
ar
X

iv
:2

30
3.

00
23

7v
1

 [
m

at
h.

O
C

]
 1

 M
ar

 2
02

3

Monoidal Strengthening of Simple V-Polyhedral

Disjunctive Cuts

Aleksandr M. Kazachkov∗ Egon Balas†

February 28, 2023

Abstract

Disjunctive cutting planes can tighten a relaxation of a mixed-integer linear pro-
gram. Traditionally, such cuts are obtained by solving a higher-dimensional linear
program, whose additional variables cause the procedure to be computationally pro-
hibitive. Adopting a V-polyhedral perspective is a practical alternative that enables the
separation of disjunctive cuts via a linear program with only as many variables as the
original problem. The drawback is that the classical approach of monoidal strength-
ening cannot be directly employed without the values of the extra variables appearing
in the extended formulation. We derive how to compute these values from a solution
to the linear program generating V-polyhedral disjunctive cuts. We then present com-
putational experiments with monoidal strengthening of cuts from disjunctions with as
many as 64 terms. Some instances are dramatically impacted, with strengthening in-
creasing the gap closed by the cuts from 0 to 100%. However, for larger disjunctions,
monoidal strengthening appears to be less effective, for which we identify a potential
cause.

1 Introduction

Disjunction-based cutting planes, or disjunctive cuts, are a strong class of valid inequalities
for mixed-integer programming problems, which can be used as a framework for analyzing
or generating general-purpose cuts [8]. Their strength comes at a high computational cost,
due to which only very special cases of disjunctive cuts have been deployed in optimization
solvers. As a step towards practicality, Balas and Kazachkov [10] introduce a relaxation-
based V-polyhedral paradigm for disjunctive cuts, which trades off some theoretical strength
for computational efficiency. The approach selects a small number of points and rays whose
convex hull forms a relaxation of the disjunction; as a result, some potential cuts are no
longer valid, but strong cuts are nevertheless guaranteed to be obtainable. Further, cuts

∗University of Florida, Gainesville, FL, USA (akazachkov@ufl.edu).
†E. Balas passed away during the preparation of this manuscript, which started when both authors were

at Carnegie Mellon University. The core ideas and early results are documented in the PhD dissertation
of Kazachkov [37, Chapter 5]. A.M. Kazachkov completed the computational experiments, analysis, and
writing independently.

1

http://arxiv.org/abs/2303.00237v1
mailto:akazachkov@ufl.edu

from this relaxation, called V-polyhedral (disjunctive) cuts (VPCs), can be generated via a
relatively compact linear program, called the point-ray linear program (PRLP), compared to
the usual higher-dimensional cut-generating linear program (CGLP) for disjunctive cuts [8,
14, 15]. Hence, with VPCs, it is more computationally efficient to improve the disjunction
by adding terms and increase the relaxation quality, thereby accessing disjunctive cuts that
differ substantially from the families of cuts typically applied in solvers.

VPCs improve the average (integrality) gap closed substantially relative to Gomory
mixed-integer cuts (GMICs) and other standard cuts in solvers. However, the computational
experiments by Balas and Kazachkov [10] reveal a curiosity: there are instances for which
GMICs (which can be derived as cuts from a two-term disjunction) remain stronger than
VPCs even when using large variable disjunctions. For example, for the instance 10teams,
originally part of the 3rd Mixed Integer Programming Library (MIPLIB) [18], GMICs close
100% of the integrality gap, while VPCs from a 64-term disjunction close 0% of the gap.

A potential explanation for this phenomenon is that GMICs benefit from a strengthen-
ing procedure that cannot be directly applied to VPCs. Specifically, the GMIC two-term
disjunction can be obtained via monoidal strengthening of a disjunction on a single vari-
able [9, 12, 38]. Monoidal strengthening of cuts from more general disjunctions is also
possible, but the procedure ostensibly requires a simple disjunction, where each term only
imposes a single new constraint. This is not a theoretical barrier, as any cut from a general
disjunction can also be derived from a simple disjunction obtained from the general one by
aggregating the constraints defining each disjunctive term. The multipliers for this aggre-
gation are precisely the Farkas certificate for the validity of the cut. The key challenge for
VPCs is that this certificate is not readily available, because the PRLP only has variables for
the cut coefficients, compared to the CGLP that explicitly includes variables for the Farkas
multipliers. Our contributions, summarized next, are to identify a way to efficiently apply
monoidal strengthening for the particular version of the VPC framework introduced in Balas
and Kazachkov [10], as well as to implement and computationally evaluate this strengthening
idea.

Contributions. Given a VPC, one can solve the CGLP with cut coefficients fixed and re-
trieve the required values of the aggregation multipliers, in order to apply monoidal strength-
ening. Unfortunately, the computational effort associated to this is likely to be prohibitive.
Our first contribution, discussed in Section 3, is observing that solving the CGLP is unnec-
essary: it suffices to use the inverse of an easily-identified nonsingular matrix per disjunctive
term. Furthermore, for the type of simple VPCs proposed and tested by Balas and Kazachkov
[10], this inverse is readily available within the cut generation process.

Next, in Section 4, we discuss computational experiments with strengthening simple
VPCs on a set of benchmark instances. We compare the strength to unstrengthened VPCs
and to GMICs, for disjunctions ranging in size up to 64 terms. We find that strengthen-
ing can significantly improve the gap closed for some instances. Furthermore, we see that
GMICs and unstrengthened VPCs tend to be complementary in terms of which instances
they benefit, but applying monoidal strengthening enables the two families to be simultane-
ously effective for more instances. The results are most striking for two-term disjunctions,
in which strengthened VPCs close 40% more gap than unstrengthened VPCs, on average.

2

For example, returning to the instance 10teams, the VPCs from a single variable disjunction
close 0% of the integrality gap, but this value goes to 100% after strengthening the cuts.
However, as the size of the disjunction increases, the relative improvement by strengthening
becomes smaller. Our final contribution, in Section 5, is identifying a theoretical source of
this weakness.

