
ar
X

iv
:2

21
1.

12
17

9v
1

 [
cs

.D
M

]
 2

2
N

ov
 2

02
2

Stabilization of Capacitated Matching Games

Matthew Gerstbrein1, Laura Sanità2, and Lucy Verberk(�)3

1 University of Waterloo, Canada.

mlgerstbrein@uwaterloo.ca
2 Bocconi University of Milan, Italy.

laura.sanita@unibocconi.it
3 Eindhoven University of Technology, Netherlands.

l.p.a.verberk@tue.nl

Abstract

An edge-weighted, vertex-capacitated graph G is called stable if the value of a maximum-weight
capacity-matching equals the value of a maximum-weight fractional capacity-matching. Stable
graphs play a key role in characterizing the existence of stable solutions for popular combinato-
rial games that involve the structure of matchings in graphs, such as network bargaining games and
cooperative matching games.

The vertex-stabilizer problem asks to compute a minimum number of players to block (i.e.,
vertices of G to remove) in order to ensure stability for such games. The problem has been shown to be
solvable in polynomial-time, for unit-capacity graphs. This stays true also if we impose the restriction
that the set of players to block must not intersect with a given specified maximum matching of G.

In this work, we investigate these algorithmic problems in the more general setting of arbitrary
capacities. We show that the vertex-stabilizer problem with the additional restriction of avoiding
a given maximum matching remains polynomial-time solvable. Differently, without this restriction,
the vertex-stabilizer problem becomes NP-hard and even hard to approximate, in contrast to the
unit-capacity case.

Finally, in unit-capacity graphs there is an equivalence between the stability of a graph, existence
of a stable solution for network bargaining games, and existence of a stable solution for cooperative
matching games. We show that this equivalence does not extend to the capacitated case.

Keywords: Matching · Game theory · Network bargaining.

1 Introduction

Network Bargaining Games (NBG) and Cooperative Matching Games (CMG) are popular combinatorial
games involving the structure of matchings in graphs. CMG were introduced in the seminal paper of
Shapley and Shubik 50 years ago [17], and have been widely studied since then. NBG are relatively more
recent, and were defined by Kleinberg and Tardos [13] as a generalization of Nash’s 2-player bargaining
solution [16].

Instances of these games are described by a graph G = (V,E) with weights w ∈ R
E
≥0, where the

vertices and the edges model the players and their potential interactions, respectively. The value of a
maximum-weight matching, denoted as ν(G), is the total value that players can collectively accumulate.
The goal, roughly speaking, is to assign values to players in such a way that players have no incentive
to deviate from the current allocation.

Formally, in an instance of a NBG, players want to enter in a deal with one of their neighbours,
and agree on how to split the value of the deal given by the weight of the corresponding edge. Hence,
an outcome is naturally associated with a matching M of G representing the deals, and allocation
vector y ∈ R

V
≥0 with yu + yv = wuv if uv ∈ M , and yv = 0 if v is not matched. An outcome (M, y)

is stable if each player’s allocation yu is at least as large as their outside option, formally defined as
maxv:uv∈E\M {wuv − yv}.

1

http://arxiv.org/abs/2211.12179v1

In an instance of a CMG, one wants to find an allocation of total value ν(G), given by a vector
y ∈ R

V
≥0 in which no subset of players can gain more by forming a coalition. This condition is enforced

by the constraint
∑

v∈S yv ≥ ν(G[S]) for all S ⊆ V , where G[S] indicates the subgraph of G induced by
the vertices in S. Such an allocation is called stable, and the set of stable allocations constitutes the core
of the game.

Despite having been defined in different contexts, there is a tight link between stable solutions of these
types of games. In particular, if each game is played on the same graph G, then it has been shown that
either a stable solution exists for both games, or for neither game. This follows as both games admit the
same polyhedral characterization of instances with stable solutions [7, 13]. Specifically, a stable solution
exists if and only if ν(G) equals the value of the standard linear programming (LP) relaxation of the
maximum matching problem defined as

νf (G) := max

{

w⊤x :
∑

u:uv∈E

xuv ≤ 1 ∀v ∈ V, x ≥ 0

}

. (1)

A graph G for which ν(G) = νf (G) is called stable. As a result of this characterization, it is easy
to see that there are graphs which do not admit stable solutions (to either type of game), such as odd
cycles. Given that not all graphs are stable, naturally arises the stabilization problem of how to minimally
modify a graph to turn it into a stable one. Stabilization problems attracted a lot of attention in the
literature in the past years (see e.g. [1, 3–6, 12, 14, 15]).

In this context, very natural operations to stabilize graphs are edge- and vertex-removal operations.
Those have an interesting interpretation: they correspond to blocking interactions and players, respec-
tively, in order to ensure a stable outcome. While removing a minimum number of edges to stabilize
a graph is NP-hard already for unit weight graphs [4], and even hard-to-approximate with a constant
factor [10,14], stabilizing the graph via vertex-removal operations turned out to be solvable in polynomial-
time. Specifically, [1] and [12] showed that computing a minimum-cardinality set of players to block in
order to stabilize an unweighted graph (called the vertex-stabilizer problem) can be done in polynomial
time. Furthermore, [1] showed that computing a minimum set of players to block in order to make a
given maximum matching realizable as a stable outcome (called the M -vertex-stabilizer problem) is also
efficiently solvable. The authors of [14] showed that both results generalize to weighted graphs.

This paper focuses on Capacitated NBG, introduced by Bateni et al [2] as a generalization of NBG,
to capture the more realistic scenario where players are allowed to enter in more than one deal. This
generalization can be modeled by allowing for vertex capacities c ∈ Z

V
≥0. The notion of a matching is

therefore generalized to a c-matching, where each vertex v ∈ V is matched with at most cv vertices. In
this case, the value of a maximum-weight c-matching of a graph G is denoted as νc(G), and the standard
LP relaxation is given by

νcf (G) := max

{

w⊤x :
∑

u:uv∈E

xuv ≤ cv ∀v ∈ V, 0 ≤ x ≤ 1

}

. (2)

Similarly to the unit-capacity case, an outcome to the NBG is associated with a c-matching M and
a vector a ∈ R

2E
≥0 that satisfies auv + avu = wuv if uv ∈ M , and auv = avu = 0 otherwise. The concepts

of outside option and stable outcome can be defined similarly as in the unit-capacity case, see [2].
The authors of [2] proved that the LP characterization of stable solutions generalize, i.e., there exist

a stable outcome for the capacitated NBG on G if and only if νc(G) = νcf (G) (i.e., G is stable). Farczadi
et al [9] show that some other important properties of NBG extend to this capacitated generalization,
such as the possibility to efficiently compute a so-called balanced solution (we refer to [9] for details).

The goal of this paper is to investigate whether the other two significant features of NBG mentioned
before generalize to the capacitated setting. Namely:

(i) Can one still efficiently stabilize instances via vertex-removal operations?

