
ar
X

iv
:2

21
1.

01
09

7v
2

 [
cs

.D
S]

 1
5

Ju
n

20
23

Set Selection under Explorable Stochastic Uncertainty via Covering
Techniques

Nicole Megow* Jens Schlöter*

June 16, 2023

Abstract

Given subsets of uncertain values, we study the problem of identifying the subset of minimum total
value (sum of the uncertain values) by querying as few values as possible. This set selection problem

falls into the field of explorable uncertainty and is of intrinsic importance therein as it implies strong
adversarial lower bounds for a wide range of interesting combinatorial problems such as knapsack and
matchings. We consider a stochastic problem variant and give algorithms that, in expectation, improve
upon these adversarial lower bounds. The key to our results is to prove a strong structural connection
to a seemingly unrelated covering problem with uncertainty in the constraints via a linear programming
formulation. We exploit this connection to derive an algorithmic framework that can be used to solve
both problems under uncertainty, obtaining nearly tight bounds on the competitive ratio. This is the first
non-trivial stochastic result concerning the sum of unknown values without further structure known for
the set. With our novel methods, we lay the foundations for solving more general problems in the area
of explorable uncertainty.

1 Introduction

In the setting of explorable uncertainty, we consider optimization problems with uncertainty in the numeric
input parameters. Instead of having access to the numeric values, we are given uncertainty intervals that
contain the precise values. Each uncertainty interval can be queried, which reveals the corresponding pre-
cise value. The goal is to adaptively query intervals until we have sufficient information to optimally (or
approximately) solve the underlying optimization problem, while minimizing the number of queries.

This paper mainly considers the set selection problem (MINSET) under explorable uncertainty. In this
problem, we are given a set of n uncertain values represented by uncertainty intervals I = {I1, . . . , In} and
a family of m sets S = {S1, . . . , Sm} with S ⊆ I for all S ∈ S . A value wi lies in its uncertainty interval
Ii, is initially unknown, and can be revealed via a query. The value of a subset S is w(S) =

∑

Ii∈S
wi.

Our goal is to determine a subset of minimum value as well as the corresponding value by using a minimal
number of queries. It can be seen as an optimization problem with uncertainty in the coefficients of the
objective function:

min
∑m

j=1 xj
∑

Ii∈Sj
wi

s.t.
∑m

j=1 xj = 1

xj ∈ {0, 1} ∀j ∈ {1, . . . ,m}.

(SETSELIP)

Since the precise wi’s are uncertain, we do not always have sufficient information to just compute an optimal
solution to (SETSELIP) and instead might have to execute queries in order to determine such a solution. An
algorithm for MINSET under uncertainty can adaptively query intervals until it has sufficient information to

*University of Bremen, Faculty of Mathematics and Computer Science, {nicole.megow,jschloet}@uni-bremen.de

1

http://arxiv.org/abs/2211.01097v2

determine an optimal solution to (SETSELIP). Adaptivity in this context means that the algorithm can take
previous query results into account to decide upon the next query.

In this paper, we consider the stochastic problem variant, where we assume that all values wi are drawn
independently at random from their intervals Ii according to unknown distributions di. Since there are
instances that cannot be solved without querying the entire input, we analyze an algorithm ALG in terms of
its competitive ratio: for the set of problem instances J , it is defined as maxJ∈J E[ALG(J)]/E[OPT(J)],
where ALG(J) is the number of queries needed by ALG to solve instance J , and OPT(J) is the minimum
number of queries necessary to solve the instance.

MINSET is a fundamental problem and of intrinsic importance within the field of explorable uncertainty.
The majority of existing works considers the adversarial setting, where query outcomes are not stochastic
but returned in a worst-case manner. Selection type problems have been studied in the adversarial setting
and constant (matching) upper and lower bounds are known, e.g., for selecting the minimum [26], the k-th
smallest element [16,26], a minimum spanning tree [13,14,24,32], sorting [23] and geometric problems [6].
However, these problems essentially boil down to comparing single uncertainty intervals and identifying the
minimum of two unknown values. Once we have to compare two (even disjoint) sets and the corresponding
sums of unknown values, no deterministic algorithm can have a better adversarial competitive ratio than n,
the number of uncertainty intervals. This has been shown by Erlebach et al. [12] for MINSET, and it implies
adversarial lower bounds for classical combinatorial problems, such as, knapsack [33] and matchings [33],
and solving ILPs with uncertainty in the cost coefficients [33] as in (SETSELIP) above. Thus, solving
MINSET under stochastic uncertainty is an important step towards obtaining improved results for this range
of problems. As a main result, we provide substantially better algorithms for MINSET under stochastic
uncertainty. This is a key step for breaching adversarial lower bounds for a wide range of problems.

For the stochastic setting, the only related results we are aware of concern sorting [7] and the problem
of finding the minimum in each set of a given collection of sets [3]. Asking for the sum of unknown values
is substantially different.

1.1 The Covering Point of View

Our key observation is that we can view MINSET as a covering problem with uncertainty in the constraints.
To see this, we focus on the structure of the uncertainty intervals and how a query affects it. We assume
that each interval Ii ∈ I is either open (non-trivial) or trivial, i.e., Ii = (Li, Ui) or Ii = {wi}; a standard
technical assumption in explorable uncertainty. In the latter case, Li = Ui = wi. We call Li and Ui lower

and upper limit. If S contains only trivial uncertainty intervals, then we define IS = [LS , US] = {w(S)}
and call IS trivial. Otherwise, we define IS = (LS , US) . Clearly, the value w(S) of a set S ∈ S is contained
in the interval IS , i.e., w(S) ∈ IS . We call IS the uncertainty interval of set S. See Figure 1 for an example.

Since the intervals (LS , US) of the sets S ∈ S can overlap, we might have to execute queries to deter-
mine the set of minimum value. A query to an interval Ii reveals the precise value wi and, thus, replaces
both, Li and Ui, with wi. In a sense, a query to an Ii ∈ S reduces the range (LS , US) in which w(S) might
lie by increasing LS by wi − Li and decreasing US by Ui − wi. See Figure 2 for an example. We use LS

and US to refer to the initial limits and LS(Q) and US(Q) to denote the limits of a set S ∈ S after querying
a set of intervals Q ⊆ I .

Let w∗ = minS∈S w(S) be the initially uncertain minimum value. To solve the problem, we have
to adaptively query a set of intervals Q until US∗(Q) = LS∗(Q) = w∗ holds for some S∗ ∈ S and
LS(Q) ≥ w∗ holds for all S ∈ S . Only then, we know for sure that w∗ is indeed the minimum set value
and that S∗ achieves this value. Figure 3 shows the structure of an instance that has been solved. For an
instance (I,S) of MINSET, the following integer linear program (ILP) with ai = wi−Li for all Ii ∈ I and

2

S1
I1

I2

S2

I3

I4

I5
S3

I6

S4
I7

I8

0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 10 11 12

IS1

IS2

IS3

IS4

Figure 1: Instance for set selection under explorable uncertainty with intervals I = {I1, I2, . . . , I8} and
sets S = {S1, S2, S3, S4} with S1 = {I1, I2}, S2 = {I3, I4, I5}, S3 = {I4, I5, I6} and S4 = {I7, I8} (left)
and the corresponding uncertainty intervals ISj

for the sets Sj with j ∈ {1, . . . , 4} (right). Green circles
illustrate the precise values.

bS = w∗ − LS for all S ∈ S formulates this problem:

min
∑

Ii∈I
xi

s.t.
∑

Ii∈S
xi · ai ≥ bS ∀S ∈ S

xi ∈ {0, 1} ∀Ii ∈ I
(MINSETIP)

Here, the variable xi, Ii ∈ I , indicates whether interval Ii is selected to be queried (xi = 1) or not (xi = 0)
and our objective is to minimize the number of queries.