Related Work. A focal point in the literature on monoidal strengthening for disjunctive
cuts [9] (see also Balas [8, Section 7]) is the special case of split disjunctions, which are parallel
two-term disjunctions that are used for GMICs and related cut families. In this context, the
use of the CGLP leads to lift-and-project cuts (L&PCs) [14], to which monoidal strengthening
can be applied [15, Section 2.4]. The family of strengthened L&PCs is equivalent to GMICs,
as shown by Balas and Perregaard [12], and to mixed-integer rounding inequalities [45, 46], as
discussed in Cornuéjols and Li [23]. Balas and Perregaard [12] provide an appealing geometric
interpretation of this connection via intersection cuts [7]: every undominated L&PC can be
derived as an intersection cut from a basis in the original problem space. As a result, L&PCs
can be generated without explicitly building the CGLP and without hindering a posteriori
strengthening of the cuts. Bonami [19] presents a different method for separating L&PCs in
the original space of variables that is also amenable to strengthening. Avoiding formulating
the higher-dimensional CGLP is the key advance that has enabled the effective inclusion of
L&PCs in several solvers.

Sidestepping the CGLP continues to be crucial to move beyond split disjunctions. How-
ever, the aforementioned approaches [12, 19] rely on properties of the split set; for example,
with general disjunctions, there exist cuts that dominate all intersection cuts [5, 40, 11], so
one cannot hope to merely pivot among bases in the original space. Nonetheless, a stream
of work [36, 20, 40] extends cut generation in the original space to general two-term disjunc-
tions, and monoidal strengthening applies to the resulting cuts [28]. No further extension of
this technique to more general disjunctions has been reported in the literature.

This motivates the use of VPCs, due to the PRLP’s advantage of having the same number
of variables as the original problem. The difficulty is that a description of a polyhedron using
points and rays may be exponentially larger than using inequalities, causing exponentially
many constraints in the PRLP. This naturally leads to row generation in prior work by Per-
regaard and Balas [48] and Louveaux et al. [44] when invoking the V-polyhedral perspective.
In the experiments by Perregaard and Balas [48], for disjunctions with 16 terms, separating
cuts via the PRLP with row generation is an order of magnitude faster than via the CGLP.
Nonetheless, row generation is time consuming, as multiple PRLPs must be solved to find
one valid inequality.

The remedy by Balas and Kazachkov [10] is to construct a relaxation of each disjunctive
term, where the resulting PRLP has few rows and immediately produces valid cuts. This is
successful at quickly generating cuts from large disjunctions, but the average gap closed by
the cuts alone is less than that from GMICs. It is only when VPCs and GMICs are used
together that a marked improvement in gap closed is observed, which shows that VPCs affect
a different region of the relaxation than GMICs. However, as mentioned with the 10teams

instance in which GMICs close all of the gap, while VPCs close none, the results also suggest
that the absence of strengthening for VPCs is a significant deficiency.

3

As discussed, the vanilla monoidal strengthening presented by Balas and Jeroslow [9]
does not directly apply to VPCs due to the lack of the values of the aggregation multipliers.
Balas and Qualizza [13, Section 6] show that a cross-polytope disjunction, arising from using
multiple rows of the simplex tableau, can be strengthened by modularizing the inequalities
defining the disjunction, replacing the coefficients of integer-restricted nonbasic variables,
and they prove the form of the optimal strengthening for the two-row case.

An alternative to monoidal strengthening is the group-theoretic approach [35, 32], equiva-
lent to monoidal strengthening under some conditions. Specifically, “trivial lifting” has been
applied to simple disjunctions [26, 24, 16, 25, 49]. Evaluating the trivial lifting is expensive
in general [30], and it does not directly apply to arbitrary disjunctive cuts.

While this paper exclusively approaches disjunctive cut generation via the VPC frame-
work, there exist other methods for producing strong disjunctive cuts without solving the
higher-dimensional CGLP. Any such approach could potentially benefit from the efficient
computation of a Farkas certificate. For example, a common technique in the literature is
to use a disjunction to strengthen cuts via tilting, which has been applied to linear and
nonlinear integer optimization problems [47, 39, 37, 42].

2 Notation and Background

Our target is to find strong valid cuts to tighten the natural linear relaxation of the mixed-
integer linear program below, given rational data:

min
x∈Rn

cTx

Ai·x ≥ bi for i ∈ [q],

xj ≥ 0 for j ∈ [n],

xj ∈ Z for j ∈ I.

(IP)

Here, [n] ..= {1, . . . , n} for any integer n,and I ⊆ [n] is the set of integer-restricted variables.
For a given matrix A, we denote the ith row by “Ai·” and the jth column by “A

·j”. Let PI

denote the feasible region of (IP), and let P ..= {x ∈ Rn
≥0

: Ax ≥ b}.
One way to strengthen the formulation P (with respect to PI) is to use logical conditions

to formulate a disjunction, from which valid inequalities for PI can then be derived. Suppose
∨t∈T (Dtx ≥ Dt

0) is a valid disjunction, in the sense that PI ⊆ ∪t∈T {x ∈ Rn : Dtx ≥ Dt
0}.

Let Qt ..= {x ∈ P : Dtx ≥ Dt
0}. This is an H-polyhedral (inequality) description. We assume

Qt 6= ∅ for all t ∈ T .
Let P t ..= {x ∈ Rn : Atx ≥ bt} denote a relaxation of Qt, where Atx ≥ bt is defined by a

subset of the constraints defining Qt. For the VPC procedure, we must ensure that P t has rel-
atively few extreme points and rays, i.e., it has a compact V-polyhedral description (P t, Rt),
so that P t = conv(P t) + cone(Rt). Define the disjunctive hull PD

..= cl conv(∪t∈T P t), which
can be described by the point-ray collection (P, R) ..= (∪t∈T P t, ∪t∈T Rt). For t ∈ T , let q′

t

be the number of rows of At. We first summarize some important disjunctive programming
concepts and the two cut-generating paradigms that we are relating.