(ii) Does the equivalence between existence of stable allocations for capacitated CMG and existence of
stable solutions for capacitated NBG still hold?

2

Our Results. In this paper we provide an answer to the above questions.
We investigate the M -vertex-stabilizer problem and the vertex-stabilizer problem in the capacitated

setting in sections 3 and 4, respectively. While for unit-capacity graphs both problems are efficiently solv-
able, we show that adding capacities makes the complexity status of the vertex-stabilizer problem diverge.
In particular, we prove that the vertex-stabilizer problem is NP-complete, and no n1−ε-approximation
is possible, for any ε > 0, unless P=NP. Note that a trivial n-approximation algorithm can be easily
developed.

In contrast, we show that the M -vertex-stabilizer problem is still polynomial-time solvable in the
capacitated setting. Our results here extend those of [14] for unit-capacity graphs, and builds upon an
auxiliary construction of [9].

Finally, in section 5 we show that the equivalence between stability of a graph, existence of a stable
allocation for CMG and existence of a stable outcome for NBG does not extend in the capacitated setting.
In particular, we provide an unstable graph which does attain a stable allocation for the capacitated
CMG1.

2 Preliminaries and Notation

Problem definition. A set S ⊆ V is called a vertex-stabilizer if G \ S is stable, where G \ S is the
subgraph induced by the vertices V \ S. We say that a vertex-stabilizer S preserves a matching M of G
if M is a matching in G \ S.

We now formally define the stabilization problems considered in this paper.

Vertex-stabilizer problem: given G = (V,E) with edge weights w ∈ R
E
≥0 and vertex capacities

c ∈ Z
V
≥0, find a vertex-stabilizer of minimum cardinality.

M-vertex-stabilizer problem: givenG = (V,E) with edge weights w ∈ R
E
≥0, vertex capacities c ∈ Z

V
≥0,

and a maximum-weight c-matching M , find a vertex-stabilizer of minimum cardinality among the ones
preserving M .

An instance of the vertex-stabilizer problem is stable if G is stable. An instance of the M -vertex-
stabilizer problem is stable if G is stable, and M is a maximum-weight c-matching in G. Without loss
of generality, we can assume that cv is bounded by the degree of v ∈ V .

Notation. We refer to a graph with edge weights and vertex capacities as (G,w, c), and to a graph
with a c-matching M as [(G,w, c),M]. For a vertex v, we let δ(v) be the set of edges of G incident into
it, we let N(v) be the set of its adjacent neighbours, and N+(v) = N(v)∪{v}. For F ⊆ E, we denote by
dFv the degree of v in G with respect to the edges in F . We define w(F) :=

∑

e∈F we. Given a c-matching
M , we say that v ∈ V is exposed if dMv = 0, covered if dMv > 0, unsaturated if dMv < cv and saturated if
dMv = cv. We also use these terms for feasible solutions x of (2), called fractional c-matchings, e.g., v is
exposed if

∑

e∈δ(v) xe = 0. We let n := |V |, and △ denote the symmetric difference operator.

We denote a (uv-)walkW by listing its edges and endpoints sequentially, i.e., byW = (u; e1, . . . , ek; v).
We define its inverse as W−1 = (v; ek, . . . , e1;u). We say a walk is closed if u = v. A trail is a walk in
which edges do not repeat. A path is a trail in which internal vertices do not repeat. A cycle is a path
which starts and ends at the same vertex. If we refer to the edge set of a walk W , we just write W . Note
that this can be a multi-set.

Duality and augmenting structures. The dual of (2) is given by

τcf (G) := min
{

c⊤y + 1⊤z : yu + yv + zuv ≥ wuv∀uv ∈ E, y ≥ 0, z ≥ 0
}

, (3)

where 1 is the all-one vector of appropriate size. A solution (y, z) feasible for (3) is called a fractional
vertex cover. By LP theory, we have νc(G) ≤ νcf (G) = τcf (G).

Definition 1. We say that a walk W is M -alternating (w.r.t. a matching M) if it alternates edges in
M and edges not in M . We say W is M -augmenting if it is M -alternating and w(W \M) > w(W ∩M).
An M -alternating uv-walk W is proper if dW△M

u ≤ cu and dW△M
v ≤ cv.

1It is stated in [8] (theorem 2.3.9) that a stable allocation for capacitated CMG exists iff G is stable, but our example
shows this statement is not correct.

3

Definition 2. Given an M -alternating walk W = (u; e1, . . . , ek; v) and an ε > 0, the ε-augmentation of
W is the vector xM/W (ε) ∈ R

E given by

xM/W
e (ε) =

{

1− κ(e)ε if e ∈M,

κ(e)ε if e /∈M,
(4)

where κ(e) = |{i ∈ [k] | ei = e, ei ∈W}|. We say that W is feasible if there exists an ε > 0 such that the
corresponding ε-augmentation of W is a fractional c-matching.

Remark 1. A feasible M -alternating walk with distinct endpoints is proper.

Definition 3. An odd cycle C = (v; e1, . . . , ek; v) is called an M -blossom if it is M -alternating such that
either e1 and ek are both in M , or are both not in M . The vertex v is called the base of the blossom.

Definition 4. An M -flower C ∪P consists of an M -blossom C with base u and an M -alternating path
P = (u; e1, . . . , ek; v) such that (P,C, P−1) is M -alternating and feasible. The vertex v is called the root
of the flower. The flower is M -augmenting if

w(C \M) + 2w(P \M) > w(C ∩M) + 2w(P ∩M). (5)

Definition 5. An M -bi-cycle C ∪ P ∪ D consists of two M -blossoms C and D with bases u and v,
respectively, and an M -alternating path P = (u; e1, . . . , ek; v) such that (P,D, P−1, C) is M -alternating.
The bi-cycle is M -augmenting if

w(C \M) + 2w(P \M) + w(D \M) > w(C ∩M) + 2w(P ∩M) + w(D ∩M). (6)

Note that, in the last two definitions, it may happen that P has no edges. In the unit-capacity
case it is well-known that a matching M is maximum-weight if and only if there do not exist any
proper M -augmenting paths or cycles. This generalizes to the capacitated case. We report a proof for
completeness.

Theorem 1. A c-matching M in (G,w, c) is maximum-weight if and only if G does not contain a proper
M -augmenting trail.

Proof. (⇒) If G contains a proper M -augmenting trail T , then M△T is a c-matching and w(M△T) >
w(M), which means M is not maximum-weight.

(⇐) Let M be a c-matching in G such that M is not maximum-weight. We will show that G contains
a proper M -augmenting trail. Let N be a maximum-weight c-matching, and consider the graph induced
by M△N . We construct a unit-capacity graph Ĝ:

1. For each v ∈ V , define bv := max
{

d
M\N
v , d

N\M
v

}

, create copies v1, . . . , vbv and add them to V (Ĝ).

