
Distributed and Adversarial Resistant Workflow
Execution on the Algorand Blockchain

Yibin Xu1, Tijs Slaats1, Boris Düdder1, Søren Debois2, and Haiqin Wu1

1 University of Copenhagen, Copenhagen, Denmark
{yx,slaats,boris.d,hw@di.ku.dk}

2 IT University of Copenhagen, Copenhagen, Denmark
{debois}@itu.dk

Abstract. We provide a practical translation from the Dynamic Con-
dition Response (DCR) process modelling language to the Transaction
Execution Approval Language (TEAL) used by the Algorand blockchain.
Compared to earlier implementations of business process notations on
blockchains, particularly Ethereum, the present implementation is four
orders of magnitude cheaper. This translation has the following immedi-
ate ramifications: (1) It allows decentralised execution of DCR-specified
business processes in the absence of expensive intermediaries (lawyers,
brokers) or counterparty risk. (2) It provides a possibly helpful high-
level language for implementing business processes on Algorand. (3) It
demonstrates that despite the strict limitations on Algorand smart con-
tracts, they are powerful enough to encode models of a modern process
notation.

Keywords: Applications of blockchain · Smart contracts · Algorand ·
Inter-institutional collaboration

1 Introduction

Blockchain technologies rose to prominence by realising decentralised financial
systems and instruments [1, 5], then branched out into other domains such as
supply chain management [16]. The main draw of blockchains is their ability to
securely capture and track the ownership of resources [19], e.g., digital cash, real
estate, and produce. Smart contracts [1] have added a second dimension to these
use cases by allowing blockchains to control the valid movement of resources.

This development has drawn the interest of the Business Process Manage-
ment (BPM) community [14], to which smart contracts harbor the promise of
integrity-protected decentralised automation of process execution. In this com-
munity, a process is commonly defined as a structured, measured set of activities
designed to produce a specific output for a particular customer or market [2].
In practice, e.g., products being traded and shipped in a supply chain and the
treatment of a patient in a hospital, or a loan application process within a bank.
The latter two of these examples are knowledge-intensive processes. A key ap-
proach to formalising knowledge-intensive processes is that of declarative process

ar
X

iv
:2

21
1.

08
69

5v
1

 [
cs

.S
E

]
 1

6
N

ov
 2

02
2

2 Y. Xu, T. Slaats, B. Düdder, S. Debois, H. Wu

notations [15], which expresses the constraints a process must obey, as opposed
to the exact sequencing of admissible activity executions, akin to the difference
between an LTL formula and a Büchi automaton. In practice, declarative mod-
els tend to be more concise, and for processes subject to rules and regulations,
easier to relate to those rules and regulations.

While process notations have been encoded into Solidity [1]), these are plagued
by high costs and relatively low performance due to congestion of the Ethereum
network and high gas prices [13]. Given the cost of transactions on the Ethereum
blockchain in January 2022, creation of a declarative business process contract
would cost roughly $350 while the execution of a single event or activity would
cost $25.

In the current paper we address this weakness by exploring an encoding from
the declarative Dynamic Condition Response (DCR) Graphs process notation
to TEAL [5] contracts running on the Algorand blockchain. Transactions on
Algorand are cheap, with a current cost, on the 14th of January 2022, of $0.00136,
and offer transaction finality in under 5 seconds. This encoding is not trivial
however, as the efficiency and low cost of TEAL contracts carry limitations to
the memory space and number of operations as a trade-off.

The contributions of this paper are:

1. We show how DCR Graphs can be efficiently stored in the limited memory
space provided by TEAL and through pseudo-code show how their run-time
semantics can be encoded without exceeding the operation limit;

2. we analyse the costs of storing and running DCR smart contracts on the
Algorand blockchain based on the number of unique activities involved in
the process;

3. we provide a prototype implementation of the encoding running on the Al-
gorand testnet;

4. we discuss possible future extensions to the encoding that will allow captur-
ing more complex and rich process descriptions.