4

CGLP. One way to generate valid cuts for PD is through the CGLP, which is an application
of disjunctive programming duality [8, Section 4]. Specifically, an inequality αTx ≥ β is valid
for PD if and only if the inequality is valid for each P t, t ∈ T . Consequently, by Farkas’s
lemma [27], αTx ≥ β is valid for PD if and only if the following system is feasible, in variables
(α, β, {vt}t∈T), where vt ∈ R1×q′

t is a row vector of appropriate length for each t ∈ T :

αT = vtAt

β ≤ vtbt

vt ∈ R
q′

t

≥0



 for all t ∈ T . (1)

We refer to {vt}t∈T as the Farkas certificate for the validity of αTx ≥ β for PD.
To generate cuts with (1), one typically maximizes the violation with respect to a PI-

infeasible point, after adding a normalization, which can be a crucial choice [29]. For example,
the constant of the cut can be fixed to β̄ ∈ R:

{
(α, {vt}t∈T) : (α, β̄, {vt}t∈T) is feasible to (1)

}
. (CGLP(β̄))

PRLP. An alternative way to generate disjunctive cuts is through the reverse polar of
PD [8, Section 5], which is defined with respect to a given β̄ ∈ R as

{
α ∈ Rn : αTx ≥ β̄ for all x ∈ PD

}
.

Clearly this captures all of the valid inequalities for PD whose constant is equal to β̄. Since
x ∈ PD if and only if x ∈ conv(P)+cone(R), it holds that αTx ≥ β̄ is valid for PD if and only
if it is satisfied by all of the points and rays in (P, R). This yields the system (PRLP(β̄)),
in variables α ∈ Rn, for a fixed β̄:

αTp ≥ β̄ for all p ∈ P

αTr ≥ 0 for all r ∈ R.
(PRLP(β̄))

The feasible solutions to (PRLP(β̄)) are what we refer to as VPCs.
As discussed, the advantage of (PRLP(β̄)) over (CGLP(β̄)) is the absence of the Farkas

multipliers as variables, so VPCs are generated without requiring a lifted space. As we see
next, the disadvantage to (PRLP(β̄)) is that these missing variables are used in strengthening
the cuts after they are generated.

Monoidal strengthening. Balas and Jeroslow [9] strengthen cuts with a monoid :

M

..=

{
m ∈ Z|T | :

∑

t∈T

mt ≥ 0

}
. (M)

It is also assumed that, for each t ∈ T , there exists a finite lower bound vector ℓt such that
Dtx ≥ ℓt for all x ∈ PI . Let ∆t ..= Dt

0 − ℓt.
To strengthen the cut, we improve the underlying disjunction. Specifically, given a valid

disjunction ∨t∈T (Dtx ≥ Dt
0), for any m ∈M and k ∈ I, the disjunction ∨t∈T (D̃tx ≥ D̃t

0) is

5

also valid, where D̃t
·k

..= Dt
·k + ∆t

mt, and D̃t
·j = Dt

·j for all j 6= k. The strengthened cut is
obtained by applying the Farkas certificate of the unstrengthened cut to the strengthened
disjunction.

Let qt denote the number of constraints in Dtx ≥ Dt
0 for term t ∈ T . Given row vectors

(ut, ut
0) ∈ R1×q

≥0 ×R1×qt

≥0 , define
αt

k
..= utA

·k + ut
0D

t
·k. (αt

k)

Then (using an appropriate CGLP) the cut αTx ≥ β is valid for PD, where

αk
..= max

t∈T
{αt

k} and β ..= min
t∈T

{utb + ut
0D

t
0}.

(The above applies to cuts valid for ∨t∈T Qt; for PD, assume a value of zero for the multipliers
on constraints of Qt that are not present in P t.) Define ût

k
..= αk−αt

k. We now apply monoidal
strengthening to the cut αTx ≥ β.

Theorem 1 ([9, Theorem 3]). Given (ut, ut
0) ∈ R

1×q
≥0 × R1×qt

≥0 for t ∈ T , the inequality
α̃Tx ≥ β is valid for PI , where α̃k

.

.= αk for k /∈ I, and, for k ∈ I,

α̃k
.

.= inf
m∈M

max
t∈T

{
αt

k + ut
0∆

t
mt

}
= αk + inf

m∈M

max
t∈T

{
−ût

k + ut
0∆

t
mt

}
.

Thus, the Farkas certificate {(ut, ut
0)}t∈T is used for monoidal strengthening. Computing

these values without solving the CGLP is our next target.

3 Correspondence Between PRLP and CGLP Solu-

tions

Let ᾱTx ≥ β̄ be a valid inequality for PD, corresponding to a feasible solution to (PRLP(β̄)).
Our goal is to compute Farkas multipliers certifying the cut’s validity without explicitly
solving the CGLP. While one can solve for values vt that satisfy ᾱT = vtAt, β̄ = vtbt, vt ≥ 0,
we provide an improvement via basic linear programming concepts. We first present a special
case in Sections 3.1 and 3.2, when the disjunctive terms P t are not primal degenerate, a
condition that is satisfied by the VPC procedure implemented for our experiments. Then,
Section 3.3 discusses a challenge posed by the general case.

We assume that ᾱTx ≥ β̄ is supporting for all terms in T . This is for ease of notation, as
otherwise we would need to add an index t to the constant side. Concretely, the assumption
is without loss of generality because, for any term t ∈ T , we can increase the constant side of
the cut until we obtain an inequality ᾱTx ≥ β̄t that is supporting for term t, though perhaps
invalid for other terms. The value of β̄t can be quickly calculated by taking the dot product
of ᾱ with every point in P t. We can then find a certificate vt of the validity of ᾱTx ≥ β̄t for
P t, which also serves as a certificate for the weaker inequality ᾱTx ≥ β̄. We state, without
proof, a slightly more general version of this in Lemma 2.