Initialize JM (v) = JN (v) = {1, . . . , bv}.

2. For each uv ∈M \N , add a single edge uivj to both E(Ĝ) and M̂ with edge-weight wuv, where i ∈
JM (u) and j ∈ JM (v) are chosen arbitrarily. Remove i and j from JM (u) and JM (v), respectively.

3. Likewise for each uv ∈ N \M .

Observe that this construction establishes a natural weight-preserving bijection between E and E(Ĝ).
Furthermore, the sets M̂ and N̂ are matchings in Ĝ, and w(N) > w(M) implies w(N̂) > w(M̂). In
particular, M̂ is not maximum-weight in Ĝ. Since Ĝ has unit-capacities, it contains at least one proper
M̂ -augmenting path or cycle T̂ . Let T = (u; e1, . . . , ek; v) be the corresponding M -alternating walk in G.
Since T̂ does not repeat edges and is actually alternating between M̂ and N̂ , T is alternating between
M \N and N \M , and also does not repeat edges, i.e., T is a trail. Since w(T̂ \ M̂) > w(T̂ ∩ M̂), we
also have w(T \M) > w(T ∩M), i.e., T is an M -augmenting trail. Thus, we only need to show that T
is proper, i.e., that dT△M

u ≤ cu and dT△M
v ≤ cv.

Case 1: T̂ is a proper M̂ -augmenting path. If u = v, then provided that at least one of e1 and
ek is in M , then dT△M

u ≤ dMu ≤ cu. If on the other hand neither of e1 and ek is in M , then the
corresponding edges ê1 and êk in T̂ are not in M̂ , and must therefore be in N̂ . Let ui and uj be the first

4

t u v x

y

z

cba

(a) Original graph.

t1 u1

v1

v2

x1

x2

y1

z1

c1

b1

b2

a1

(b) Auxiliary graph.

Figure 1: Example of the auxiliary construction on an instance [(G,w, c),M]. Capacities are
all 1 except for cv = cx = cb = 2. Weights are all 1 except for wbc = 0.5. The matching is
displayed as bold edges.

and last vertices of T̂ , incident with ê1 and êk, respectively. Note that ui and uj are distinct, since T̂ is

a path. Furthermore, since T̂ is proper, ui and uj are not incident with edges from M̂ . Observe that by

construction of Ĝ, either all vertices in {u1, . . . , ubu} are M̂ -covered or N̂ -covered. Since ui and uj are

not M̂ -covered, all copies of u must be N̂ -covered. Hence, d
M\N
u ≤ d

N\M
u −2, which means dMu ≤ dNu −2.

Finally, dT△M
u = dMu + 2 ≤ dNu ≤ cu.

If u 6= v, we again consider whether or not e1 and ek are in M . Since u and v are distinct, these cases
for e1 and ek are independent. If e1 ∈M , then dT△M

u = dMu − 1 ≤ cu. If e1 /∈M , then dT△M
u = dMu + 1,

and ê1 is in N̂ , not in M̂ . Let ui be the copy of u that is incident with ê1. Since ui is the first vertex of T̂ ,
and T̂ is proper, ui is not incident with any edge from M̂ . By construction of Ĝ, every copy of u must be

N̂ -covered. Hence, d
M\N
u ≤ d

N\M
u −1, which means dMu ≤ dNu −1. Therefore, d

T△M
u = dMu +1 ≤ dNu ≤ cu.

By symmetry of u and v, we also have dT△M
v ≤ cv both if ek ∈M and ek /∈M .

Case 2: T̂ is a M̂ -augmenting cycle. In this case u = v and exactly one of e1 and ek is in M and one
is not, which means dT△M

u = dMu ≤ cu.

Auxiliary Construction. We will use a construction given in [9], to transform a pair [(G,w, c),M]
into another one [(G′, w′,1),M ′], where G′ is an auxiliary unit-capacity graph.

Construction: [(G,w, c),M]→ [(G′, w′,1),M ′]

1. For each v ∈ V , create the set Cv = {v1, . . . , vcv} of cv copies of v, add Cv to V (G′), and initialize
J(v) = {1, . . . , cv}.

2. For each uv ∈ M , add a single edge uivj to both E(G′) and M ′ with edge-weight wuv, where
i ∈ J(u) and j ∈ J(v) are chosen arbitrarily. Remove i and j from J(u) and J(v), respectively.

3. For each edge uv ∈ E \M , add an edge uivj to E(G′) with edge-weight wuv , for all ui ∈ Cu and
vj ∈ Cv.

See figure 1 for an example. In this figure it is easy to see that the matching M ′ in G′ is not maximum,
even though M is maximum in G.2

We define a map η to go back from the auxiliary graph G′ to the original graph G. Specifically, if
ui ∈ V (G′) ∩ Cu for some u ∈ V , then η(ui) := u, and if uivj ∈ E(G′) such that ui ∈ Cu, vj ∈ Cv for
some u, v ∈ V , then η(uivj) := uv. This extends in the obvious way to paths, cycles, walks, and so on.

Remark 2. If [(G,w, c),M] has auxiliary [(G′, w′,1),M ′], and X ⊆ V is any set of vertices which avoids
M , then (G \X)′ = G′ \X ′, where X ′ = ∪v∈XCv.

The following easy lemma will be useful.

Lemma 1. Given [(G,w, c),M] and auxiliary [(G′, w′,1),M ′], let P be a feasible M ′-augmenting walk.
Then, η(P) is a feasible M -augmenting walk.

2It was stated in [9, corollary 1] that M is maximum if and only if M ′ is maximum, but this example shows this to be
false.

5

Proof. Let e1 = uv and e2 = vw be two consecutive edges on P . Then η(e1) and η(e2) are the corre-
sponding edges on η(P), and they are both incident with η(v). Hence, η(P) is a walk.

For any edge e on P , we have e ∈ M ′ if and only if η(e) ∈ M . In addition, w′
e = wη(e). So, η(P) is

an M -augmenting walk.
Suppose P = (u; e1, . . . , ek; v). Feasibility of P means that either e1 ∈ M ′, or u is M ′-exposed.

Likewise for ek and v. It follows that either η(e1) ∈ M , or η(u) is M -unsaturated. Likewise for η(ek)
and η(v). This means η(P) is feasible.

We will need the following theorem.

Theorem 2. An M -vertex-stabilizer instance [(G,w, c),M] is not stable if and only if the graph G′ in
the auxiliary construction [(G′, w′,1),M ′] contains at least one of the following: (i) an M ′-augmenting
flower; (ii) an M ′-augmenting bi-cycle; (iii) a proper M ′-augmenting path; (iv) an M ′-augmenting cycle.