In section 2, we proceed to discuss future work. In section 3, we shortly
describe the primary attributes of the Algorand network. Section 4 introduces
Dynamic Condition Response (DCR) graphs. In section 5, we show how the se-
mantics of DCR Graphs can be encoded as smart contracts on the Algorand
blockchain. Section 6 provides a financial analysis, show the maximum cost as-
sociated with our approach and how it related to earlier attempts at encoding
DCR Graphs in Solidity. Finally Section 7 concludes and discusses future work.

2 Related work

Previous approaches towards process-aware blockchains [8,9,12,18] have focused
on providing translations from process models into existing smart contracts lan-
guages, particularly, by translating flow-based BPMN diagrams to Solidity. A
recent work [10] proposed to reduce the cost of redeployment of the smart con-
tracts when changing the process model by a specially designed interpreter of

Distributed and Adversarial Resistant Workflow Execution 3

BPMN process models based on dynamic data structures. [11] presented a model
for dynamic binding of actors to roles in collaborative processes and an associ-
ated binding policy specification language. We differ from these works by first of
all, taking a declarative approach to process modelling and second of all devel-
oping a native smart contract language for processes that is directly embedded
in the blockchain.

Inspired by institutional grammars, [4] proposed a high-level declarative lan-
guage that focuses on business contracts, however, no implementation is pro-
vided. A high-level vision of the business artifact paradigm towards modelling
business processes on a distributed ledger was given in [7]. [17] proposed a lean
architecture enabling lightweight and full-featured on-chain implementations of
a decentralised process execution system.

3 Algorand blockchain

Algorand [5] is a late-generation blockchain with a series of features, including
high scalability and a fork-free consensus protocol based on Proof-of-Stake. Its
smart contract layer (ASC1) aims to reduce the security risk of smart contracts,
and adopts a non-Turing complete programming model, which natively supports
transactional atomic sets and user-defined assets. These characteristics make it
an intriguing smart contract platform to study.

A smart contract language called TEAL [5] is used in Algorand. TEAL is
a bytecode-based stack language and is processed by the Algorand Virtual Ma-
chine (AVM), with an official programming interface for Python (called PyTeal).
In addition to standard arithmetic-logical operators, TEAL also includes oper-
ators for calculating and indexing all transactions in the current atomic group,
as well as IDs and fields for accessing them. When launching a transaction in-
volving a script, the user can specify a series of parameters. The script includes
cryptographic operators that calculate the hash value and verify the signature.

Applications are stateful smart contracts created with Algorand. They are
given an Application ID when they are launched. Application Transactions are
used to communicate with these contracts. The primary Application Transaction
provides additional data that the stateful smart contract’s TEAL code can pass
and process.

Per transaction call, any application can check the global state of up to two
other smart contracts. This is accomplished by including the application IDs
of the additional stateful smart contracts in the transaction call to the stateful
smart contract. This is known as the Application Array in TEAL. Currently, the
developer must know how many additional applications are expected to be sent
into the contract call before writing the smart contract code in TEAL.

Figure 1 shows the architecture of the stateful smart contract in Algorand.
Each transaction has an Application array, which indicates what smart contract
(up to two smart contracts) the transaction will be sent to; an Accounts Array
(up to four accounts), which indicates what accounts have opt-in to the smart
contract; an Assets Array (up to two assets), which indicates the assets that will

4 Y. Xu, T. Slaats, B. Düdder, S. Debois, H. Wu

be sent to the smart contract; an Arguments Array (up to 255 arguments), which
indicates the arguments passed to the smart contract. The maximum length of
the stack and scratch space is 1000 and 255 respectively.

Application
Array

Accounts
Array

Assets
Array

Arguments
Array

Per Transaction

TEAL
Program(s),
Loaded on

Create
Update

Stack

Global/Local
State

Temporary
Scratch

Global Vars

Transaction(s)
Properties

A smart contract

Transaction
submission

Fig. 1. Stateful Smart Contract Transaction Call Architecture.

3.1 Limitations

For each smart contract, we have the following limitations:

1. 64 Key/Value pairs in the global state.

2. 64 Key/Value pairs in total in the local state of the accounts. There can be
four accounts opted in to the smart contract, each of it has 16 pairs.