Lemma 2. For t ∈ T , let Ct ⊇ P t and β̄t ≥ β̄ such that ᾱTx ≥ β̄t is valid for Ct. Then,
given any Farkas certificate for the validity of the inequality ᾱTx ≥ β̄t for Ct, the same
multipliers certify that ᾱTx ≥ β̄ is valid for P t.

6

For convenience, we introduce extra notation to refer to the feasible region of Qt as
Âtx ≥ b̂t, and we define the number of these constraints as q̂t

..= q + qt + n. For N ⊆ [q̂t],

define Ât
Nx ≥ b̂t

N as the constraints of Qt indexed by N .

3.1 Simple VPCs

Our experimental setup in Section 4 follows that of Balas and Kazachkov [10], who focus on
a variant of the VPC framework called simple VPCs. Let pt be a vertex of Qt, for t ∈ T .
There exists a cobasis for pt, a set of n linearly independent constraints among those defining
Qt that are tight at pt. Let N t ⊆ [q̂t] denote the indices of these n constraints, and define

the basis cone Ct ..= {x ∈ Rn : Ât
Ntx ≥ b̂t

Nt}. The inequality ᾱTx ≥ β̄ is a simple VPC if P t

is a basis cone for each term. The (translated) cone Ct has a particularly easy V-polyhedral
representation: there is a single extreme point pt, and there are n extreme rays {ri}i∈[n]. The
ith extreme ray of Ct corresponds to increasing the “slack” on the ith constraint defining
Ct [21, Chapter 6]. Lemma 3 states that, for simple VPCs, the values of the variables {vt}t∈T

to (CGLP(β̄)) can be computed via the dot product of the cut coefficients with the rays of
Ct.

Lemma 3. Let Ct be a basis cone defined by N t, the indices of n linearly independent
constraints of Qt. If ᾱTx ≥ β̄ is valid for Ct, then the multiplier on constraint i ∈ [n] of Ct

has value vt
i = ᾱTri, where ri is column i of (Ât

Nt)−1.

Proof. Add nonnegative slack variables st
Nt for each row indexed by N t, so that Ât

Ntx−st
Nt =

bt
Nt . Then observe that, being a cobasis, Ât

Nt is invertible, so x = (Ât
Nt)−1bt

Nt +(Ât
Nt)−1st

Nt =
pt +

∑
i∈Nt rist

i. The last equality follows from the derivation of the rays of Ct; see, for
example, Conforti et al. [21, Chapter 6].

Therefore, for simple VPCs, the Farkas certificate can be computed with no extra effort
when given the point-ray representation of PD. Moreover, Balas and Kazachkov [10] obtain
simple VPCs from the leaf nodes of a partial branch-and-bound tree and use pt as the optimal
solution to the linear relaxation at each leaf; implemented carefully, this can further reduce
the computational load for generating then strengthening VPCs, as the values of the rays
can be read from the optimal tableau, which is typically readily available from a solver.

3.2 Relaxations Without Primal Degeneracy

Suppose the relaxation P t ⊇ Qt is a simple polyhedron, in which every extreme point and ray
is defined by a unique basis [50]. The basis cone Ct used for simple VPCs is one example.
While the basis cone setting may seem quite narrow, it turns out to encompass more general
situations. Specifically, there always exists a basis cone Ct ⊇ P t such that ᾱTx ≥ β̄ is valid
and supporting for Ct.

Lemma 4. Let P t be a simple polyhedron, and suppose the point-ray collection (P t, Rt)
satisfies P t = conv(P t) + cone(Rt). Let ᾱTx ≥ β̄ be a valid inequality for P t. Then there
exists a vertex pt ∈ Pt such that ᾱTx ≥ β̄ is valid for the basis cone Ct associated to pt,
defined with respect to the constraints of P t.

7

x1 = 0

x1 = 1

(c1)

(c2)

(c3)

x1 = 0

x1 = 1
p

1

p
2

p
3

Figure 1: Example 1: Disjunctive terms with primal degeneracy, despite a nondegenerate
initial polyhedron. The VPC is the red wavy line in the second panel.

Proof. Let pt be an optimal solution to minx{ᾱTx : x ∈ P t} = minp{ᾱTp : p ∈ Pt}. Define
β̄t

..= ᾱTp. Note that the rays in Rt need not be considered, as the optimization problem
must be bounded since ᾱTx ≥ β̄t is valid for all x ∈ P t. The point pt has a unique basis,
so the basis cone Ct is defined by the (precisely) n constraints of P t that are tight at pt.
Optimality of pt implies all reduced costs are nonnegative. It follows that ᾱTr ≥ 0 every ray
r ∈ Ct. Since ᾱTpt = β̄t ≥ β̄, the inequality ᾱTx ≥ β̄ is valid for Ct.

Therefore, we can invoke Lemmas 2 and 3 to find the Farkas certificate for this case.
Note that, when the given point-ray collection only contains extreme points and rays, the
rays of Ct for any basis cone of the simple polyhedron P t can be computed as the rays Rt,
along with the directions p−pt for every point p ∈ Pt that is adjacent (one pivot away) from
pt.

3.3 Relaxations with Primal Degeneracy

Up to now, we have made the convenient assumption that the relaxation P t is a simple
polyhedron. More generally, there always exists a basis cone Ct, such that a cut valid for
P t is valid for Ct. With Example 1, we illustrate the complication if ᾱTx ≥ β̄ is supporting
at a primal degenerate point of P t: a basis for that point needs to be chosen carefully, as
the inequality may not be valid for some basis cones. It can be computationally involved
to find a valid basis in these situations, which prevents a direct application of our approach
relying on simple polyhedra. The purpose of this example is to highlight a crucial obstacle
to a complete correspondence between PRLP and CGLP solutions, but we do not further
investigate the nondegenerate case in this paper.