Proof. It was proven in [9, theorem 2] that [(G,w, c),M] does not correspond to a stable M -vertex-
stabilizer instance if and only if [(G′, w′,1),M ′] does not correspond to a stable M ′-vertex-stabilizer
instance. We distinguish two scenarios for when the latter condition occurs. If M ′ is maximum-weight,
then G′ contains an M ′-augmenting flower or bi-cycle, see [14, theorem 1]. If M ′ is not maximum-weight,
G′ must contain a proper M ′-augmenting path or cycle, by standard matching theory.

We will refer to an augmenting structure of type (i) − (iv) in theorem 2 as a basic augmenting
structure. The next lemma follows from [14].

Lemma 2. Let G′ be a unit-capacity graph, and M ′ be any (not necessarily maximum) matching of G′.

(a) For any M ′-exposed vertex u, one can compute a feasible M ′-augmenting walk starting at u of
length at most 3 |V (G′)|, or determine that none exists, in polynomial time.

(b) A feasible M ′-augmenting uv-walk contains a feasible M ′-augmenting uv-path (proper if u 6= v), an
M ′-augmenting cycle, an M ′-augmenting flower rooted at u or v, or an M ′-augmenting bi-cycle.
Furthermore, this augmenting structure can be computed in polynomial time.

Proof. (a) When given a graph G′, a matching M ′, a vertex u, and an integer k, algorithm 3 in [14]
computes a feasible M ′-augmenting uv-walk of length at most k, or determines none exist, for all v ∈
V (G′). Lemma 7 and 8 in [14] show correctness of the algorithm. The algorithm is polynomial time in
k, |V (G′)|, and |E(G′)|. Since we use k = 3 |V (G′)|, it is polynomial time. As mentioned, algorithm 3
in [14] actually returns one uv-walk per v ∈ V (G′), if at least one exists for v. We just need one such
walk, so if for at least one v a uv-walk is returned, we arbitrarily choose one, otherwise we know no such
walk starting at u exists.

(b) Lemma 9 in [14] directly gives us that a feasible M ′-augmenting uv-walk contains a feasible
M ′-augmenting uv-path, an M ′-augmenting cycle, an M ′-augmenting flower rooted at u or v, or an
M ′-augmenting bi-cycle. By remark 1 the path is proper if u 6= v. Lemma 9 in [14] is proven in a
constructive way, hence it also gives a way to compute the augmenting structure in polynomial time.

The next theorem is standard.

Theorem 3. An M -vertex-stabilizer instance [(G,w, c),M] is stable if and only if G does not contain a
feasible M -augmenting walk.

Proof. We prove both directions by contraposition.
(⇒) Assume there exists a feasible M -augmenting walk W . Since W is augmenting, w(W \M) >

w(W ∩M), and since W is feasible, xM/W (ε) is a fractional c-matching. Together they imply

νcf (G) ≥ w⊤xM/W (ε) = w(M)− εw(W ∩M) + εw(W \M) > w(M), (7)

i.e., the instance [(G,w, c),M] is not stable.
(⇐) Assume the instance is not stable. Then by theorem 2, the graph G′ from the auxiliary

[(G′, w′,1),M ′] contains a basic augmenting structure, which clearly is a feasible M ′-augmenting walk
P . Then η(P) is a feasible M -augmenting walk, by lemma 1.

6

3 M-vertex-stabilizer

The goal of this section is to prove the following theorem.

Theorem 4. The M -vertex-stabilizer problem on weighted, capacitated graphs can be solved in polynomial
time.

Overview of the strategy. A natural strategy would be to first apply the auxiliary construction
described in section 2 to reduce to unit-capacity instances, and then apply the algorithm proposed
in [14] which solves the problem exactly. However, there is a critical issue with this strategy. Namely,
the auxiliary construction applied to unstable instances does not always preserve maximality of the
corresponding matchings, as shown in figure 1. In that example, the matching M ′ is not maximum
in G′. The algorithm of [14], if applied to an instance where the given matching is not maximum, is
not guaranteed to find an optimal solution, but only a 2-approximate one (see theorem 12 in [14]). In
addition, since the auxiliary construction splits a vertex into multiple ones, we may even get infeasible
solutions. As a concrete example of this, the algorithm of [14] applied to the instance of figure 1b will
include b2 in its proposed solution. Mapping this solution to our capacitated instance would imply to
remove b, which is clearly not allowed as b is M -covered.

To overtake this issue, we do not apply the algorithm of [14] as a black-box, but use parts of it
(highlighted in lemma 2) in a careful way. In particular, we use it to compute a sequence of feasible
augmenting walks in G′. We actually show that the walks in G′ which might create the issue described
before when mapped backed to G, are the walks in which at least one edge of G is traversed more
than once in opposite directions, and that have two distinct endpoints. When this happens, we prove
that we can modify the walk and get one where the endpoints coincide, which will still be feasible and
augmenting. In this latter case, we can then either correctly identify a vertex to remove (the unique
endpoint), or determine that the instance cannot be stabilized.

A more detailed description. We start by defining ties.

Definition 6. Given [(G,w, c),M] with auxiliary [(G′, w′,1),M ′], and an M ′-alternating path P ′, a tie
in P ′ is a pair of unmatched edges {ab, cd} on P ′ such that for some distinct u, v ∈ V , either {a, c} ⊆ Cu

and {b, d} ⊆ Cv or {a, d} ⊆ Cu and {b, c} ⊆ Cv. We say P ′ is tieless if it does not contain a tie.

We now show that if the auxiliary construction does not preserve maximality of the c-matching M ,
then we must have ties in all proper M ′-augmenting paths and cycles.

Lemma 3. Given [(G,w, c),M] with auxiliary [(G′, w′,1),M ′], if M is a maximum-weight c-matching
in G, then all proper M ′-augmenting paths and cycles contain ties.

Proof. We prove this by contraposition. So, suppose that there is a proper M ′-augmenting path or cycle
P ′ that is tieless. Note that P ′ is also feasible. By lemma 1, P = η(P ′) is a feasible M -augmenting walk.
Since P ′ is tieless, there is a bijection between E(P ′) and E(P), and so, as P ′ does not repeat edges,
neither does P . Hence P is a feasible M -augmenting trail. We will show that P is proper.

If P ′ is an M ′-augmenting cycle, P is a closed M -augmenting trail of even length. It follows that
dP△M
v = dMv ≤ cv for all vertices v on P , and hence P is proper.
Now suppose P ′ is a proper M ′-augmenting path. Let P ′ = (ui; e

′
1, . . . , e

′
k; vj) and u = η(ui),

v = η(vj), e1 = η(e′1) and ek = η(e′k). Note that, because P ′ is proper, e′1 /∈ M if and only if ui is
M ′-exposed. Likewise for e′k and vj .

