and Arm is around one order of magnitude slower.
The results on Arm64FX are shown in (c). The
performance of the two more recent C++ features
is one order of magnitude slower on Arm than on
the two other architectures. Senders and receivers
showed the best performance on Arm. However,
one should not conclude that this paradigm is
inherently faster based on this test. Note that we
experience some high variation on higher node
counts. More investigation is needed for this fea-
ture. For more performance measurements on
Rikken’s Supercomputer Fugaku, we refer to [22].

6.1 Additional HPX features

For the hpx::for_each the performance in
Figure 3b on Intel and AMD is not a straight
line, and we observe some rolling hills. Here, in
this case, the default chunk size of one was used.
Note that in the C++ standard there is currently
no option to specify the chunk size yet. HPX,
however, does provide such an option, see List-
ing 4 in Section 4.3.1. Figure 4 shows the usage
of the chunk sizes to make the scaling more
linear. We use a dynamic chunk hpx: :execution
: :dynamic_chunck_size size of 1 x 10°. Figure 4
shows the performance on Intel and AMD. For
both architectures, the scaling behavior looks lin-
ear and the Flop\s are a little bit higher. The
additional features provided by HPX can affect
the performance. However, these features are not
yet in the C++ standard.

7 Conclusion

We have shown that Modern C++, through its
standard libraries and language features, provides



Table 2 Summary of CPU architectures, compilers, and dependencies used for the performance measurements in Figure 3.

CPU | gee hpx  boost hwloc jemalloc
Intel Xeon Gold 6140 | 9.2.0 1.8.1 1.780 2.2.0 5.2.0
AMD EPYC 7543 9.20 181 1.78.0 220 520
A64FX 12.1.0 1.81 1.780 220 5.20

a complete and expressive shared memory paral-
lel programming infrastructure for a single node.
Therefore, no external libraries or language exten-
sions are necessary to write high-quality parallel
C++ applications. We sketched an example of how
to use futures, coroutines, and parallel algorithms
in the current C++ standard based on a Taylor
series code. Furthermore, we provided an intro-
duction to senders and receivers, a framework that
might be available in a future C++ standard. For
most of these programming mechanisms, we show-
cased the implementation using the C++ Standard
Library using system threads and using the C++
library for concurrency and parallelism (HPX).We
did this because HPX provides a cutting-edge
implementation of the parallel library proposals
being considered by the C++ standards committee.

A performance comparison on an Intel® CPU,
AMD CPU, and ARM® A64FX demonstrates
that the proposed parallel programming mecha-
nisms do achieve portability of performance with-
out code changes.

Supplementary materials

The code for all examples is available on
GitHub®? or Zenodo™2, respectively.
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