8

Example 1. Figure 1 shows a polyhedron P , defined as the feasible solutions to

−(13/8)x1 − (1/4)x2 − x3 ≥ −15/8 (c1)

(1/2)x1 + x2 ≥ 1/2 (c2)

(1/2)x1 − x3 ≥ −3/4 (c3)

(1/2)x1 − x2 ≥ −1/2 (c4)

x2 ≥ 0. (c5)

A valid cut from the disjunction (−x1 ≥ 0)∨(x1 ≥ 1) has coefficients ᾱT = (−5/8, −1/4, −1)
and constant β̄ = −7/8. The cut, depicted in the right panel, is incident to point p1 =
(0, 1/2, 3/4) on P 1 ..= {x ∈ P : −x1 ≥ 0}. This point is tight for four inequalities: three
defining P (constraints (c2)–(c4)), and the disjunction-defining inequality −x1 ≥ 0. Note
that P is simple, but P 1 is not.

To construct the cobasis N1, such that the inequality is valid for the associated basis
cone C1, we must select three linearly independent constraints among those that are tight
at p1. One of the inequalities must be −x1 ≥ 0, as otherwise we have not imposed the
disjunction at all (but we also know the cut is not valid for P). It can be verified that
the only valid choice for this example is N1 containing the indices for (c3), (c4), and the
disjunctive inequality −x1 ≥ 0. �

4 Computational Experiments

We implement monoidal strengthening for simple VPCs, building on the code used by Balas
and Kazachkov [10] from https://github.com/akazachk/vpc. Our goal for the computa-
tional study is to measure the effect of monoidal strengthening on the percent integrality
gap closed by VPCs, compared to unstrengthened VPCs and GMICs, and evaluated across
different disjunction sizes.

The code is run on HiPerGator, a shared cluster through Research Computing at the
University of Florida. The computational setup is nearly identical to the one described in
Balas and Kazachkov [10, Section 5 and Appendix C]. We select instances from the union
of the MIPLIB [17, 18, 4, 41, 31], CORAL [22], and NEOS sets, restricted to those with
at most 5,000 rows and columns and based on other criteria given in [10, Appendix C].
This yields 332 instances suitable for gap closed comparisons. However, we only report on
274 of these 332 instances, due to memory resource constraints on the cluster. Despite this
reduced dataset, we can identify recurring patterns in how monoidal strengthening affects
instances. Instances are presolved with Gurobi [34], but cut generation is done via the
C++ interface to COIN-OR [43], using Clp [3] for solving linear programs and Cbc [1] for
constructing disjunctions based on partial branch-and-bound trees. We test six different
disjunction sizes, stopping branching when the number of leaf nodes (disjunctive terms) is
2ℓ for ℓ ∈ [6]. Thus, we report results with monoidal strengthening of disjunctive cuts from
up to 64-term disjunctions, though only one disjunction is used at a time. One GMIC is
generated per fractional integer variable at an optimal solution to the linear programming
relaxation, and the number of GMICs is also used as the limit for the number of VPCs we
generate for that instance per fixed choice of disjunction. One round of cuts is used for both

9

https://github.com/akazachk/vpc

procedures. GMICs are generated through CglGMI [2], while the VPC generation procedure
is identical to that of Balas and Kazachkov [10], with strengthening applied afterwards.

While Lemma 3 enables us to calculate the values of the Farkas multipliers via the rays of
each relaxation P t, and these values are readily available based on how we built the PRLP,
we do not avail of this connection. Instead, we calculate vt = ᾱT(At)−1. This approach
is still more direct than solving a feasibility version of (CGLP(β̄)) with ᾱ fixed. We opt
for numerical safety for this exploratory investigation, so we use the Eigen library [33] to
recompute the inverse of At rather than reading from the Cbc / Clp internal basis inverse
for each term.

We report the average percent integrality gap closed by VPCs and GMICs in Table 1.
The first six data rows contain the results for each fixed disjunction size. The penultimate
data row, labeled “Best”, uses the highest gap closed per instance across all disjunctions.
The last data row, labeled “Wins”, reports the number of instances for which the “Best” gap
closed is at least 10−3 higher than the gap closed by GMICs. In the columns, we refer to
GMICs by “G”, unstrengthened VPCs by “V”, strengthened VPCs by “V+”. The columns
“G+V” and “G+V+” refer to GMICs applied together with VPCs. There are two sets of
instances: “All” reports on all 274 instances, while “≥10%” reports on the 97 instances for
which unstrengthened VPCs alone close at least 10% of the integrality gap for the “Best”
values.

In terms of overall gap closed, despite the monoidal strengthening procedure, as reported
by Balas and Kazachkov [10], VPCs alone do not outperform GMICs for the “All” set, but
using VPCs and GMICs together provides around 40% improvement in gap closed relative
to GMICs alone. While adding VPCs with GMICs might double the number of cuts, one
round of VPCs continues to close substantial more gap even after multiple rounds of solver-
default cuts [10]. Hence, VPCs tighten the relaxation in different regions relative to GMICs.
This is also highlighted by the “≥10%” set, which are instances for which VPCs have strong
performance; for this set, GMICs are relatively weaker, with the best VPCs per instance
(used alone) providing a 75% improvement in average percent gap closed over GMICs alone.
We also see this in the “Wins” row: for the “≥10%” set, VPCs alone outperform GMICs for
73 of the 97 instances in the set.

Next, we summarize observations about the effect of monoidal strengthening. We start
with the first data row, in which VPCs are derived from one split disjunction per instance.
For the set “All”, monoidal strengthening affects the gap closed by VPCs for 87 instances
and increases the average gap closed by VPCs by ~1% from 2.28% to 3.25%, a 40% relative
improvement. For the set “≥10%”, the corresponding relative improvement is 20%.