Case 1: u = v. If at most one of ui and vj is M ′-exposed, then at least one of e′1 and e′k is in M ′ and
hence at least one of e1 and ek is in M . Therefore, dP△M

u ≤ dMu ≤ cu. If both ui and vj are M ′-exposed,
then e′1, e

′
k /∈M ′ and hence e1, ek /∈M . Therefore, dP△M

u = dMu +2. By construction there are cu copies
of u, and since ui and vj are already two of those copies, and they are exposed, we have dMu ≤ cu − 2.
Thus dP△M

u ≤ cu.
Case 2: u 6= v. If e′1 ∈ M ′, then e1 ∈ M , and so we have dP△M

u = dMu − 1 ≤ cu. If e′1 /∈ M ′, then
e1 /∈ M , and so we have dP△M

u = dMu + 1. Using the same reasoning as in case 1, we can conclude that
dMu ≤ cu − 1 because ui is M

′-exposed, and therefore dP△M
u ≤ cu. The argument is analogous for v.

In all cases P is a proper M -augmenting trail. It follows by theorem 1 that M is not a maximum-
weight c-matching in G.

7

We now define the operation of traceback, which we will use to modify the feasible augmenting walks,
when needed.

Definition 7. Given [(G,w, c),M] and an M -alternating walk P = (u; e1, . . . , ek; v) which repeats an
edge in opposite directions, let t be the least index such that et = es for some s < t, and es and et
are traversed in opposite directions by P . Then the u-traceback and v-traceback of P are defined as the
walks tb(P, u) = (e1, . . . , et, es−1, es−2, . . . , e1) and tb(P, v) = (ek, ek−1 . . . , es, et+1, et+2, . . . , ek).

The next lemma explains how to use the traceback operation.

Lemma 4. Given [(G,w, c),M] such that M is maximum-weight, and auxiliary [(G′, w′,1),M ′], let
P ′ = (ui; e

′
1, . . . , e

′
k; vj) be a proper M ′-augmenting path such that both ui and vj are M ′-exposed and

η(ui) 6= η(vj). Then tb(η(P ′), η(ui)) and tb(η(P ′), η(vj)) are well-defined, feasible M -alternating walks,
and at least one of them is M -augmenting.

Proof. Let P = η(P ′) = (u; e1, . . . , ek, v). By lemma 1, P is a feasible M -augmenting walk, and even
proper by remark 1, since u 6= v. To show that tb(P, u) and tb(P, v) are well-defined, we must show that
P traverses some edge in opposite directions. By lemma 3 we already have that P ′ contains a tie, and
hence that P traverses some edge twice. We now show that there must exist at least one edge that is
traversed in opposite direction. Suppose not, let t be the least index such that et = es for some s < t.
Decompose P as (P1, es, P2, et, P3).

Claim 1. If P traverses es and et in the same direction, then (P1, es, P3) is a shorter proper M -
augmenting walk.

Proof. For notation, define P+
2 = (P2, et). By definition, P+

2 is an M -alternating closed trail of even

length. It follows that d
P+

2
△M

v = dMv ≤ cv for all vertices v on P+
2 , and hence P+

2 is proper. Since M is
maximum-weight, theorem 1 implies that P+

2 cannot be M -augmenting. However, P is M -augmenting,
which means the augmenting part must come from P \P+

2 . Hence, (P1, es, P3) is an M -augmenting walk.
It is proper because P is proper.

By this claim W = (P1, es, P3) is a shorter proper M -augmenting walk. W also necessarily repeats an
edge, because otherwise W is a proper M -augmenting trail, contradicting that M is maximum-weight,
by theorem 1. Then we can apply the claim again, to find an even shorter proper M -augmenting walk.
This argument can be repeated until eventually we reach a contradiction.

Thus there is at least one edge traversed in opposite direction, hence tb(P, u) and tb(P, v) are well-
defined. Clearly tb(P, u) and tb(P, v) are M -alternating. Furthermore, since ui and vj are M ′-exposed,
u and v are M -unsaturated. It follows that tb(P, u) and tb(P, v) are feasible.

That leaves to show that at least one of them is M -augmenting. For notation, let t be the least
index such that et = es for some s < t and et and es are traversed in opposite direction. As before,
decompose P as (P1, es, P2, et, P3). Define P++

2 = (es, P2, et), Pu = tb(P, u), and Pv = tb(P, v). Note
that Pu = (P1, P

++
2 , P−1

1) and Pv = (P−1
3 , (P++

2)−1, P3).
Case 1: w(P1 \M)−w(P3 \M) > w(P1 ∩M)−w(P3 ∩M). Because P is M -augmenting, we know

that
w(P1 \M) + w(P++

2 \M) + w(P3 \M) > w(P1 ∩M) + w(P++
2 ∩M) + w(P3 ∩M). (8)

Adding these inequalities, we obtain

w(Pu \M) = 2w(P1 \M) + w(P++
2 \M) > 2w(P1 ∩M) + w(P++

2 ∩M) = w(Pu ∩M). (9)

Hence, Pu is M -augmenting.
Case 2: w(P1 \M)−w(P3 \M) < w(P1 ∩M)−w(P3 ∩M). Analogous to case 1, we find that Pv is

M -augmenting.
Case 3: w(P1 \M)−w(P3 \M) = w(P1 ∩M)−w(P3 ∩M). Analogous to case 1, we find that both

Pu and Pv are M -augmenting.

8

Algorithm 1: finding an M -vertex-stabilizer

input: [(G,w, c),M]
1 compute the auxiliary [(G′, w′,1),M ′]
2 initialize S ← ∅, L←M ′-exposed vertices
3 while L 6= ∅ do
4 select ui ∈ L and compute a feasible M ′-augmenting walk starting at ui using lemma 2(a)
5 if no such walk exists then
6 L← L \ {ui}

7 else
8 consider the computed feasible M ′-augmenting uivj -walk
9 if both η(ui) and η(vj) are M -covered then

10 return infeasible
11 else if η(ui) is M -covered and η(vj) is not then
12 S ← S ∪ η(vj), G← G \ η(vj), G′ ← G′ \ Cη(vj), L← L \ Cη(vj)

13 else if η(vj) is M -covered and η(ui) is not then
14 S ← S ∪ η(ui), G← G \ η(ui), G

′ ← G′ \ Cη(ui), L← L \ Cη(ui)

15 else
16 if η(ui) = η(vj) then
17 S ← S ∪ η(ui), G← G \ η(ui), G

′ ← G′ \ Cη(ui), L← L \ Cη(ui)

18 else
19 find a basic M ′-augmenting structure W contained in the uivj-walk using

lemma 2(b)
20 if W is an M ′-augmenting cycle or bi-cycle then
21 return infeasible

22 if W is an M ′-augmenting flower rooted at ui then
23 S ← S ∪ η(ui), G← G \ η(ui), G

′ ← G′ \ Cη(ui), L← L \ Cη(ui)