Observe that this ILP is a special case of the multiset multicover problem (see, e.g., [35]). If ai =
wi − Li = 1 for all Ii ∈ I and bS = w∗ − LS = 1 for all S ∈ S , then the problem is exactly the classical
SETCOVER problem with I corresponding to the SETCOVER sets and S corresponding to the SETCOVER

elements.
The optimal solution to (MINSETIP) is the optimal query set for the corresponding MINSET instance;

this is not hard to see but we also formally prove it in Appendix B. Under uncertainty however, the co-
efficients ai = wi − Li and right-hand sides bS = w∗ − LS are unknown to us. We only know that
ai ∈ (Li − Li, Ui − Li) = (0, Ui − Li) as ai = (wi − Li) and wi ∈ (Li, Ui). Only once we query an
interval Ii, the precise value wi and, thus, the coefficient ai is revealed to us. In a sense, to solve MINSET

under uncertainty, we have to solve (MINSETIP) with uncertainty in the coefficients and with irrevocable
decisions. For the rest of the paper, we interpret MINSET under uncertainty in exactly that way: We have
to solve (MINSETIP) without knowing the coefficients in the constraints. Whenever we irrevocably add an
interval Ii to our solution (i.e., set xi to 1), the information on the coefficients (in form of wi) is revealed to
us. Our goal is to add elements to our solution until it becomes feasible for (MINSETIP), and to minimize
the number of added elements. In this interpretation, the terms “querying an element” and “adding it to the
solution” are interchangeable, and we use them as such.

Ii

wi − Li Ui − wi

IS1

IS2

wi − Li Ui − wi

Figure 2: Example of how a query to an interval Ii changes the intervals of two sets S1, S2 with Ii ∈ S1∩S2

in the set selection problem under explorable uncertainty.

3

S1
I1

I2

S2

I3

I4

I5
S3

I6

S4
I7

I8

0 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 10 11 12

IS1

IS2

IS3

IS4

Figure 3: Instance of Figure 1 after querying Q = {I1, I2, I5, I7}: Updated uncertainty intervals I (left) and
updated set uncertainty intervals (right).

Our main contribution is an algorithmic framework that exploits techniques for classical covering prob-
lems and adapts them to handle uncertainty in the coefficients ai and the right-hand sides bS . This framework
not only allows us to obtain improved results for MINSET under stochastic uncertainty but also to solve other
covering problems with uncertainty in the constraints.

1.2 Our Results

We design a polynomial-time algorithm for MINSET under stochastic uncertainty with competitive ratio
O(1τ · log

2m), where m is the number of sets (number of constraints in (MINSETIP)) and parameter τ
characterizes how “balanced” the distributions of values within the given intervals are. More precisely,
τ = minIi∈I τi and τi is the probability that wi is larger than the center of Ii (e.g., for uniform distributions
τ = 1

2). All our results assume τ > 0. This is the first stochastic result in explorable uncertainty concerning
the sum of unknown values and it builds on new methods that shall be useful for solving more general
problems in this field. The ratio is independent of the number of elements, n. In particular for a small number
of sets, m, this is a significant improvement upon the adversarial lower bound of n [12]. Dependencies on
parameters such as τ are quite standard and necessary [4, 5, 18, 30, 38]. For example, in [30] the upper
bounds depend on the probability to draw the largest value of the uncertainty interval, which is an even
stricter assumption that does not translate to open intervals.

We remark that the hidden constants in the performance bounds depend on the upper limits of the
given intervals. Assuming those to be constant is also a common assumption; see, e.g., [31]. Even greedy
algorithms for covering problems similar to (MINSETIP) without uncertainty have such dependencies [11,
35,37]. While there exist non-greedy algorithms for covering problems without such dependencies [28,29],
it remains open whether they can be adjusted to the setting with uncertainty and, in particular, irrevocable
decisions.

As MINSET contains the classical SETCOVER problem, an approximation factor better than O(logm)
is unlikely, unless P=NP [10]. We show that this holds also in the stochastic setting, even with uniform
distributions. We further show that 2

τ is a lower bound for both problems under stochastic explorable uncer-
tainty, even if the sets are pairwise disjoint. Hence, the dependencies on logm and 2

τ in our upper bounds
are necessary.

In the special case that all given sets are disjoint, we provide a simpler algorithm with competitive ratio
2
τ , which matches the lower bound. This is a gigantic improvement compared to the adversarial setting,
where the lower bound of n holds even for disjoint sets [12].

We remark that all our results for MINSET translate to the maximization variant of the problem, where

4

we have to determine the set of maximum value (cf. Appendix D).
Algorithmically, we exploit the covering point of view to introduce a class of greedy algorithms that use

the same basic strategy as the classical SETCOVER greedy algorithm [8]. However, we do not have sufficient
information to compute and query an exact greedy choice under uncertainty as this choice depends on
uncertain parameters. Instead, we show that it is sufficient to query a small number of elements that together
achieve a similar greedy value to the exact greedy choice. If we do this repeatedly and the number of queries
per iteration is small in expectation, then we achieve guarantees comparable to the approximation factor of
a greedy algorithm with full information. It is worth noting that this way of comparing an algorithm to the
optimal solution is a novelty in explorable uncertainty as all previous algorithms for adversarial explorable
uncertainty (MINSET and other problems) exploit witness sets. A witness set is a set of queries Q such that
each feasible solution has to query at least one element of Q, which allows to compare an algorithm with an
optimal solution.

Our results translate to different covering problems under uncertainty. In particular, we consider the
variant of (MINSETIP) under uncertainty with deterministic right-hand sides. We give a simplified algo-
rithm with improved competitive ratio O(1τ · logm). For a different balancing parameter, this holds even for
the more general variant, where a variable can have different coefficients for the different constraints each
with an individual uncertainty interval and distribution. For this problem, adding an element to the solution
reveals all corresponding coefficients.

1.3 Further Previous Work

Since MINSET under uncertainty can be interpreted as both, a query minimization problem and a covering
problem with uncertainty, we in the following summarize previous work from both fields.

1.3.1 Previous Work on Query Problems

For adversarial MINSET under uncertainty, Erlebach et al. [15] show a (best possible) competitive ratio of
2d, where d is the cardinality of the largest set. In the lower bound instances, d ∈ Ω(n). The algorithm
repeatedly queries disjoint witness sets of size at most 2d. This result was stated for the setting, in which
it is not necessary to determine the value of the minimal set; if the value has to be determined, the bounds
change to d.

Further related work on MINSET includes the result by Maehara and Yamaguchi [31], who consider
packing ILPs with (stochastic) uncertainty in the cost coefficients, which can be queried. They present a
framework for solving several problems and bound the absolute number of iterations that it requires to solve
them, instead of the competitive ratio. However, we show in Appendix A that their algorithm has competitive
ratio Ω(n) for MINSET under uncertainty, even for uniform distributions. Thus, it does not improve upon
the adversarial lower bound.

Also Wang et al. [39] consider selection-type problems in a somewhat related model. In contrast to our
setting, they consider different constraints on the set of queries that, in a way, imply a budget on the number
of queries. They solve optimization problems with respect to this budget, which has a very different flavor
than our setting of minimizing the number of queries.