Although the two-term case is encouraging, and a similar relative improvement in gap
closed would be substantial for larger disjunctions, this unfortunately does not materialize.
From Table 1, we see that as the disjunction size increases, the contribution of monoidal
strengthening tends to further diminish, with an absolute improvement in gap closed of only
0.1% for VPCs from a 64-term disjunction. We will discuss a potential cause for this in the
next section.

We now compare the columns “G+V+” to “G+V”. On the set “All”, even for split disjunc-
tions, the effect of strengthening is minimal when VPCs are combined with GMICs, with
strengthening only yielding an additional 0.23% in percent gap closed, preserving around
23% of the improvement between “V+” and “V”. For larger disjunctions, while the absolute

10

Table 1: Average percent gap closed by VPCs and GMICs according to the number of leaf
nodes used to construct the partial branch-and-bound tree. “Best” refers to the maximum
gap closed per instance across all partial tree sizes.

All ≥10%

G V V+ G+V G+V+ G V V+ G+V G+V+

2 leaves 17.21 2.28 3.25 17.95 18.18 16.29 5.34 6.47 18.13 18.59
4 leaves 17.21 3.35 3.72 18.37 18.54 16.29 7.81 8.35 19.14 19.48
8 leaves 17.21 4.51 4.76 18.98 19.15 16.29 10.84 11.16 20.66 20.91
16 leaves 17.21 6.41 6.57 20.54 20.67 16.29 15.81 16.05 24.86 25.04
32 leaves 17.21 8.78 8.97 22.31 22.48 16.29 21.82 22.28 29.59 29.97
64 leaves 17.21 10.46 10.57 23.72 23.83 16.29 25.59 25.85 32.90 33.14

Best 17.21 11.93 12.57 24.67 24.89 16.29 29.26 29.53 35.27 35.59
Wins 103 104 185 190 73 73 94 94

increase in gap closed by strengthened VPCs is small, over 80% of that improvement is
preserved when adding GMICs together with VPCs.

A closer examination of the results supports the hypothesis that monoidal strengthening
is a key factor enabling GMICs to close more gap than VPCs. We sort the instances by the
increase in gap closed by strengthened VPCs compared to unstrengthened ones, using the
best gap closed across all disjunction sizes, per column. Table 2 shows the top ten instances,
sorted by the last column, which calculates the difference between “V+” and “V”. The table
includes the instance 10teams discussed earlier, as well as six other instances for which
unstrengthened VPCs close at most 5% of the gap. We see that monoidal strengthening
of VPCs bridges a large portion of the difference with GMICs for these instances. For
neos-1281048, the situation is reversed: 121 GMICs close no gap while 29 unstrengthened
VPCs close 17% of the gap, which is further improved to 29% after strengthening. From this
table, we also observe the phenomenon that the value in column “G+V” is typically either
entirely due to GMICs or to VPCs, but which cuts are more important varies by instance.
The situation remains similar for the column “G+V+”, though now we find several cases
(f2gap401600, p0548, mkc) in which the two cut families add to each other.

While running time is not our focus, and the shared computing environment makes wall
clock times unreliable, Table 3 provides the average number of seconds for a single run of
each instance, including generating then strengthening VPCs. On average, cut generation
takes, in total, from less than a second for two-term disjunctions to 50 seconds for 16-
term disjunctions, 150 seconds for 32-term disjunctions, and nearly 9 minutes for 64-term
disjunctions. The time per cut, on average, is less than 0.1 seconds for two-term disjunctions,
ranging up to 9 seconds for 32 terms and over 30 seconds for 64 terms.

11

Table 2: Percent gap closed for instances where strengthening VPCs works best.

Instance G V V+ G+V G+V+ V+−V

10teams 100.00 0.00 100.00 100.00 100.00 100.00
neos-1281048 0.00 17.09 29.36 17.09 29.36 12.27
neos-1599274 34.65 0.00 11.19 34.65 34.65 11.19
f2gap401600 62.97 2.53 11.34 63.31 71.77 8.80
prod2 2.31 27.60 35.90 27.63 35.91 8.29
neos-942830 6.25 0.00 6.25 6.25 6.25 6.25
p0548 48.62 3.28 9.03 49.03 55.11 5.75
mkc 6.08 2.60 6.56 6.35 9.61 3.96
f2gap201600 60.27 8.58 12.13 60.27 60.27 3.56
neos-4333596-skien 20.84 7.05 9.83 20.84 20.85 2.78

5 Choosing a Relaxation Amenable to Strengthening

In this section, we examine a potential cause of the diminishing effect of monoidal strength-
ening with larger disjunctions. From Theorem 1, given an initial cut αTx ≥ β, we can
strengthen coefficient αk, k ∈ I, to

α̃k = αk + inf
m∈M

max
t∈T

{
−ût

k + ut
0∆

t
mt

}
,

where ût
k = αk − (utA

·k + ut
0D

t
·k) is the slack on the CGLP constraint αk ≥ utA

·k + ut
0D

t
·k.

Equivalently, ût
k is the Farkas multiplier for the nonnegativity constraint xk ≥ 0. The

next lemma restates the (known) reason that a nonbasic integral variable k is required for
monoidal strengthening.

Lemma 5. If ût
k = 0, then α̃k = αk.

Proof. In this case, α̃k = αk + inf
m∈M

maxt∈T {ut
0∆

t
mt} . Since

∑
t∈T mt ≥ 0 for every

m ∈M, and ut
0∆

t ≥ 0, the optimal solution is m = 0.

In the correspondence in Section 3, we ultimately find a point pt ∈ P t such that ᾱTpt = β̄t,
where β̄t = minp{ᾱTp : p ∈ Pt}. We then compute a basis cone at pt for which the cut is
valid and use this (translated) cone to compute the values of the Farkas certificate. However,
by complementary slackness, if pt

k > 0, then necessarily ût
k = 0.