24 if W is an M ′-augmenting flower rooted at vj then
25 S ← S ∪ η(vj), G← G \ η(vj), G

′ ← G′ \ Cη(vj), L← L \ Cη(vj)

26 if W is a proper M ′-augmenting uivj-path then
27 compute tb(η(W), η(ui)) and tb(η(W), η(vj))
28 if tb(η(W), η(ui)) is M -augmenting then
29 S ← S ∪ η(ui), G← G \ η(ui), G

′ ← G′ \ Cη(ui), L← L \ Cη(ui)

30 if tb(η(W), η(vj)) is M -augmenting then
31 S ← S ∪ η(vj), G← G \ η(vj), G′ ← G′ \ Cη(vj), L← L \ Cη(vj)

32 if w(M) < νcf (G) then

33 return infeasible
34 else
35 return S

9

Proof of theorem 4. Let [(G,w, c),M] be the input for the M -vertex-stabilizer problem, with auxiliary
[(G′, w′,1),M ′]. Algorithm 1 iteratively considers an M ′-exposed vertex ui, and computes a feasible M ′-
augmenting walk U starting at ui, if one exists. Lemma 1 implies that η(U) is a feasible M -augmenting
walk in G. Theorem 3 implies that we need to remove at least one vertex of the walk η(U) to stabilize
the instance. Note that every vertex a 6= ui, vj of U is M ′-covered, and hence, η(a) is M -covered.
Therefore, the only vertices we can potentially remove are η(ui) or η(vj). Hence, if both η(ui) and η(vj)
are M -covered, the instance cannot be stabilized and algorithm 1 checks this in line 9. If only one among
η(ui) and η(vj) is M -covered, then necessarily we have to remove the M -exposed vertex among the two.
Algorithm 1 checks this in line 11 and 13. Note that, by remark 2, instead of computing a new auxiliary
for the modified G, we can just remove Cη(ui) (resp. Cη(vj)) from G′. Similarly, if η(ui) = η(vj) and
η(ui) is M -exposed, we necessarily have to remove η(ui). Algorithm 1 checks this in line 16. If instead
η(ui) 6= η(vj), and both are M ′-exposed, we apply lemma 2(b) to find a basic augmenting structure W
contained in U . Once again, we know by lemma 1 and theorem 3 that we need to remove a vertex in
η(W). In case W is a cycle or bi-cycle, all vertices of η(W) are M -covered so the instance cannot be
stabilized and algorithm 1 checks this in line 20. In case W is a M ′-augmenting flower with base ui

or vj , algorithm 1 accordingly removes η(ui) or η(vj) as all other vertices in η(W) are M -covered, in
line 23 and 25. Finally, if W is a proper (because η(ui) 6= η(vj)) M

′-augmenting path, by lemma 4 we
know that we can find a feasible M -augmenting walk, where the only M -exposed vertex is either η(ui)
or η(vj). Once again, this implies that this vertex must be removed. Algorithm 1 does so in lines 29 and
31.

From the discussion so far, it follows that when we exit the while loop each vertex in S is a necessary
vertex to be removed from G, in order to stabilize the instance. We now argue that either removing
all vertices in S is also sufficient, or the instance cannot be stabilized. Suppose that the M -vertex-
stabilizer instance given by G \ S and M is not stable. Theorem 2 implies that (G \ S)′ contains a
basic augmenting structure Q. Note that Q cannot be an M ′-augmenting flower with exposed root, or a
proper M ′-augmenting path with at least one exposed endpoint. To see this, observe that a flower and
path are feasible M ′-augmenting walks of length at most 3 |V (G′)| and |V (G′)|, respectively. Hence, they
would have been found by algorithm 1 in line 4, contradicting that Q exists in (G \ S)′. It follows that
Q is a basic augmenting structure where all vertices are M ′-covered. By lemma 1 η(Q) is a feasible M -
augmenting walk where all vertices are M -covered. This implies that the instance cannot be stabilized.
Furthermore, using the ε-augmentation of η(Q) we can obtain a fractional c-matching whose value is
strictly greater than w(M). Hence, w(M) < νcf (G \S). Algorithm 1 correctly determines this in line 32.
This proves correctness of our algorithm.

Finally, we argue about the running time of the algorithm. Note that each operation that the
algorithm performs can be done in polynomial time. Furthermore, after each iteration of the while loop,
we either determine that the instance cannot be stabilized, or remove a vertex from G. Therefore, the
while loop can be executed at most n times. The result follows.

We close this section with a remark. The authors in [14] have also considered the following problem:
given a weighted graph G and a (non necessarily maximum-weight) matching M , find a minimum-
cardinality S ⊆ V such that G \ S is stable, and M is a maximum-weight matching in G \ S, i.e., such
that the M -vertex-stabilizer instance given by G \ S and M is stable. This is a generalization of our
definition of the M -vertex-stabilizer problem, which essentially allows M to be not maximum-weight3.
The authors show that this problem is NP-hard, but admits a 2-approximation algorithm (we mentioned
this in the strategy overview), which is best possible assuming Unique Game Conjecture.

With a minor modification of algorithm 1, we can generalize this result to the capacitated setting.
Specifically, we start the algorithm by checking if M is maximum-weight in G, and store this in the
indicator variable Mmax. Then, we replace lines 26-31 by algorithm 2.

Theorem 5. Given a weighted, capacitated graph G = (V,E) and a c-matching M , the problem of
computing a minimum-cardinality S ⊆ V such that G \ S is stable, and M is a maximum-weight c-
matching in G \ S, admits an efficient 2-approximation algorithm.

Proof. If M is a maximum-weight c-matching in G, the algorithm is unchanged, and the result follows
from theorem 4. So suppose M is not maximum-weight. We follow the argument as in the proof of

3In fact, this is the way the M -vertex-stabilizer problem is defined in [14]. We instead use the original definition in [1,6]
which assumes M to be maximum.

10

Algorithm 2: modification algorithm 1, lines 26-31

1 if W is a proper M ′-augmenting uivj-path then
2 if Mmax then
3 compute tb(η(W), η(ui)) and tb(η(W), η(vj))
4 if tb(η(W), η(ui)) is M -augmenting then
5 S ← S ∪ η(ui), G← G \ η(ui), G

′ ← G′ \ Cη(ui), L← L \ Cη(ui)

6 if tb(η(W), η(vj)) is M -augmenting then
7 S ← S ∪ η(vj), G← G \ η(vj), G′ ← G′ \ Cη(vj), L← L \ Cη(vj)

8 else
9 S ← S ∪ {η(ui), η(vj)}, G← G \ {η(ui), η(vj)}, G

′ ← G′ \
(

Cη(ui) ∪ Cη(vj)

)

,

L← L \
(

Cη(ui) ∪ Cη(vj)

)

theorem 4 (theorem 3 still holds if M is not maximum-weight in G), until we reach the case where we
have a proper M ′-augmenting path W . We know by lemma 1 and theorem 3 that we need to remove
a vertex in η(W). We have η(ui) 6= η(vj) and both are M -exposed. Even though it might only be
necessary to remove one of them, algorithm 2 removes both vertices on line 9.