Furthermore, there is related work in a setting, where a query reveals the existence of entities instead of
numeric values, e.g., the existence of edges in a graph, c.f. [5, 18, 38]. For example, Behnezhad et al. [4]
showed that vertex cover can be approximated within a factor of (2 + ǫ) with only a constant number of
queried edges per vertex. As edges define constraints, the result considers uncertainty only in the right-hand
sides.

5

1.3.2 Previous Work on Covering Problems with Uncertainty

We continue by summarizing previous work on covering problems in different adversarial and stochastic
settings.

In the online version of SETCOVER [2], we are given a ground set of elements and a family of subsets
of these elements. In contrast to offline SETCOVER, we do not necessarily have to cover all elements of
the ground set. Instead, the members of the ground set that we do actually have to cover arrive online in an
adversarial manner. Whenever an element arrives, we have to cover it by irrevocably adding a set containing
the element to our solution, unless a previously added set already contains the element. In a sense, online
SETCOVER is a variant of (MINSETIP) under uncertainty, where only the right-hand sides are uncertain in
{0, 1} and all left-hand side coefficients are known and either one or zero. In contrast to MINSET under
uncertainty, the adversary for online SETCOVER is in a sense more powerful when selecting the right-hand
sides as they do not depend on a common value w∗. Because of these differences, online SETCOVER has
a very different flavor to MINSET under uncertainty. The same holds for the stochastic version of online
SETCOVER [21, 22], where the subset of elements to be covered is drawn from a probability distribution.

A different stochastic variant of SETCOVER considers a two-stage version of the problem [36]. In the
first stage, we do not yet know which members of the ground set actually need to be covered. After the
first stage, the elements to be covered are drawn from a probability distribution and in the second stage we
have full knowledge of the elements to be covered. The crux of this two-stage variant is that adding sets to
the solution in the first stage can be cheaper than adding them to the solution during the second stage. This
again leads to a very different flavor than our setting.

While these SETCOVER variants consider uncertainty in the set of elements that need to be covered,
Goemans and Vondrák [19] consider a variant where the elements to be covered are certain but there is
uncertainty in which elements are covered by the sets. For each set, a vector describing the elements
that are covered by the set is drawn according to a probability distribution. This corresponds to a vari-
ant of (MINSETIP), where all right-hand sides are one but the left-hand side coefficients are uncertain in
{0, 1}. Even in comparison to MINSET under uncertainty with deterministic right-hand sides, there are
several further difference besides the restriction of the coefficients to values in {0, 1}. For one, [19] assumes
access to the probability distributions. In particular, their algorithms are able to compute certain expected
values. For our stochastic setting, we do not have sufficient information to compute expected values and
the adversary still has some power in the selection of the unknown distributions as long as it respects the
balancing parameter. On the other hand, their SETCOVER variant allows some distributions that are not
possible in MINSET. In particular, an interval Ii in MINSET has the same coefficient ai = (wi−Li) in each
constraint for a set S with Ii ∈ S. Such a restriction does not exist in the problem considered in [19]. This
in a sense makes their problem incomparable to MINSET under uncertainty. Furthermore, [19] analyzes the
approximation ratio instead of the competitive ratio. That is, they compare the expected objective value of
an algorithm against the expected objective of the best possible algorithm instead of the expected optimum.
To that end, they give an m-approximation for the stochastic SETCOVER variant. If sets can be added to the
solution multiple times while each time drawing a new realization from the same distribution, they give a
O(logm)-approximation.

Besides related work on stochastic SETCOVER variants, there is previous related work on the more
general (stochastic) submodular covering problem (cf., e.g., [1,17,40]). In the submodular covering problem,
we are given a ground set of elements E and a submodular function f : 2E → N+. The goal is to find a subset
S ⊆ E of minimum cardinality such that f(S) = f(E). This non-stochastic submodular covering problem
contains offline MINSET [40], i.e., (MINSETIP) with full knowledge of all coefficients and right-hand sides.
To see this, consider an instance (I,S) of MINSET. We can interpret the intervals as the ground set of
elements, i.e., E = I and use the submodular function f(Q) =

∑

S∈S min{
∑

Ii∈S∩Q
wi − Li, w

∗ − LS}
for Q ⊆ E. Then, f(E) is the sum of right-hand sides of (MINSETIP) and f(Q) = f(E) holds for a subset

6

Q ⊆ I = E if and only if Q is feasible for (MINSETIP). The best-known algorithm for the submodular
covering problem achieves an approximation ratio of O(log(f(E))) [40] and no polynomial-time algorithm
can be better unless P=NP [10].

In the stochastic submodular covering problem, we are given random variables X1, . . . ,Xn that inde-
pendently realize to subsets of E according to known probability distributions. The task is to sequentially
and irrevocably add random variables Xi to the solution X until f(

⋃

Xi∈X
Xi) = f(E). Whenever a ran-

dom variable Xi is added to the solution, the realization of the variable is revealed. While this general
setting is similar to MINSET under uncertainty, there are some differences. In the stochastic submodular
covering problem, the value f(

⋃

Xi∈X
Xi) only depends on the realizations of the random variables in X .

For the submodular function defined above for a MINSET instance, the function value f(Q) depends also
on the uncertain w∗ and, therefore, on elements outside of Q. Furthermore, as the intervals I in a MINSET

instance are continuous, modeling them as a stochastic submodular covering instance would require some
form of discretization. Independent of these differences, all results on the stochastic submodular covering
problem (to our knowledge) assume known distributions and actively use them, which is in contrast to our
stochastic setting. Furthermore, all these results analyze the approximation ratio instead of the competitive
ratio. Thus, existing results for the stochastic submodular covering problem cannot directly be applied to our
stochastic setting. This also holds for a range of problem variants that have been considered in the literature
(see, e.g., [9, 20, 25, 27, 34]).

1.4 Outline

To start the paper, we, in Section 2, consider the special case of MINSET under uncertainty with pairwise
disjoint sets. We give a lower bound of 2

τ and a matching upper bound on the competitive ratio for this
special case. These bounds nicely illustrate the challenges caused by the uncertainty and the techniques that
we use to tackle them, also later on for the general problem.

Afterwards, in Section 3, we move on to the general MINSET and discuss the hardness of approximation
as well as approximations of the offline problem variant. Based on observations for the offline problem, we
introduce an algorithmic framework that can be used to solve MINSET under uncertainty and other covering
problems with uncertainty in the constraints.

For the remaining paper, we show how to implement the framework for MINSET under uncertainty
with deterministic right-hand sides (Section 4), for more general covering problems under uncertainty with
deterministic right-hand sides (Section 4) and, finally, for the general MINSET (Section 5). Using these
implementations and our observations for the special case of disjoint sets, we prove our algorithmic results.

2 Disjoint MINSET

Consider the special case of MINSET where all sets are pairwise disjoint, i.e., S ∩ S′ = ∅ for all S, S′ ∈ S
with S 6= S′. We call this special case disjoint MINSET. Disjoint MINSET is of particular interest as it gives
lower bounds for several problems under adversarial explorable uncertainty, cf. [12, 33]. To illustrate the
challenges posed by having stochastic uncertainty in the input, we give the following lower bound. Recall
that the balancing parameter is defined as τ = minIi∈I τi, where τi is the probability that wi is larger than
the center of Ii. We use ALG and OPT to refer to an algorithm and an optimal solution, respectively.
Slightly abusing the notation, we use the same terms to refer also to the corresponding numbers of queries.

First, we show the following lower bound that even holds for known probability distributions. After-
wards, we prove a slightly stronger bound exploiting unknown distributions.

Theorem 2.1. No deterministic algorithm for MINSET under uncertainty has a competitive ratio better than
1
τ , even if all given sets are pairwise disjoint and the distributions are known.