Table 3: Average time (seconds) to generate the cuts in column V+ of Table 1.

Statistic Set 2 leaves 4 leaves 8 leaves 16 leaves 32 leaves 64 leaves

Cut time (s) All 0.76 6.39 15.33 49.90 149.84 525.78
≥10% 0.92 9.31 21.06 130.45 273.51 521.99

Time/cut (s) All 0.08 0.39 0.97 2.65 9.00 30.54
≥10% 0.07 0.35 0.79 2.46 7.75 20.19

12

Although at first this appears simultaneously unfortunate and unavoidable, there are
two potential remedies. First, there may be dual degeneracy in the choice of pt: each
such point can lead to a different Farkas certificate and therefore a different strengthening.
Second, as observed by Balas and Qualizza [6], “sometimes weaking a disjunction helps
the strengthening”. Though in that context, the weakening involves adding terms to the
disjunction, the sentiment applies to our setting as well: if β̄t > β̄, then one can seek a
different, potentially infeasible, basis of Qt in which more integer variables are nonbasic and
ᾱTx ≥ β̄ is still valid for the associated basis cone.

The computational results support the above intuition. When VPCs are generated from
a split disjunction, on average, around 95% of the generated cuts per instance have any
coefficient strengthened with the monoidal technique. This decreases to 85% for 64-term
disjunctions. Furthermore, on average among VPCs to which strengthening has been ap-
plied, 20% of the cut coefficients are strengthened for split disjunctions, while this value
steadily decreases as disjunction size increases, so among the analogous VPCs from 64-term
disjunctions, only 10% of the coefficients are strengthened.

6 Conclusion

We show that strengthening cuts from general disjunctions is possible without explicitly
solving a higher-dimensional CGLP, and that this strengthening can have a high impact for
certain instances. However, several challenges are also highlighted for future work. First,
the strengthening does not work well on average for larger disjunctions. While we propose
a viable explanation and remedy, it is computationally demanding and requires develop-
ment. Second, the optimal monoidal strengthening involves solving an integer program per
cut; this is a relatively small and easy problem, but it nonetheless can be slow for larger
disjunctions, as suggested by Table 3, which includes strengthening time. One can reduce
this load by selectively strengthening only the most promising cuts, identified by theoretical
properties or good heuristics, or to forego optimality in the strengthened cut coefficients.
Our computational results indicate that VPCs and GMICs seem to have complementary
affects; understanding this better is an opportunity to more widely adopt disjunctive cuts.

References

[1] COIN-OR Branch and Cut. https://github.com/coin-or/Cbc.

[2] COIN-OR Cut Generation Library. https://github.com/coin-or/Cgl.

[3] COIN-OR Linear Programming. https://github.com/coin-or/Clp.

[4] T. Achterberg, T. Koch, and A. Martin. MIPLIB 2003. Oper. Res. Lett., 34(4):361–372,
2006.

[5] Kent Andersen, Gérard Cornuéjols, and Yanjun Li. Split closure and intersection cuts.
Math. Program., 102(3, Ser. A):457–493, 2005.

13

https://github.com/coin-or/Cbc
https://github.com/coin-or/Cgl
https://github.com/coin-or/Clp

[6] E. Balas and A. Qualizza. Monoidal cut strengthening revisited. Discrete Optim., 9(1):
40–49, 2012.

[7] Egon Balas. Intersection cuts—a new type of cutting planes for integer programming.
Oper. Res., 19(1):19–39, 1971.

[8] Egon Balas. Disjunctive programming. Ann. Discrete Math., 5:3–51, 1979.

[9] Egon Balas and Robert G. Jeroslow. Strengthening cuts for mixed integer programs.
European J. Oper. Res., 4(4):224–234, 1980.

[10] Egon Balas and Aleksandr M. Kazachkov. V-polyhedral disjunctive cuts, 2022. URL
https://arxiv.org/abs/2207.13619.

[11] Egon Balas and Tamás Kis. On the relationship between standard intersection cuts,
lift-and-project cuts and generalized intersection cuts. Math. Program., pages 1–30,
2016.

[12] Egon Balas and Michael Perregaard. A precise correspondence between lift-and-project
cuts, simple disjunctive cuts, and mixed integer Gomory cuts for 0-1 programming.
Math. Program., 94(2-3, Ser. B):221–245, 2003. The Aussois 2000 Workshop in Combi-
natorial Optimization.

[13] Egon Balas and Andrea Qualizza. Intersection cuts from multiple rows: a disjunctive
programming approach. EURO J. Computat. Optim., 1(1):3–49, 2013.

[14] Egon Balas, Sebastián Ceria, and Gérard Cornuéjols. A lift-and-project cutting plane
algorithm for mixed 0-1 programs. Math. Program., 58(3, Ser. A):295–324, 1993.

[15] Egon Balas, Sebastián Ceria, and Gérard Cornuéjols. Mixed 0-1 programming by lift-
and-project in a branch-and-cut framework. Man. Sci., 42(9):1229–1246, 1996.

[16] Amitabh Basu, Pierre Bonami, Gérard Cornuéjols, and François Margot. Experiments
with two-row cuts from degenerate tableaux. INFORMS J. Comput., 23(4):578–590,
2011.

[17] R. E. Bixby, E. A. Boyd, and R. R. Indovina. MIPLIB: A test set of mixed integer
programming problems. SIAM News, 25:16, 1992.

[18] R. E. Bixby, S. Ceria, C. M. McZeal, and M. W. P Savelsbergh. An updated mixed
integer programming library: MIPLIB 3.0. Optima, 58:12–15, 6 1998.

[19] Pierre Bonami. On optimizing over lift-and-project closures. Math. Program. Comput.,
4(2):151–179, 2012.