Using the same argumentation as in the proof of theorem 4 (theorem 2 still holds ifM is not maximum-
weight in G), we conclude that either removing all vertices in S is sufficient, or the instance cannot be
stabilized, and the algorithm correctly determines this. But, in contrast to that proof, when we exit
the while loop, each vertex in S is either a necessary vertex to be removed from G, in order to stabilize
the instance, or it was one of two vertices for which it was necessary to remove at least one. Therefore,
for any M -vertex-stabilizer S∗ we have |S∗| ≥ 1

2 |S|. It follows that algorithm 1 with the described
modification is a 2-approximation.

The modifications are all operations that can be done in polynomial time. The result follows.

4 Vertex-Stabilizer

The goal of this section is to prove the following theorem.

Theorem 6. The vertex-stabilizer problem on capacitated graphs is NP-complete, even if all edges have
unit-weight. Furthermore, no efficient n1−ε-approximation exists for any ε > 0, unless P = NP.

Note that, given an unstable graph (G,w, c), removing all vertices (but two) trivially yields a stable
graph. This gives a (trivial) n-approximation algorithm for the vertex-stabilizer problem. The theorem
above essentially implies that one cannot hope for a much better approximation. To prove it, we will
use:

Minimum Independent Dominating Set (MIDS) problem. Given a graph G = (V,E), compute
a minimum-cardinality subset S ⊆ V that is independent (for all uv ∈ E at most one of u and v is in S)
and dominating (for all v ∈ V at least one u ∈ N+(v) is in S).

There is no efficient n1−ε-approximation for any ε > 0 for the MIDS problem, unless P = NP [11,
corollary 3].

Proof of theorem 6. The decision variant of the problem asks to find a vertex-stabilizer of size at most
k. This problem is in NP, since if a vertex set S is given, it can be verified in polynomial time if
|S| ≤ k and if νc(G \ S) = νcf (G \ S). We prove the NP-hardness and approximation factor by given an
approximation-preserving reduction from the MIDS problem.

Let G = (V,E) be an instance of the MIDS problem. For v ∈ V , we define the gadget Γv by

V (Γv) = N+(v) ∪ {v1, v2, v3, v4} , (10)

E(Γv) =
{

uv1 : u ∈ N+(v)
}

∪ {v1v2, v2v3, v3v4, v2v4} . (11)

11

v3 v4

v2

v1

v · · · N(v)

(a) Gadget Γv.

ei4 ei5

ei3ei2
ei1

u v

(b) Gadget Γi

uv.

Figure 2: Examples of gadgets.

For e = uv ∈ E and i ∈ {1, . . . , n}, we define the gadget Γi
uv by

V (Γi
uv) =

{

u, v, ei1, e
i
2, e

i
3, e

i
4, e

i
5

}

, (12)

E(Γi
uv) =

{

uei1, ve
i
1, e

i
1e

i
2, e

i
1e

i
3, e

i
3e

i
4, e

i
4e

i
5, e

i
3e

i
5

}

. (13)

See figure 2 for an example of these gadgets. Now let G′ be defined as the union of all Γv and all Γi
uv,

such that vertices from V overlap. We set the capacity as follows: cv = d
E(G′)
v for all v ∈ V , cv1 = dEv +1

for all v ∈ V , cei
1
= cei

3
= 2 for ei1, e

i
3 ∈ V (Γi

uv) for all e = uv ∈ E and i ∈ {1, . . . , n}, and cv = 1 for all
remaining v ∈ V (G′). All edges are set to have unit-weight. The key point is:

Claim 2. G has an independent dominating set of size at most k if and only if (G′,1, c) has a vertex-
stabilizer of size at most k.

Proof. (⇒) Let S be an independent dominating set of G of size k. The vertices in S naturally correspond
with vertices in G′. We show that S is a vertex-stabilizer of (G′,1, c).

We define a c-matching M and fractional vertex cover (y, z) on G′ \ S as follows. First, set yv = 0
for all v ∈ V \ S.

Next, for all v ∈ V , consider Γv. Add {uv1 : u ∈ N+(v) \ S} ∪ {v1v2, v3v4} to M . Note that at least
one vertex from N+(v) is in S, since S is dominating. Set yv1 = 0, yv2 = 1, yv3 = yv4 = 0.5, ze = 1 for
all e ∈ {uv1 : u ∈ N+(v) \ S} and ze = 0 for the remaining edges in the gadget.

Finally, for all e = uv ∈ E and i ∈ {1, . . . , n}, consider Γi
uv. Since S is dominating, at most one of u

and v is in S. If neither are in S, add both uei1 and vei1 to M . If one of them is in S, without loss of
generality let it be u, then add vei1 and ei1e

i
2 to M . Furthermore, add ei3e

i
4 and ei3e

i
5 to M . Set yei

1
= 1,

yei
2
= 0, yei

3
= yei

4
= yei

5
= 0.5, and zf = 0 for all edges f in the gadget.

Let x be the indicator vector of M . One can verify that x and (y, z) satisfy the complementary
slackness conditions for νcf (G

′ \ S) and τcf (G
′ \ S). Since x is integral, this implies that G′ \ S is stable.

(⇐) Let S be a vertex-stabilizer of (G′,1, c) of size k. We show that: (i) S contains at least one
vertex of each gadget Γv; (ii) without loss of generality, one can assume that at most one of u and v is
in S for each edge uv ∈ E.

(i) Suppose for the sake of contradiction that there is some v ∈ V such that S contains no vertices
of Γv. Since G′ \ S is stable, there is a maximum-cardinality fractional c-matching x∗, that is integral.
Define for each e ∈ E(G′ \ S)

xe =



















x∗
e if e ∈ E(G′ \ S) \E[Γv],

1 if e ∈ {uv1 : u ∈ N+(v)} ,

0 if e = v1v2,

0.5 if e ∈ {v2v3, v3v4, v2v4} .

(14)

Note that x is a fractional c-matching in G′ \ S, since x∗ is. However,
∑

e∈E[Γv]
xe = dv + 2.5 >

∑

e∈E[Γu]
x∗
e, since x∗ is integral. Hence, 1⊤x > 1⊤x∗, contradicting the optimality of x∗.

(ii) Suppose there is some e = uv ∈ E such that S contains both u and v. All gadgets Γi
uv are

then components in G′ \ S. If u and v are the only vertices in S from some component Γi
uv, then

a maximum-cardinality fractional c-matching in this components is given by xei
1
ei
2
= xei

1
ei
3
= 1 and

xei
3
ei
4
= xei

4
ei
5
= xei

3
ei
5
= 0.5. Which means this component is not stable, and thus G′ \ S is not

12

stable, a contradiction. Hence, S must contain at least one vertex of each Γi
uv that is neither u nor v.