7

.

Value
0 1 2 3n− 1 n

S1

In
In−1

•

•

•

I3
I2
I1

IS1

I0 S2

w(S2)

Figure 4: Lower bound example for the set selection problem under explorable uncertainty consisting of the
intervals I = {I0, . . . , In} and the sets S = {S1, S2} with S1 = {I1, . . . , In}, S2 = {I0}, I0 = {0.65} and
Ii = (0, 1) for i ∈ {1, . . . , d}.

Proof. Consider an instance with the set of uncertainty intervals I = {I0, I1, . . . , In} with I0 = {0.65} and
Ii = (0, 1) for all i 6= 0, and sets S = {S1, S2} with S1 = {I0} and S2 = I \ {I0}. See Figure 4 for an
illustration. Define the distributions di with i 6= 1 as di(a) = (1 − τ) if a = ǫ, di(a) = τ if a = 0.7 and
di(a) = 0 otherwise, for some infinitesimally small ǫ > 0.

If there exists some Ii ∈ S2 with wi = 0.7, then OPT = 1 as a query to that interval already proves
that S1 is the set of minimum value since w(S1) = 0.65 < 0.7. Otherwise, OPT = n. Therefore,
E[OPT] = (1− (1− τ)n) + (1− τ)n · n and limn→∞ E[OPT] = 1.

Since I0 is trivial and all Ii with i 6= 0 are identical with the same distribution, each deterministic
algorithm ALG will just query the elements of S2 in some order until it either reaches an Ii with wi = 0.7
or has queried all intervals. This implies that ALG is a geometrical distribution with success probability τ
and, therefore, E[ALG] = min{n, 1

τ }. For n towards infinity, we get

lim
n→∞

E[ALG]

E[OPT]
=

1

τ
.

Next, we show a slightly stronger bound for unknown distributions. The lower bound instance heavily
exploits that, for unknown distributions, the adversary still has some power when selecting the probability
distributions.

Theorem 2.2. No deterministic algorithm for MINSET under uncertainty has a competitive ratio better than
2
τ , even if all given sets are pairwise disjoint.

Proof. Consider the same instance as in the proof of Theorem 2.1 but with different, now unknown dis-
tributions. Since the distributions are unknown, an algorithm cannot distinguish the intervals I1, . . . , In
even if they have different distributions. This means that the adversary still has some power and can set
the distributions in a worst-case manner for the algorithm, as long as the distributions respect balancing
parameter τ .

To that end, consider a fixed value τ and an arbitrary deterministic algorithm ALG. As ALG cannot
distinguish the intervals I1, . . . , In, we can assume w.l.o.g. that it queries the intervals in order of their
indices until the instance is solved. For all 0 < i < n, the adversary sets the distribution to di(a) = τ for
a = 0.51, di(a) = (1 − τ) for a = ǫ and di = 0 otherwise, for some infinitesimally small ǫ > 0. Finally,

8

Algorithm 1: Algorithm for disjoint MINSET under uncertainty.

Input: Instance of MINSET under uncertainty with pairwise disjoint sets.
1 Q← ∅;
2 while the problem is not solved do

3 Smin ← argminS∈S LS(Q);
4 repeat

5 Ii ← argmaxIj∈Smin\Q Uj − Lj ; Query Ii; Q← Q ∪ {Ii};

6 until wi − Li ≥
1
2 · (Ui − Li) or Smin has been completely queried;

the adversary sets distribution dn to dn(a) = 1 for a = 0.7 and dn(a) = 0 otherwise. These distributions
clearly respect the balancing parameter τ .

For these distributions, we always have w(S2) > w(S1) as wn > w(S1) holds with a probability of one.
Thus, every algorithm has to query until the lower limit of set S2 increases to a value of at least w(S1). For
ALG, this is the case once it found two intervals Ii with i < n and wi = 0.51 or once it queries interval In
in case no two such intervals exist. Thus, the expected query cost is E[ALG] = min{ 2τ , n}. The optimal
solution on the other hand only queries In and is done after a single query. Therefore, E[OPT] = 1 and
the competitive ratio of ALG is at least min{ 2τ , n}. We can conclude the theorem by picking a sufficiently
large value for n.

We continue by giving a quite simple algorithm for disjoint MINSET that matches the lower bound
of Theorem 2.2.

In disjoint MINSET, each Ii occurs in exactly one constraint for one set S in the corresponding (MINSETIP).
Thus, each set S defines a disjoint subproblem and the optimal solution OPT of the instance is the union of
optimal solutions for the subproblems. The optimal solution for a subproblem S is to query the elements of
Ii ∈ S in order of non-decreasing (wi − Li) until the sum of those coefficients is at least (w∗ − LS).

Under uncertainty, we adapt this strategy and query in order of non-decreasing (Ui − Li). While this
does not guarantee that we query the interval with maximum (wj − Lj) in S, it gives us a probability of τ
to query an interval Ii such that (wi − Li) is at least half the maximum (wj − Lj). We will prove that this
is sufficient to achieve the guarantee. Since we do not know w∗, we do not know when to stop querying in a
subproblem. We handle this by only querying in the set S of minimum current lower limit as the subproblem
for this set is clearly not yet solved. Algorithm 1 formalizes this approach.

Theorem 2.3. There is an algorithm for disjoint MINSET under uncertainty with competitive ratio at most
2
τ .

Proof. Consider a fixed realization of values wi and the corresponding (MINSETIP) instance. For each
S ∈ S , a feasible solution Q must satisfy

∑

Ii∈S∩Q
(wi−Li) ≥ (w∗−LS). This implies |Q∩S| ≥ |P ∗

S | for
the minimum cardinality prefix P ∗

S of I1, . . . , Ik with
∑

Ii∈P ∗
S
(wi−Li) ≥ w∗−LS , where S = {I1, . . . , Ik}

and all Ii are indexed by non-increasing wi − Li. As the sets are disjoint, we get OPT =
∑

S∈S |P
∗
S |.

Using this, we show that Algorithm 1 satisfies the theorem. To that end, let Xj be a random variable
denoting the number of queries in iteration j of the outer while-loop of Algorithm 1 and let Yj be an indicator
variable indicating whether iteration Yj is actually executed (Yj = 1) or not (Yj = 0).

We prove the theorem by separately showing
∑

j P[Yj = 1] ≤ 2 · E[OPT] and E[Xi | Yj = 1] ≤ 1
τ .

9

Since

E[ALG] =
∑

j

E[Xj] =
∑

j

P[Yj = 0]E[Xj | Yj = 0] +
∑

j

P[Yj = 1]E[Xj | Yj = 1]

=
∑

j

P[Yj = 1]E[Xj | Yj = 1]

follows from E[Xj | Yj = 0] = 0 and the law of total expectations, the two inequalities imply the theorem.
Note that

∑

j P[Yj = 1] is just the expected number of iterations of the algorithm. Thus, if we show
for each realization of precise values that the number of iterations is at most 2 · OPT, we directly get
∑

j P[Yj = 1] ≤ 2 · E[OPT].
Consider a fixed realization. For each S, let hS denote the number of iterations with Smin = S. We

claim that hS ≤ 2 · |P ∗
S |. Then, OPT ≥

∑

Sℓ∈S
|P ∗

S | implies
∑

j P[Yj = 1] ≤ 2 · E[OPT].
Let j be an iteration with Smin = S, let Gj denote the queries of this iteration and let Qj denote the set

of all previous queries. Observe that P ∗
S \Qj 6= ∅. Otherwise, the definition of P ∗

S would either imply that
the lower limit of S after querying Qj is larger than w∗, which contradicts Smin = S, or that the lower limit
is equal to w∗, which implies that the problem is already solved.