[20] Pierre Bonami, Michele Conforti, Gérard Cornuéjols, Marco Molinaro, and Giacomo
Zambelli. Cutting planes from two-term disjunctions. Oper. Res. Lett., 41(5):442–444,
2013.

14

https://arxiv.org/abs/2207.13619

[21] Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Integer Programming,
volume 271 of Graduate Texts in Mathematics. Springer, Cham, 2014.

[22] CORAL. Computational Optimization Research at Lehigh. MIP instances.
coral.ise.lehigh.edu/data-sets/mixed-integer-instances/, 2020. Accessed
September 2020.

[23] Gérard Cornuéjols and Yanjun Li. Elementary closures for integer programs. Oper. Res.
Lett., 28(1):1–8, 2001.

[24] Santanu S. Dey and Laurence A. Wolsey. Two row mixed-integer cuts via lifting. Math.
Program., 124(1-2, Ser. B):143–174, 2010.

[25] Santanu S. Dey, Andrea Lodi, Andrea Tramontani, and Laurence A. Wolsey. On the
practical strength of two-row tableau cuts. INFORMS J. Comput., 26(2):222–237, 2014.

[26] Daniel G. Espinoza. Computing with multi-row Gomory cuts. Oper. Res. Lett., 38(2):
115–120, 2010.

[27] Julius Farkas. Theorie der einfachen Ungleichungen. J. Reine Angew. Math., 124:1–27,
1902.

[28] Tobias Fischer and Marc E. Pfetsch. Monoidal cut strengthening and generalized mixed-
integer rounding for disjunctions and complementarity constraints. Oper. Res. Lett., 45
(6):556–560, 2017.

[29] Matteo Fischetti, Andrea Lodi, and Andrea Tramontani. On the separation of disjunc-
tive cuts. Math. Program., 128(1-2, Ser. A):205–230, 2011.

[30] Ricardo Fukasawa, Laurent Poirrier, and Álinson S. Xavier. The (not so) trivial lifting
in two dimensions. Math. Program. Comp., 11(2):211–235, 2019.

[31] A. Gleixner, G. Hendel, G. Gamrath, T. Achterberg, M. Bastubbe, T. Berthold, et al.
MIPLIB 2017: Data-Driven Compilation of the 6th Mixed-Integer Programming Li-
brary. Math. Prog. Comp., 2021.

[32] Ralph E. Gomory and Ellis L. Johnson. Some continuous functions related to corner
polyhedra. Math. Program., 3(1):23–85, 1972.

[33] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. http://eigen.tuxfamily.org, 2010.

[34] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022.

[35] Ellis L. Johnson. On the group problem for mixed integer programming. Math. Program.
Stud., (2):137–179, 1974.

[36] Joaquim J. Júdice, Hanif D. Sherali, Isabel M. Ribeiro, and Ana M. Faustino. A
complementarity-based partitioning and disjunctive cut algorithm for mathematical pro-
gramming problems with equilibrium constraints. J. Global Optim., 36(1):89–114, 2006.

15

coral.ise.lehigh.edu/data-sets/mixed-integer-instances/

[37] Aleksandr M. Kazachkov. Non-Recursive Cut Generation. PhD thesis, Carnegie Mellon
University, 2018.

[38] Aleksandr M. Kazachkov and Felipe Serrano. Monoidal cut strengthening. In Oleg
Prokopyev and Panos M. Pardalos, editors, Encyclopedia of Optimization. Springer US,
Boston, MA. Under review.

[39] Mustafa Kılınç, Jeff Linderoth, James Luedtke, and Andrew Miller. Strong-branching
inequalities for convex mixed integer nonlinear programs. Comput. Optim. Appl., 59(3):
639–665, 2014.

[40] Tamás Kis. Lift-and-project for general two-term disjunctions. Discrete Optim., 12:
98–114, 2014.

[41] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R. E. Bixby, et al.
MIPLIB 2010: mixed integer programming library version 5. Math. Program. Comput.,
3(2):103–163, 2011.

[42] Jan Kronqvist and Ruth Misener. A disjunctive cut strengthening technique for convex
MINLP. Optim. Eng., 22(3):1315–1345, 2021.

[43] Robin Lougee-Heimer. The Common Optimization INterface for Operations Research:
Promoting open-source software in the operations research community. IBM Journal of
Research and Development, 47, 2003.

[44] Quentin Louveaux, Laurent Poirrier, and Domenico Salvagnin. The strength of multi-
row models. Math. Program. Comput., 7(2):113–148, 2015.

[45] George L. Nemhauser and Laurence A. Wolsey. Integer and combinatorial optimization.
Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley &
Sons, Inc., New York, 1988.

[46] George L. Nemhauser and Laurence A. Wolsey. A recursive procedure to generate all
cuts for 0-1 mixed integer programs. Math. Program., 46(1):379–390, 1990.

[47] Michael Perregaard. Generating Disjunctive Cuts for Mixed Integer Programs. PhD
thesis, Carnegie Mellon University, 9 2003.

[48] Michael Perregaard and Egon Balas. Generating cuts from multiple-term disjunctions.
In Integer Programming and Combinatorial Optimization, volume 2081 of Lecture Notes
in Comput. Sci., pages 348–360. Springer, Berlin, 2001.

[49] Álinson S. Xavier, Ricardo Fukasawa, and Laurent Poirrier. Multirow intersection cuts
based on the infinity norm. INFORMS J. Comput., 33(4):1624–1643, 2021.

[50] Günter M. Ziegler. Lectures on Polytopes, volume 152 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 1995.

16

	1 Introduction
	2 Notation and Background
	3 Correspondence Between PRLP and CGLP Solutions
	3.1 Simple VPCs
	3.2 Relaxations Without Primal Degeneracy
	3.3 Relaxations with Primal Degeneracy

	4 Computational Experiments
	5 Choosing a Relaxation Amenable to Strengthening
	6 Conclusion