3. Max key + Value length=128 bytes

4. A stateless smart contract only returns the result of the execution but will
not store states in the blockchain. A stateful smart contract can create and
update the states stored in the blockchain.

5. The program (a smart contract consists of an approval program and a clean
program) costs no more than 20000 operations in stateless mode. It allows
at most 700 operations for each the approval and clear program of a stateful
contract. In other words, it allows 700 operations for each execution of the
stateful contract. Each operation costs 1, some cryptographic operations are
more costly but not used in our prototypical implementation.

Note that the pairs in the local state of the accounts are read-only for other
people. People do not need to Opt-in to the smart contract in order to execute
the smart contract.

Distributed and Adversarial Resistant Workflow Execution 5

4 DCR Graph

DCR Graphs [6] are a formal declarative notation for describing processes. The
base notation focuses on control-flow, i.e., the allowed sequencing of activities.
The nodes of a DCR Graph are the executable elements, called events, which
can be labelled by a labelling function. The labelling function allows multiple
events to share the same label, thereby allowing process activities to occur more
than once in a graph, under different constraints depending on their context.

The state of a graph is described by a marking, indicating for each event
whether it (1) has been previously executed, (2) is currently pending, and (3)
is currently included. The evolution of the graph is described by its edges, the
relations between events. Through the relations, an event can constrain another
event or have an effect on it. There are two possible constraints: the condition
(→•) captures that an event can not be executed unless another event has been
executed some time (not necessarily immediately) before it, the milestone (→�)
captures that an event cannot be executed while another event is pending. There
are three effect relations: the exclusion (→%) removes an event from the process
and disables any constraints it may place on other events, the inclusion relation
(→+) includes an event back into the process, re-enabling any constraints it may
have had, and the response relation makes another event pending (•→). Pending
events are obligations and must be satisfied by either executing or excluding them
before a process can be considered to be in an accepting state.

Definition 1. A DCR Graph is a tuple (E,M,L, `,→•, •→,→�,→+,→%), where

– E is the set of events
– M = (Ex,Re, In) ∈ P(E)× P(E)× P(E) is the marking of the graph
– L is the set of labels
– ` : E → L is the labelling function
– φ ⊆ E × E for φ ∈ {→•, •→,→�,→+,→%} are respectively the condition,

response, milestone, inclusion, and exclusion relations between events

For DCR Graph G with events E and event e ∈ E, we write (→•e) for the
set {e′ ∈ E | e′ →• e}, write (e•→) for the set {e′ ∈ E | e •→ e′} and similarly
for (e→+), (e→%) and (→�e).

An event of a DCR graph is enabled when (a) it is included, (b) there are no
included conditions that have not been executed, and (c) there are no pending
and included milestones.

Definition 2 (Enabled events). Let G = (E,M,L, `,→•, •→,→�,→+,→%)
be a DCR Graph, with marking M = (Ex,Re, In). An event e ∈ E is enabled,
written e ∈ enabled(G), iff (a) e ∈ In and (b) In ∩ (→•e) ⊆ Ex and (c) (Re ∩
In) ∩ (→�e) = ∅.

If an event is enabled then it can be executed. Executing an event e updates
the marking of the graph by (a) adding it to the set of executed events, (b)
removing it from the set of pending events and adding its responses (e•→) to
the set of pending events, and (c) respectively removing its exclusions (e→%)
from and adding its inclusions (e→+) to the set of included events.

6 Y. Xu, T. Slaats, B. Düdder, S. Debois, H. Wu

Definition 3 (Execution). Let G = (E,M,L, `,→•, •→,→�,→+,→%) be a
DCR Graph, with marking M = (Ex,Re, In). When e ∈ enabled(G), the result of
executing e, written execute(G, e) is a new DCR Graph G′ with the same events,
labels, labelling function, and relations, but a new marking M ′ = (Ex′,Re′, In′),
where (a) Ex′ = Ex∪{e} (b) Re′ = (Re\{e})∪(e•→), and (c) In′ = (In\(e→%))∪
(e→+).

We define the language of a DCR Graph as all finite and infinite sequences of
such executions, where all pending responses are eventually executed or excluded.