We argue that
∑

Ii∈Gj
wi−Li ≥

1
2 ·maxIi∈S\Qj

wi−Li. In case that interval Ii = argmaxIi∈S\Qj
wi−

Li is contained in Gj , the inequality clearly holds. Otherwise, let Ii′ denote the last element that is queried
in the iteration. Then, wi′ −Li′ ≥

1
2 · (Ui′ −Li′) ≥

1
2 ·maxIi∈S\Qj

wi−Li, where the first inequality holds
as Ii′ is the last query of the iteration and the second inequality holds by the order in which the elements of
S are queried by the algorithm. Thus, this last interval Ii′ alone satisfies the inequality.

The inequality suffices to conclude that
∑

Ii∈Qj∩S
wi−Li ≥

∑

Ii∈P ∗
S
wi−Li holds after at most 2 · |P ∗

S |

iterations with Smin = S. As Smin 6= S holds for all following iterations, the claim hS ≤ 2 · |P ∗
S | follows.

Next, we show the second inequality, E[Xj | Yj = 1] ≤ 1
τ . If an iteration j of the outer while-loop is

executed (Yj = 1), the repeat statement queries intervals Ii until either (wi − Li) ≥
1
2 · (Ui − Li) or

Smin ⊆ Q. Thus, it terminates at the latest when it finds an Ii with (wi − Li) ≥
1
2 · (Ui − Li). The number

of queries until such an interval occurs is described by a geometric distribution with success probability at
least τ . So, in expectation, this number is at most 1

τ and we can conclude E[Xj | Yj = 1] ≤ 1
τ .

We remark that Theorems 2.2 and 2.3 imply that, even with full knowledge of the distributions, the
competitive ratio for disjoint MINSET cannot be improved by more than a factor of two compared to the
ratio with unknown distributions.

3 Algorithmic framework

In the previous section, we have seen an algorithm for disjoint MINSET under uncertainty with a tight
competitive ratio. The key observation that allowed us to achieve that ratio was the simple characterization
of an (offline) optimal solution. In this section, we consider the offline variant of the general MINSET and
give inapproximability results that prevent such simple characterizations for optimal solutions of the general
problem. Thus, we need alternative algorithms and, based on observations for the offline problem, present
an algorithmic framework that can be used to solve MINSET and other covering problems under uncertainty.

3.1 Offline Problems and Hardness of Approximation

We refer to the problem of solving (MINSETIP) with full knowledge of the precise values wi (and w∗)
as offline problem. This means that we have full knowledge of all coefficients of the ILP. For MINSET

under uncertainty, we say that a solution is optimal, if it is an optimal solution for the corresponding offline

10

problem. We use OPT to refer to an optimal solution and, slightly abusing the notation, to its objective
value.

Offline MINSET contains the classical SETCOVER problem and, thus, it is as hard to approximate. This
result transfers to the stochastic setting, even for uniform distributions. Results by Dinur and Steurer [10]
imply the following, as we formally prove in Appendix C.

Theorem 3.1. For any fixed α > 0, it is NP-hard to compute a query strategy that is (1 − α) · lnm-

competitive for MINSET under uncertainty even if the precise value wi of each Ii is drawn independently

and uniformly at random from (Li, Ui). The same inapproximability holds also for offline MINSET.

On the positive side, we can approximate offline MINSET by adapting covering results (see, e.g., [8, 11,
28, 29, 35]). In particular, we want to use greedy algorithms that iteratively and irrevocably add elements to
the solution that are selected by a certain greedy criterion. Recall that “adding an element to the solution”
corresponds to both, setting the variable xi of an interval Ii ∈ I in (MINSETIP) to one and querying Ii.
While we are technically not restricted to greedy algorithms when solving offline MINSET, our goal is to
later on generalize the offline algorithm to the setting with uncertainty and irrevocable decisions. Hence,
greedy algorithms seem to be a suitable choice.

Since the greedy criterion for adding an element depends on previously added elements, we define a
version of (MINSETIP) that is parametrized by the set Q ⊆ I of elements that have already been added to
the solution and adjust the right-hand sides to the remaining covering requirement after adding Q. Recall
that ai = wi−Li and bS = w∗−LS . Here, bS(Q) = max{bS−

∑

Ii∈Q∩S ai, 0} and b(Q) =
∑

S∈S bS(Q).

min
∑

Ii∈I\Q
xi

s.t.
∑

Ii∈S\Q
xi · ai ≥ bS(Q) ∀S ∈ S

xi ∈ {0, 1} ∀Ii ∈ I \Q

(MINSETIP-Q)

Based on this ILP, we adjust the algorithm by Dobson [11] for the multiset multicover problem to our setting
(cf. Algorithm 2). The algorithm scales the coefficients such that all non-zero left-hand side coefficients are
at least 1. We refer to such instances as scaled. Then it greedily adds the element to the solution that reduces
the right-hand sides the most, i.e., the interval Ii ∈ I \Q that maximizes gc(Q, Ii) = b′(Q)− b′(Q ∪ {Ii})
(a′ and b′ indicate scaled coefficients). For a subset G ⊆ I , we define gc(Q,G) = b′(Q)− b′(Q ∪G).

After b′S(Q) < 1 for all S ∈ S , we can exploit that all scaled non-zero coefficients a′i are at least one.
This means that adding an element Ii ∈ I \ Q satisfies all remaining constraints of sets S with Ii ∈ S.
Thus, the remaining problem reduces to a SETCOVER instance, which can be solved by using the classical
greedy algorithm by Chvatal [8]. This algorithm greedily adds the element Ii ∈ I \ Q that maximizes
gs(Q, Ii) = A(Q) − A(Q ∪ {Ii}) with A(Q) = |{S ∈ S | b′S(Q) > 0}|, i.e., the element that satisfies
the largest number of constraints that are not already satisfied by Q. For a subset G ⊆ I , we define
gs(Q,G) = A(Q)−A(Q ∪G).

During the course of this paper, we refer to gc(Q, Ii), gs(Q, Ii), gc(Q,G) and gs(Q,G) as the greedy

values of Ii and G, respectively.

Theorem 3.2 (Follows from Dobson [11]). Algorithm 2 is a polynomial-time O(logm)-approximation for

offline MINSET. The precise approximation factor is ρ(γ) = ⌈ln(γ ·m ·maxS(w
∗ −LS))⌉+ ⌈ln(m)⌉ with

smin = minIi∈I : (wi−Li)>0(wi − Li), γ = 1/smin and m = |S|.

During the remaining course of the paper, we will state the competitive ratios of our algorithms in terms
of ρ. To that end, define ρ̄(γ) = ⌈ln(γ ·m ·maxS,S′(US − LS′)⌉ + ⌈ln(m)⌉, which is an upper bound on
ρ(γ). Under uncertainty, we compare against ρ̄ to avoid the random variable w∗. For constant Ui’s, ρ̄ and ρ
are asymptotically the same.

11

Algorithm 2: Greedy algorithm by Dobson [11] for offline MINSET.