Consequently, k = |S| ≥ n+2. Since G has only n vertices, it obviously has an independent dominating
set of size at most n, and hence of size at most k. Such a set can for example be obtained by a greedy
approach. Hence, for the remainder of the proof we can assume that at most one of u and v is in S for
each uv ∈ E.

We now create a set S′ ⊆ V from S, that is an independent dominating set of G of size at most k, as
follows. Iterate over v ∈ V . Let Sv = S ∩ V (Γv). Note that Sv 6= ∅ by (i). Define

S′
v =

{

(Sv ∪ S′) ∩N+(v) if this is nonempty,

v otherwise.
(15)

Set S′ = S′ ∪ S′
v, and repeat for the next vertex.

Clearly, all S′
v’s are nonempty, which means that S′ contains at least one vertex from N+(v) for all

v ∈ V , which means S′ is dominating.
Suppose for the sake of contradiction that S′ contains both u and v for some edge uv ∈ E. We know

S did not contain both of them, by (ii). If S contained exactly one of them, without loss of generality
let it be u. Then (Sv ∪ S′) ∩N+(v) also contains u. In particular, this means that we did not add v to
S′
v and consequently also not to S′, a contradiction. If S contained neither of them, then because we do

the process iteratively, one of them will be added first to S′. Without loss of generality let it be u. Then
again (Sv ∪ S′) ∩ N+(v) contains u, so we reach a contradiction in the same way. In conclusion, S′ is
independent.

Before we added S′
v to S′, we had |S′

v \ S
′| ≤ |Sv|. Consequently, |S′| ≤ ∪v∈V |Sv| ≤ |S| = k.

By this claim, any minimum-cardinality vertex-stabilizer of (G′,1, c) is of the same size as any mini-
mum independent dominating set of G. Further, any efficient α-approximation algorithm for the vertex-
stabilizer problem translates into an efficient α-approximation algorithm for the MIDS problem. Hence,
the result follows from the inapproximability of the MIDS problem.

5 Cooperative Matching Games

Cooperative matching games in unit-capacity graphs, defined in the introduction, extend quite easily to
capacitated graphs, by replacing each ν with νc. In unit-capacity graphs G the following statements are
equivalent [7, 13]:

(i) G is stable,

(ii) there exists an allocation in the core of the CMG on G,

(iii) there exists a stable outcome for the NBG on G.

We here note that the equivalence does not extend to capacitated graphs.
In particular, as mentioned in the introduction, we still have (i) ⇐⇒ (iii) proven in [2, corollary

3.3]. The implication (i) =⇒ (ii) still holds, and follows from [2, lemma 3.4]4. However, the graph G
given in figure 3 shows that (ii) 6=⇒ (i) (and hence (ii) 6=⇒ (iii)).

Assuming all the edges of G in figure 3 have unit weight, it is quite easy to see that νc(G) = 3 and
νcf (G) = 3.5, thus G is not stable. One can check that y = (1, 1, 1, 0) is in the core.

References

[1] Sara Ahmadian, Hamideh Hosseinzadeh, and Laura Sanità. Stabilizing network bargaining games
by blocking players. Mathematical Programming, 172:249–275, 2018.

[2] MohammadHossein Bateni, MohammadTaghi Hajiaghayi, Nicole Immorlica, and Hamid Mahini.
The cooperative game theory foundations of network bargaining games, 2010.

4 [2] assumes that the graph is bipartite, but bipartiteness is not needed in their proof.

13

2 2

2 1

1 1

1 0

Figure 3: On the left: the graphG where the values close to the vertices indicate the capacities.
Bold edges indicate a maximum c-matching. On the right: the graph G where the values close
to the vertices indicate the allocation y. A maximum fractional c-matching is given by xe =

1
2

for dashed edges, xe = 1 otherwise.

[3] Péter Biró, Walter Kern, and Daniël Paulusma. On solution concepts for matching games. In Jan
Kratochv́ıl, Angsheng Li, Jǐŕı Fiala, and Petr Kolman, editors, Theory and Applications of Models
of Computation, pages 117–127, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[4] Adrian Bock, Karthekeyan Chandrasekaran, Jochen Könemann, Britta Peis, and Laura Sanità.
Finding small stabilizers for unstable graphs. Mathematical Programming, 154:173–196, 2015.

[5] Karthekeyan Chandrasekaran. Graph Stabilization: A Survey, pages 21–41. Springer Singapore,
Singapore, 2017.

[6] Karthekeyan Chandrasekaran, Corinna Gottschalk, Jochen Könemann, Britta Peis, Daniel
Schmand, and Andreas Wierz. Additive stabilizers for unstable graphs. Discrete Optimization,
31:56–78, 2019.

[7] Xiaotie Deng, Toshihide Ibaraki, and Hiroshi Nagamochi. Algorithmic aspects of the core of com-
binatorial optimization games. Mathematics of Operations Research, 24(3):751–766, 1999.

[8] Linda Farczadi. Matchings and games on networks. PhD thesis, University of Waterloo, 2015.

[9] Linda Farczadi, Konstantinos Georgiou, and Jochen Könemann. Network bargaining with general
capacities. arXiv preprint arXiv:1306.4302, 2013.

[10] Corinna Gottschalk. Personal communication, 2018.

[11] Magnús M. Halldórsson. Approximating the minimum maximal independence number. Information
Processing Letters, 46(4):169–172, 1993.

[12] Takehiro Ito, Naonori Kakimura, Naoyuki Kamiyama, Yusuke Kobayashi, and Yoshio Okamoto.
Efficient stabilization of cooperative matching games. Theoretical Computer Science, 677:69–82,
2017.

[13] Jon Kleinberg and Éva Tardos. Balanced outcomes in social exchange networks. In Proceedings of
the 40th STOC, pages 295–304, 2008.

[14] Zhuan Khye Koh and Laura Sanità. Stabilizing weighted graphs. Mathematics of Operations Re-
search, 45(4):1318–1341, 2020.

[15] Jochen Könemann, Kate Larson, and David Steiner. Network bargaining: Using approximate block-
ing sets to stabilize unstable instances. In Maria Serna, editor, Algorithmic Game Theory, pages
216–226, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[16] John F. Nash. The bargaining problem. Econometrica, 18:155–162, 1950.

[17] L.S. Shapley and M. Shubik. The assignment game i: The core. International Journal of Game
Theory, 1(1):111–130, 1971.

14

	1 Introduction
	2 Preliminaries and Notation
	3 M-vertex-stabilizer
	4 Vertex-Stabilizer
	5 Cooperative Matching Games