Definition 4 (Language of a DCR Graph). Let G = (E,M,L, `,→•, •→
,→�,→+,→%) be a DCR Graph. A run of G is a finite or infinite sequence of
events e0, e1, . . . such that ei ∈ enabled(Gi), execute(Gi, ei) = Gi+1, and G0 = G.
We call a run accepting iff for each Gi with marking Mi = (Exi,Rei, Ini) and
e ∈ Rei ∩ Ini there exists a j ≥ i such that ej = e or e 6∈ Rej ∩ Inj.

The language lang(G) ⊆ L∞ of G is the set of finite and infinite sequences
of labels l0l1 · · · such that there is an accepting run e0, e1, . . . where `(ei) = li.

Fig. 2. DCR Graph of a mortgage application process adapted from [3].

As an example, Fig. 2 shows a simplified version of a loan application process
encountered in industry [3] modelled as a DCR Graph. The labels of the events
contain not only the name of the activity, but also the roles who are allowed
to execute them. The loan application should always be assessed by the case
worker, shown by the red text and exclamation mark, which denote that the
event is an initial response. To reach this goal, the case worker must first collect
documents and the customer must submit a budget, shown by the condition
relations from these two events. In addition, a statistical or on-site appraisal
must have been performed. Both are a condition to assess loan application, but
they also mutually exclude each other, meaning that if one is executed, the other
is excluded and will not block other events from executing. Submit budget also
has a response relation towards the assessment, meaning that a loan application
must always be assessed (again) after the customer submits a (new) budget.
Finally IT may determine that the neighbourhood of the property requires an

Distributed and Adversarial Resistant Workflow Execution 7

on-site appraisal. It then excludes the statistical appraisal event and includes
the on-site appraisal event, which will re-enable on-site as a condition for the
assessment, even if it was previously excluded by a statistical appraisal.

In the initial marking, irregular neighbourhood and assess loan application
are blocked as having unsatisfied conditions. Other events are enabled as they
are included and have no blocking conditions or milestones. The graph is in
a non-accepting state as the assess loan application is included and a pending
response.

Executing Collect documents and Submit budget will mark these events as
executed. Doing a Statistical appraisal will mark itself as executed and exclude
On-site appraisal, meaning that we can execute Assess loan application, which
will remove the pending response and bring the graph into an accepting state.

Note that we can still execute Submit budget if new information is provided
by the customer, which requires Assess loan application to be executed again.

5 Distributed DCR Graphs as Algorand smart contracts

In this section, we transform the DCR Graph into a stateful smart contract in
TEAL. We eliminate the labels of the events and only keep the relationships and
the IDs of the events. This design is for maintaining the anonymity of the DCR
Graphs in the blockchain and saving space for more events.

For each DCR Graph, we maintain three global key/value pairs:

– GC, which records the address of the graph creator as a Byte32 String.
– MK, which indicates the marking of the graph as a Byte16 String;
– TEN , the total event number as an unsigned 64-bit integer. 3

Each four bits of MK represents the status of an event, with the first bit de-
scribing if the event is included or excluded. The structure of the status:

– Excluded: (xxx0)2;
– Included: (xxx1)2;
– Pending: (xx1x)2;
– executed: (x1xx)2.

where x represents either 1 or 0. The number i, i ∈ [0, TEN × 5) bit refers
to a status of the number int(i/5) event. Only CG can add events or add the
relationships between the events.

We maintain two key/value pairs E and E links for each event E. The
key/value pair E indicates the account address which can execute E; E links
indicates the links between E and other events (which event’s status needs to
be changed after the execution of E and which events are preventing E from
execution) as a Byte32 String. Each five bits of the Value represents the links of
an event. The structure of the links:

– Include: (xxxx1)2;

3 Note that integer in TEAL is automatically a uint 64 integer.

8 Y. Xu, T. Slaats, B. Düdder, S. Debois, H. Wu

– Exclude: (xxx1x)2;
– Milestone: (xx1xx)2;
– Condition: (x1xxx)2;
– Response: (1xxxx)2.