Input: An instance of offline MINSET, i.e., an instance of (MINSETIP)
1 smin = minIi∈I : ai>0 ai; ∀S ∈ S : b′S = bS

smin
; ∀Ii ∈ I : a′i =

ai
smin

;

2 while ∃S ∈ S : b′S(Q) ≥ 1 do

3 Ii ← argmaxIj∈I\Q gc(Q, Ij); Query Ii; Q← Q ∪ {Ii};

4 while the problem is not solved do

5 Ii ← argmaxIj∈I\Q gs(Q, Ij); Query Ii; Q← Q ∪ {Ij};

We remark again that the approximation ratio of Algorithm 2 has dependencies on the numerical input
parameter smin and maxS(w

∗ − LS). While there exist algorithms that achieve an approximation ratio of
O(logm) for the offline problem without such dependencies [28, 29], these algorithms are not greedy and
it remains open whether there exist algorithms with this improved ratio that execute irrevocable decisions,
even with full knowledge of the coefficients. Thus, we consider Algorithm 2 and aim at extending it for the
setting under uncertainty.

3.2 Algorithmic framework

We introduce our algorithmic framework that we use to solve MINSET under uncertainty. Ideally, we would
like to apply the offline greedy algorithm. However, since the coefficients ai = wi − Li and bS = w∗ − LS

are unknown, we cannot apply Algorithm 2 to solve MINSET under uncertainty as we cannot compute the
element that maximizes the greedy value gc or gs.

While we cannot precisely compute the greedy choice, our strategy is to approximate it and to show that
approximating the greedy choice is sufficient to obtain the desired guarantees. To make this more precise,
consider an iterative algorithm for (MINSETIP), i.e., an algorithm that iteratively adds pairwise disjoint
subsets G1, . . . , Gh of I to the solution. For each j, let Qj =

⋃

1≤j′≤j−1Gj′ , i.e., Qj contains the elements
that have been added to the solution before Gj . If the combined greedy value of Gj is within a factor of
α to the best greedy value for the problem instance after adding Qj , then we say that Gj α-approximates
the greedy choice. The following technical definition makes this more precise and the subsequent lemma
connects the definition to the actual greedy values while taking into account that there are two different
greedy values gc and gs (cf. Algorithm 2).

Definition 3.3. For a (MINSETIP) instance with scaled coefficients and optimal solution OPT, let α ∈
R≥1 and consider the corresponding instance of (MINSETIP-Q) for some Q ⊆ I . A set G ⊆ I \ Q
α-approximates the current greedy choice after adding Q if either

1. A(Q ∪G) ≤ (1− 1
α·OPT) ·A(Q) or

2. b′(Q) ≥ 1 and b′(Q ∪G) ≤ (1− 1
α·OPT) · b

′(Q).

Intuitively, the two conditions of the following lemma seem like a more appropriate definition of ap-
proximating a greedy choice. While the conditions of the lemma imply that the definition above is satisfied,
in our proofs it will sometimes be easier to directly show that the definition is satisfied, without using the
lemma. Therefore, we use the more technical Definition 3.3 but the lemma captures the intuition behind the
definition.

Lemma 3.4. For a scaled instance of (MINSETIP), Q ⊆ I , α ≥ 1 and G ⊆ I \Q:

1. If b′S(Q) < 1 for all S ∈ S and gs(Q,G) ≥ 1
α · maxIi∈I\Q gs(Q, Ii), then G satisfies the first

condition of Definition 3.3 and, thus, α-approximates the greedy choice.

12

2. If b′(Q) ≥ 1 and gc(Q,G) ≥ 1
α ·maxIi∈I\Q gc(Q, Ii), then G satisfies the second condition of Defi-

nition 3.3 and, thus, α-approximates the greedy choice.

Proof. First, assume that b′S(Q) < 1 for all S ∈ S and consider a set G ⊆ I \ Q with gs(Q,G) ≥
1
α ·maxIi∈I\Q gs(Q, Ii).

Let I∗ = argmaxIi∈I\QA(Q) −A(Q ∪ {Ii}) = argmaxIi∈I\Q gs(Q, Ii). By assumption b′S(Q) < 1
for all S ∈ S and, as we consider a scaled instance, a′i ≥ 1 for all Ii ∈ I . Thus, the remaining instance is a
set cover instance as adding an interval Ii to the solution satisfies all constraints S with Ii ∈ S that have not
already been satisfied by Q.

Let OPTQ denote the optimal solution for the remaining instance after adding Q to the solution, i.e.,

the optimal solution to (MINSETIP-Q). Using a standard set cover argument, we can observe that A(Q)
OPTQ

≤

A(Q)−A(Q ∪ {I∗}) as the optimal solution satisfies the remaining constraints at cost OPTQ, but a single
interval can satisfy at most A(Q) − A(Q ∪ {I∗}) constraints. Note that this argument only holds because
all left-hand side coefficients are at least as large as the right-hand sides. Otherwise, adding an interval
Ii later, i.e., after Q′ ⊃ Q has already been added to the solution, could satisfy more constraints, i.e.,
A(Q)−A(Q∪ {Ii}) < A(Q′)−A(Q′ ∪ {Ii}). This is one of the reasons why the offline greedy algorithm
uses two greedy criteria.

By assumption and definition of gs, we have α · (A(Q)−A(Q∪G)) ≥ maxIi∈I\QA(Q)−A(Q∪{Ii})

and, therefore, A(Q)
OPTQ

≤ α · (A(Q)−A(Q ∪G)). Rearranging the latter inequality, we obtain A(Q ∪G) ≤

A(Q) ·
(

1− 1
αOPTQ

)

. Since OPT ≥ OPTQ for the optimal solution OPT of the complete instance, we

get A(Q ∪G) ≤ A(Q) ·
(

1− 1
αOPT

)

. This implies that G satisfies the first condition of Definition 3.3.
Next, assume b′(Q) ≥ 1 and consider a set G ⊆ I \Q with gc(Q,G) ≥ 1

α ·maxIi∈I\Q gc(Q, Ii).

Let I∗ = argmaxIi∈I\Q b′(Q) − b′(Q ∪ {Ii}) = argmaxIi∈I\Q gc(Q, Ii). Observe that b′(Q)
OPTQ

≤

b′(Q) − b′(Q ∪ {I∗}) as the optimal solution covers the remaining constraints at cost OPTQ, but a sin-
gle interval can decrease the total slack between left-hand and right-hand sides of (MINSETIP-Q) by at
most b′(Q) − b′(Q ∪ {I∗}). By assumption and definition of gc, we have α · (b′(Q) − b′(Q ∪ G)) ≥

maxIi∈I\Q b′(Q) − b′(Q ∪ {Ii}) and, therefore, b′(Q)
OPTQ

≤ α · (b′(Q) − b′(Q ∪ G)). Rearranging the latter

inequality, we obtain b′(Q ∪ G) ≤ b′(Q) ·
(

1− 1
αOPTQ

)

. Since OPT ≥ OPTQ for the optimal solution

OPT of the complete instance, we get b′(Q∪G) ≤ b′(Q) ·
(

1− 1
αOPT

)

. This and the assumption b′(Q) ≥ 1
imply that G satisfies the second condition of Definition 3.3. Note that the argument for the second case does
not use that all non-zero coefficients are at least one. Thus, the statement also holds if there are coefficients
0 < a′i < 1.

With the following lemma, we bound the number of iterations j in which Gj α-approximates the current
greedy choice via an adjusted set cover greedy analysis.

Lemma 3.5. Consider an arbitrary algorithm for (MINSETIP) that scales the coefficients by factor γ and

iteratively adds disjoint subsets G1, . . . , Gh of I to the solution until the instance is solved. The number

of groups Gj that α-approximate the current greedy choice (after adding Qj =
⋃

1≤j′≤j−1Gj′) is at most

α · ρ(γ) ·OPT.