Include, Exclude, Response are out-links, meaning that after execution of E, the
relevant event will be included, excluded or pended. Milestone and Condition
are in-links, meaning E may not be executed if the relevant event is pended
or have not executed. For example, given two events A and B with relations
A →• B and B →% A, B links will indicate both A →• B and B →% A.
B links = (0100000010)2 assuming A indexed 1 and B indexed 2.

Given the limitations discussed in Section 3.1, our approach can have 61
events in maximum because we have 128 pairs in total and we use two key/value
pairs for each event and three pairs for the graph.

We were provided with a breakdown of a database containing 22787 DCR
models created by academic and commercial users; we report a summary in
Figure 3. Note that the statistics show that the average number of events within
a graph generated in the site is 23 and 92.5% of the graphs have an event
number below 61. Therefore, the 61 event limit appears to be a promising start
for practical usage.

,1000]

Fig. 3. The statistic from https://www.dcrgraphs.net/.

Figure 4 shows an example of the architecture, and 1 LINK indicates the
link K/V pair of event 1.

Algorithms 1, 2, 3, and 4 show the pseudo-code of the operations of adding an
event, adding an relationship, executing an event, and updating the status of the
events, respectively. In Algorithm 1, we add an event by creating two key/value

https://www.dcrgraphs.net/

Distributed and Adversarial Resistant Workflow Execution 9

pairs representing the executor and the links to other events. In Algorithm 2, we
add an relationship between two events by updating their links. The executor of
an event can execute the event in Algorithm 3, the Algorithm will check in-links
of the event to see if it is executable and then update MK via the out-links. In
Algorithm 4, CG can update the status of an event.

In the codes, we are not using any operations that require a cost of more
than 1. Therefore the four Algorithms are all within 700 operations when there
are 61 events in maximum.

An example implementation corresponding to the graph shown in Figure 2
is in the Algorand testnet, APP-ID:59565714. The link to the Github repository
for the source code is https://github.com/XU-YIBIN/DCR-Algorand.

Bytes16(ABDEAAA)

00000

00001
00010

00100

Excluded:

Included:
Pending:

Executed:

MK:

Bytes32(ABCEIQABDEAAA)

00000

00001

00100

00010

01000
No relationship:

Included:

Milestone:

Excluded:

Condition:

1_LINK:

Response:10000

Fig. 4. The structures of the Key/Value pairs.

6 Financial Analysis

When a smart contract is deployed to the Algorand blockchain, it is given an app
ID, which is a unique identifier. Furthermore, each smart contract has its own
Algorand address, which is created from this unique ID. The address allows the
smart contract to function as an escrow account. In order for the smart contract

https://github.com/XU-YIBIN/DCR-Algorand

10 Y. Xu, T. Slaats, B. Düdder, S. Debois, H. Wu

Algorithm 1 Add an event

1: Global states: GC : Graph creator, MK : Marking, TEN : Total event number
2: procedure Add an event(TXS : Transaction sender, EC : executor)
Require: TXS == GC and TEN < 61
3: TEN ← TEN + 1
4: Set a K/V pair A:

Key: TEN links, Value: Byte32(Null)
5: Set a Scratch value total ops, //scratch value is run-time value.
6: total ops← (TEN − 1)× 2 + 3 + 1

// because we have used three key/value pairs at the beginning and we are currently
adding one more.

7: if total ops > 64 then
8: Set A as a local state in the account [(total ops− 64)/16− 1]
9: else Set A as a global state.

10: total ops← total ops + 1
11: Set a K/V pair B:

key: TEN , Value:EC
12: if total ops > 64 then
13: Set B as a local state in the account [(total ops− 64)/16− 1]
14: else Set B as a global state.

Algorithm 2 Add a relationship

1: Global states: GC : Graph creator, MK : Marking, TEN : Total event number
2: procedure Add a relationship(TXS : Transaction sender, E1 : Event1 ID,

E2 : Event2 ID, RT : Relationship Type)
Require: TXS == GC
3: Get a K/V pair (E1 link,A).

//This pair may be from the global state or the local state, which was set when
adding the event (using key:TEN links).

4: Get a K/V pair (E2 link,B).
//This pair may be from the global state or the local state.

5: Set a scratch value k depanding on RT (include→ 0, exclude → 1 , Milestone
→ 2, Condition → 3, Response → 4).

6: if k = 2 or k = 3 then
7: Set the (E1− 1)× 5 + k-bit of B to 1.
8: else
9: Set the (E2− 1)× 5 + k-bit of A to 1.

10: Update K/V pairs (E1 link,A) and (E2 link,B) using updated A and B.

Distributed and Adversarial Resistant Workflow Execution 11

Algorithm 3 Execute an event

1: Global states: GC : Graph creator, MK : Marking, TEN : Total event number
2: procedure Execute an event(TXS : Transaction sender, E1 : Event1 ID)
3: Get a K/V pair(E1,A). //This pair may from the global state or the local state.
Require: A == TXS
4: Get a K/V pair (E1 link,B).

//This pair may be from the global state or the local state.
5: for i=0 to TXN × 5 do
6: Set a scratch value C ID, C ID ← int(i/5) + 1.

//CID refers to the current event ID.
7: Set a scratch value k, k ← i mod 5.
8: if k-st bit of B.V alue=1 then
9: if k=2 then // The event C ID milestone E1.

10: If the (C ID − 1)× 4 + 1-st bit of MK is 1, then return false.
11: else if k=3 then //The event C ID condition E1.
12: If the (C ID − 1)× 4 + 2-st bit of MK is 0, then return false.

13: for i=0 to TXN × 5 do
14: Set a scratch value C ID, C ID ← int(i/5)+1. //CID refers to the current

event ID.
15: Set a scratch value k, k ← i mod 5.
16: if k-st bit of B is 1 then
17: if k=0 then // The event C ID should be included.
18: Set the C ID × 4 + 0-bit of MK as 1.
19: else if k=1 then //The event C ID should be excluded.
20: Set the C ID × 4 + 0-bit of MK as 0.
21: else if k=4 then //The event C ID should be pended.
22: Set the C ID × 4 + 1-bit of MK as 1.

23: Set (E1− 1)× 4 + 1-bit of MK as 0 //cancel the pending status.
24: Set (E1− 1)× 4 + 2-bit of MK as 1 //update the status as executed.

Algorithm 4 Update the status of the event

1: Global states: GC : Graph creator, MK : Marking, TEN : Total event number
2: procedure Update Status(TXS : Transaction sender, E1 : Event1 ID, S :

Status)
Require: TXS == GC
3: if S=“include” then
4: Set (E1− 1)× 4-bit of MK as 1.
5: else if S=“exclude” then
6: Set (E1− 1)× 4-bit of MK as 0.
7: else if S=“pend” then
8: Set ((E1− 1)× 4 + 1)-bit of MK as 1.

12 Y. Xu, T. Slaats, B. Düdder, S. Debois, H. Wu

to run, there must be at least Escrowoverall amount of microAlgos inside the
smart contract, otherwise the transaction fails automatically.

Escrowglobal = 100000× (1 + ExtraProgramPages)

+(25000 + 3500)× schema.NumUint
+(25000 + 25000)× schema.NumByteSlice.

(1)

where Schema.NumUint refers to the global integer key-value pairs (the value
size is UInt64bits); Schema.NumByteSlice refers to the global string key-value
pairs. ExtraProgramPages is only needed when the compiled program exceeds
2KB, which we do not require.

The operation opt-in an account to the smart contract requires:

Escrowlocal = 100000 + (25000 + 3500)× schema.NumUint
+(25000 + 25000)× schema.NumByteSlice.

(2)

schema.NumUint and schema.NumByteSlice refers to the local states.
We use one global integer key-value pair (the number of events), all other

key-value pairs are String key-value pairs. ExtraProgramPages = 0. Then,

Escrowglobal = 100000 + 28500 + 50000×min(TSN × 2 + 2, 63). (3)

Escrowlocal i,i∈[0,ceil((TSN×2+2−63)/16))

= 100000 + 50000× (min (TSN × 2 + 2− 63− (i− 1)× 16, 16)) .
(4)

Escrowoverall = Escrowglobal + Escrowlocal i,i∈[0,ceil((TSN×2+2−63)/16)). (5)

When TSN=61,

Escrowoverall = Escrowglobal+Escrowlocal×4 = 3278500+3450000 = 6728500.
(6)

As of January 14th, 2022, 1000000 microAlgos are worth $1.36. Therefore,
the maximum amount of Algo locked for deploying a DCR Graph has a value of
$9.35. Figure 5 show the relationship between the number of events in a contract
and the amount of USD locked. Note that the escrow is locked in the account that
starts the contract and the remaining of it is released when the smart contract
is closed. There is a fee for executing the smart contract.