Proof. We first show that the number of iterations j with b′(Qj) ≥ 1 and b′(Qj∪Gj) ≤ (1− 1
α·OPT)·b

′(Qj),
i.e., the number of iterations that satisfy the second condition of Definition 3.3, is at most α⌈ln(γ · m ·
maxS(w

∗ − LS))⌉ ·OPT.
Let Ḡ1, . . . , Ḡk ⊆ I denote the sets that are added to the solution by the algorithm and satisfy the

second condition of Definition 3.3. Assume that the sets are indexed in the order they are added. For each
j ∈ {1, . . . , k}, let Q̄j ⊆ I denote the set of intervals that are added to the solution before Ḡj . Note that

13

{Ḡ1, . . . , Ḡj−1} ⊆ Q̄j , but Q̄j might contain additional added groups that just do not satisfy the second
condition of Definition 3.3.

By assumption, b′(Q̄j ∪ Ḡj) ≤ (1 − 1
α·OPT) · b

′(Q̄j). A recursive application of this inequality and the
fact that (1− x) < e−x for all x ∈ R \ {0} implies:

b′(Q̄j ∪ Ḡj) ≤ b′(∅) ·

(

1−
1

αOPT

)j

< b′(∅) · e−
j

αOPT .

Thus, after j = α · OPT · ⌈ln b′(∅)⌉ iterations that satisfy the second condition of Definition 3.3, we have
b′(Q̄j∪Ḡj) < b′(∅)·e− ln b′(∅) = 1. But if b′(Q̄j∪Ḡj) < 1, then there can be no further iteration that satisfies
the second condition of Definition 3.3. Thus, the number of such iterations is at most α · OPT · ⌈ln b′(∅)⌉.
Since b′(∅) is upper bounded by γ ·m · maxS(w

∗ − LS) as we have m constraints with scaled right-hand
side values of at most γ ·maxS(w

∗−LS), the number of such iterations is at most α · ⌈ln(γ ·m ·maxS(w
∗−

LS)⌉ ·OPT.
Next, we show that the number of iterations j with A(Qj ∪Gj) ≤ (1− 1

α·OPT) ·A(Qj), i.e., the number
of iterations that satisfy the first condition of Definition 3.3, is at most α⌈ln(m)⌉ ·OPT.

Let Ḡ1, . . . , Ḡk ⊆ I denote the sets that are added to the solution by the algorithm and satisfy the
first condition of Definition 3.3. Assume that the sets are indexed in the order they are added. For each
j ∈ {1, . . . , k}, let Q̄j ⊆ I again denote the set of intervals that are added to the solution before Ḡj . Note
that {Ḡ1, . . . , Ḡj−1} ⊆ Q̄j , but Q̄j might contain additional sets that just do not satisfy the first condition
of Definition 3.3.

By assumption, A(Q̄j ∪ Ḡj) ≤ (1− 1
α·OPT) ·A(Q̄j). A recursive application of this inequality and the

fact that (1− x) < e−x for all x ∈ R \ {0} implies:

A(Q̄j ∪ Ḡj) ≤ A(∅) ·

(

1−
1

αOPT

)j

< A(∅) · e−
j

αOPT .

Thus, after j = α · OPT · ⌈lnA(∅)⌉ such iterations, we have A(Q̄j ∪ Ḡj) < A(∅) · e− lnA(∅) = 1. But
if A(Q̄j ∪ Ḡj) < 1, then A(Q̄j ∪ Ḡj) = 0 and the instance is solved and no further iteration is executed.
Since A(∅) is upper bounded by the number of constraints m, the number of iterations that satisfy the first
condition of Definition 3.3 is at most α⌈ln(m)⌉ ·OPT.

In total, at most α⌈ln(m)⌉ · OPT iterations satisfy the first condition of Definition 3.3 and at most
α · ⌈ln(γ ·m · maxS(w

∗ − LS)⌉ · OPT iterations satisfy the second condition of Definition 3.3. In sum-
mation, there are at most α · (⌈ln(γ · n ·maxe∈E be)⌉ + ⌈ln(n)⌉) · OPT = α · ρ(γ) · OPT iterations that
satisfy Definition 3.3.

The lemma states that the number of groups Gj that α-approximate their greedy choice is within a
factor of α of the performance guarantee ρ(γ) of the offline greedy algorithm. If each Gj α-approximates
its greedy choice, the iterative algorithm achieves an approximation factor of maxj |Gj | · α · ρ(γ). Thus,
approximating the greedy choices by a constant factor using a constant group size is sufficient to only lose
a constant factor compared to the offline greedy algorithm.

This insight gives us a framework to solve MINSET under uncertainty. Recall that the wi’s (and by
extension the ai’s and bS’s) are uncertain and only revealed once we irrevocably add an Ii ∈ I to the
solution. We refer to a revealed wi as a query result, and to a fixed set of revealed wi’s for all Ii ∈ I as
a realization of query results. Consider an iterative algorithm. The sets Gj can be computed and queried
adaptively and are allowed to depend on (random) query results from previous iterations. Hence, Xj = |Gj |
is a random variable. Let Yj be an indicator variable denoting whether the algorithm executes iteration j
(Yj = 1) or terminates beforehand (Yj = 0). We define the following class of iterative algorithms and show
that algorithms from this class achieve certain guarantees.

14

Definition 3.6. An iterative algorithm is (α, β, γ)-GREEDY if it satisfies:

1. For every realization of query results; each Gj α-approximates the greedy choice as characterized by

Qj on the instance with coefficients scaled by γ.

2. E[Xj | Yj = 1] ≤ β holds for all iterations j.

Theorem 3.7. Each (α, β, γ)-GREEDY algorithm for MINSET under uncertainty achieves a competitive

ratio of α · β · ρ̄(γ) ∈ O(α · β · log(m)).

Proof. Consider an (α, β, γ)-GREEDY algorithm ALG for MINSET. The expected cost of ALG is E[ALG] =
∑

j E[Xj]. Using the total law of expectations, we get

E[ALG] =
∑

j

P[Yj = 1]E[Xj | Yj = 1] + P[Yj = 0]E[Xj | Yj = 0]

=
∑

j

P[Yj = 1]E[Xj | Yj = 1],

where the last inequality holds as E[Xj | Yj = 0] = 0 by definition (if the algorithm terminates before
iteration j, then it adds no more elements to the solution and, thus, Xj = 0). By the second property
of Definition 3.6, this implies E[ALG] ≤ β ·

∑

j P[Yj = 1].
Thus, it remains to bound

∑

j P[Yj = 1], which corresponds to the expected number of iterations of
ALG. Consider a fixed realization of query results, then, by the first property of (α, β, γ)-GREEDY, each
Gj α-approximates its greedy choice for the (MINSETIP) instance of the realization scaled by factor γ.
Then, Lemma 3.5 implies that the number of iterations is at most α · ρ(γ) · OPT, which is upper bounded
by α · ρ̄(γ) · OPT. As this upper bound on the number of iterations holds for every realization and OPT
is the only random variable of that term (since we substituted ρ with ρ̄), we can conclude

∑

j P[Yj = 1] ≤
α · ρ̄(γ) · E[OPT], which implies E[ALG] ≤ α · β · ρ̄(γ) · E[OPT].

4 MINSET with Deterministic Right-Hand Sides and More Covering Prob-

lems

We first introduce an algorithm for a variant of MINSET under uncertainty, where the right-hand sides bS
of the ILP representation (MINSETIP) are deterministic and explicit part of the input. Afterwards, we
generalize the algorithm for more general covering problems and a different balancing parameter.