The fees for executing the smart contract is paid by the escrow account linked
to the smart contract or can be set to be paid by the executor. Each execution
below 1kB costs a fixed 1,000 microAlgos or 0.001 Algos. Larger transactions
use a fee-per-byte ratio. One can also choose to use the fee-per-byte ratio to
increase the probability of getting included into a new block, however at the
current usage levels of the network this is unnecessary. For our implementation,
both contract creation and event execution transactions remain below the 1kB
limit. In addition to the locked escrow, the creation fee for a smart contract is the

Distributed and Adversarial Resistant Workflow Execution 13

0 10 20 30 40 50 60
TEN

2

4

6

8
US

D

Fig. 5. The relationship between the events and the USD escrowed.

same as a regular transaction, however since the DCR Graph is dynamically con-
structed through addEvent, addRelation, and updateStatus calls to the smart
contract, creating the graph will require 1 + E + R + S transactions, where E
is the number of events, R is the number of relations, and S is the number of
status updates that need to be made to set the marking of the events of the
contract to their initial state. A comparison of the costs for contract creation
and event execution in Algorand and Ethereum is shown in Table 1. We calcu-
lated these numbers based on the example graph used in [13] which contains 5
events, contains 11 relations, and requires 3 status changes to the marking 4. We
observe a decrease in price by four orders of magnitude for both event execution
and contract creation. If one includes the escrow, then contract creation is two
orders of magnitude cheaper.

Finally, Algorand provides transaction finality in under 5 seconds, compared
to approximately 3 minutes for Ethereum. While the latter is acceptable for
many practical business processes, this is a notable improvement for more time-
critical scenarios.

7 Conclusion

In this paper, we demonstrated how business processes can be executed on the
Algorand blockchain through a translation from the declarative DCR process
modelling language to TEAL smart contracts. We provided precise calculations
of limitations on the size of process models and the cost of their execution. We
showed that execution on the Algorand blockchain cuts costs by four orders of
magnitude when compared to earlier implementations on Ethereum, bringing
the use of public blockchains for business process execution back in the realm

4 [13] does not provide a generalised calculation of gas costs that can be used for a
more thorough comparison.

14 Y. Xu, T. Slaats, B. Düdder, S. Debois, H. Wu

Algorand Ethereum USD Ratio

Contract creation cost
(excluding escrow)

0.02 Algo
$0.02720

717,709 gas
$349.88314

17494

Contract creation cost
(including escrow)

0.7485 Algo
$1.01796

717,709 gas
$349.88314

467

Event execution
0.001 Algo
$0.00136

54,496 gas
$26.56690

19534

Table 1. Costs and escrow for DCR contract creation and event execution on Algorand
and Ethereum based on the example used in [13]. USD prices based on exchange rates
on the 14th of January 2022. The calculated dollar cost for Ethereum transactions use
a gwei/gas ratio of 150. Event execution cost in Ethereum is given as the mean of the
5 executions reported in [13].

of reasonable possibilities. We implemented a prototype that demonstrates the
feasibility of our approach and allows for future extensions.

In future work , we intend to extend the prototype, lift current limitations and
implement more advanced features of the DCR language. In particular, we will
extend the current 61 event limit by creating multiple linked smart contracts
that can read each others global states. This operation is supported in TEAL by
indicating multiple smart contracts in the Application Array of the transactions.

Currently our implementation describes an event by only using an event ID.
This is to preserve privacy and save memory space. When the graph is extended
by using multiple smart contracts, we may use space to store more information
on the events such as their name and a description.

DCR Graphs support various advanced features such as notions of (logi-
cal) time, data-constraints, replication, and more advanced assignments between
events, roles, and users [13], we plan to add these to our encoding in the future
which will allow for the description and execution of more complex processes.

References

1. Buterin, V., et al.: A next-generation smart contract and decentralized application
platform. white paper (2014)

2. Davenport, T.H.: Process Innovation: Reengineering Work Through Information
Technology. Harvard Business School Press, Boston, MA, USA (1993)

3. Debois, S., Hildebrandt, T., Slaats, T.: Concurrency and asynchrony in declarative
workflows. In: BPM 2016. LNCS, vol. 9253. Springer, Cham (2016)

4. Frantz, C.K., Nowostawski, M.: From institutions to code: Towards automated
generation of smart contracts. In: FAS*W. pp. 210–215. IEEE (2016)

5. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: Scaling
byzantine agreements for cryptocurrencies. In: SOSP 2017. pp. 51–68 (2017)

Distributed and Adversarial Resistant Workflow Execution 15

6. Hildebrandt, T.T., Mukkamala, R.R.: Declarative event-based workflow as dis-
tributed dynamic condition response graphs. In: Honda, K., Mycroft, A. (eds.)
PLACES 2010. EPTCS, vol. 69, pp. 59–73 (2010)

7. Hull, R., Batra, V.S., Chen, Y.M., Deutsch, A., Heath III, F.F.T., Vianu, V.:
Towards a shared ledger business collaboration language based on data-aware pro-
cesses. In: ICSOC. pp. 18–36. Springer (2016)

8. Klinger, P., Bodendorf, F.: Blockchain-based cross-organizational execution frame-
work for dynamic integration of process collaborations. In: WI (2020)

9. Ladleif, J., Weske, M., Weber, I.: Modeling and enforcing blockchain-based chore-
ographies. In: BPM. pp. 69–85. Springer (2019)

10. López-Pintado, O., Dumas, M., Garćıa-Bañuelos, L., Weber, I.: Interpreted exe-
cution of business process models on blockchain. In: EDOC. pp. 206–215. IEEE
(2019)

11. López-Pintado, O., Dumas, M., Garćıa-Bañuelos, L., Weber, I.: Controlled flexi-
bility in blockchain-based collaborative business processes. Information Systems p.
101622 (2020)

12. López-Pintado, O., Garćıa-Bañuelos, L., Dumas, M., Weber, I., Ponomarev, A.:
Caterpillar: a business process execution engine on the ethereum blockchain. SPE
49(7), 1162–1193 (2019)

13. Madsen, M.F., Gaub, M., Høgnason, T., Kirkbro, M.E., Slaats, T., Debois, S.:
Collaboration among adversaries: distributed workflow execution on a blockchain.
In: SCFAB 2018 (2018)

14. Mendling, J., Weber, I., Aalst, W.V.D., Brocke, J.V., Cabanillas, C., Daniel, F.,
Debois, S., Ciccio, C.D., Dumas, M., Dustdar, S., et al.: Blockchains for business
process management-challenges and opportunities. ACM TMIS 9(1), 1–16 (2018)

15. Pesic, M., Schonenberg, H., van der Aalst, W.M.: DECLARE: Full Support for
Loosely-Structured Processes. In: EDOC 2007. pp. 287–287. IEEE (oct 2007)

16. Saberi, S., Kouhizadeh, M., Sarkis, J., Shen, L.: Blockchain technology and its
relationships to sustainable supply chain management. International Journal of
Production Research 57(7), 2117–2135 (2019)

17. Sturm, C., Szalanczi, J., Schönig, S., Jablonski, S.: A lean architecture for
blockchain based decentralized process execution. In: Daniel, F., Sheng, Q.Z., Mo-
tahari, H. (eds.) BPM. pp. 361–373. Springer (2019)

18. Tran, A.B., Lu, Q., Weber, I.: Lorikeet: A model-driven engineering tool for
blockchain-based business process execution and asset management. In: BPM. pp.
56–60 (2018)

19. Zakhary, V., Amiri, M.J., Maiyya, S., Agrawal, D., Abbadi, A.E.: Towards global
asset management in blockchain systems (2019)

	Distributed and Adversarial Resistant Workflow Execution on the Algorand Blockchain