4.1 MINSET With Deterministic Right-Hand Sides

We consider a variant of MINSET under uncertainty, where the right-hand sides bS of the ILP representa-
tion (MINSETIP) are deterministic and explicit part of the input. Thus, only the coefficients ai = (wi −Li)
remain uncertain within the interval (0, Ui − Li). For this problem variant, it can happen that the instance
has no feasible solution. In that case, we require every algorithm (including OPT) to reduce the covering
requirements as much as possible. As we consider the stochastic problem variant, recall that the balancing
parameter is defined as τ = minIi∈I τi for τi = P[wi ≥

Ui+Li

2].

Theorem 4.1. There is an algorithm for MINSET under uncertainty with deterministic right-hand sides and

a competitive ratio of 2
τ · ρ(γ) ∈ O(

1
τ · logm) with γ = 2/smin for smin = minIi∈I : Ui−Li>0 Ui − Li.

15

Algorithm 3: MINSET with deterministic right-hand sides.

Input: Instance of MINSET with deterministic right-hand sides.
1 Q = ∅; Scale a and b by 2

smin
to a′ and b′ for smin = minIi∈I : Ui−Li>0 Ui − Li;

2 while the problem is not solved do

3 if b′(Q) ≥ 1 then g = ḡc else g = ḡs;
4 repeat

5 Ii ← argmaxIj∈I\Q g(Q, Ij); Query Ii; Q← Q ∪ {Ii};

6 until the problem is solved or wi − Li ≥
1
2 · (Ui − Li);

The algorithm of the theorem loses only a factor 2
τ compared to the greedy approximation factor ρ(γ)

on the corresponding offline problem. We show the theorem by proving that Algorithm 3 is an (α, β, γ)-
GREEDY algorithm for α = 2, β = 1

τ and γ = 2
smin

with smin = minIi∈I : Ui−Li>0 Ui − Li. Then,

Theorem 3.7 implies the theorem. We remark that we scale by 2
smin

instead of 1
smin

because of technical
reasons that will become clear in the proof of the theorem.

The algorithm scales the coefficients by factor γ; we use a′ and b′ to refer to the scaled coefficients. The
idea of Algorithm 3 is to execute the greedy Algorithm 2 under the assumption that ai = Ui − Li (and
a′i = γai) for all Ii ∈ I that were not yet added to the solution. As ai = (wi − Li) ∈ (0, Ui − Li), this
means that we assume ai to have the largest possible value. Consequently, smin is the smallest (non-zero)
coefficient ai under this assumption. The algorithm computes the greedy choice based on the optimistic

greedy values

ḡc(Q, Ii) =
∑

S∈S : Ii∈S

b′S(Q)−max{0, b′S(Q)− γ(Ui − Li)}

(if b′(Q) ≥ 1) and

ḡs(Q, Ii) = |{S ∈ S : Ii ∈ S | b′S(Q) > 0 ∧ b′S(Q)− γ(Ui − Li) ≤ 0}|

(otherwise). That is, the greedy values under the assumption ai = Ui − Li. We call these values optimistic
as they might overestimate but never underestimate the actual greedy values. For subsets G ⊆ I , we define
ḡs(Q,G) and ḡc(Q,G) analogously.

In contrast to gs and gc, Algorithm 3 has sufficient information to compute ḡs and ḡc, and, therefore,
the best greedy choice based on the optimistic greedy values. The algorithm is designed to find, in each
iteration, an element Ii with gc(Q, Ii) ≥

1
2 · ḡc(Q, Ii) for the current Q (or analogously for ḡs and gs). We

show that (i) this ensures that each iteration 2-approximates the greedy choice and (ii) that finding such an
element takes only 1

τ tries in expectation.

Proof of Theorem 4.1. Let j be an arbitrary iteration of the outer while-loop, Xj denote the number of
queries during the iteration, and Yj indicate whether the algorithm executes iteration j (Yj = 1) or not
(Yj = 0).

Assuming Yj = 1, the algorithm during iteration j executes queries to elements Ii until either wi −

Li ≥
1
2(Ui − Li) or the problem is solved. Since wi ≥

(Ui+Li)
2 implies wi − Li ≥

1
2 (Ui − Li) and

P[wi ≥
(Ui+Li)

2] ≥ τ holds by assumption, the number of attempts until the current Ii satisfies the inequality
follows a geometric distribution with success probability at least τ . Hence, E[Xj | Yj = 1] ≤ 1

τ ; proving
Property 2 of Definition 3.6.

We continue by proving Property 1 of Definition 3.6. Consider a fixed realization. Let Ḡj denote the
queries of iteration j except the last one and let Ij̄ denote the last query of iteration j. Then Gj = Ḡj ∪{Ij̄}

16

is the set of queries during the iteration. Finally, let Qj denote the set of queries before iteration j. We show
that Gj 2-approximates the greedy choice of the scaled instance, which implies Property 1 of Definition 3.6.

If the iteration solves the problem, then Gj clearly 1-approximates the greedy choice and we are done.
Thus, assume otherwise. We distinguish between the two cases (1) b′(Qj) ≥ 1 and (2) b′(Qj) < 1.

Case (1): We show first that Gj 2-approximates the greedy choice if b′(Qj) ≥ 1. In this case, we have
g = ḡc (cf. Line 3). By choice of Ij̄ , we have ḡc(Qj ∪ Ḡj , Ij̄) = maxIi∈I\(Qj∪Ḡj) ḡc(Qj ∪ Ḡj , Ii), i.e., Ij̄
has the best optimistic greedy value when it is chosen.

As the iteration does not solve the instance, we have (wj̄ − Lj̄) ≥
1
2(Uj̄ − Lj̄) by Line 6. This directly

implies that the real greedy value of Ij̄ is at least half the optimistic greedy value, i.e., gc(Qj ∪ Ḡj , Ij̄) ≥
1
2 · ḡc(Qj ∪ Ḡj , Ij̄).

Since the best optimistic greedy value is never smaller than the best real greedy value, we get gc(Qj ∪
Ḡj , Ij̄) ≥

1
2 · maxIi∈I\(Qj∪Ḡj)

gc(Qj ∪ Ḡj , Ii). This allows us to apply Lemma 3.4 to get b′(Qj ∪ Ḡj ∪

{Ij̄}) ≤ (1 − 1
2OPT) · b

′(Qj ∪ Ḡj). Using b′(Qj ∪ Ḡj) ≤ b′(Qj) and Gj = Ḡj ∪ {Ij̄}, we can conclude

b′(Qj ∪Gj) ≤ (1− 1
2OPT) · b

′(Qj), which shows that Gj satisfies Condition 2 of Definition 3.3.
Case (2): Next, we show that Gj 1-approximates the greedy choice if b′(Qj) < 1. In this case, we have

g = ḡs (cf. Line 3). Similar to the previous case, we have ḡs(Qj ∪ Ḡj , Ij̄) = maxIi∈I\(Qj∪Ḡj)
ḡs(Qj ∪

Ḡj , Ii), i.e., Ij̄ has the best optimistic greedy value when it is chosen.
From b′(Qj) =

∑

S∈S b′S(Qj) < 1 follows b′S(Qj) < 1 for all S ∈ S . Furthermore, every element Ii
with wi − Li ≥

1
2Ui − Li satisfies ai = wi − Li ≥

smin

2 and, therefore a′i = γai =
2

smin
· ai ≥ 1. This

means that adding Ii to the solution satisfies all constraints for sets S with Ii ∈ S that are previously not
satisfied. Thus, the optimistic greedy value ḡs(Qj, Ii) and the real greedy value gs(Qj , Ii) are the same, i.e.,
ḡs(Qj , Ii) = gs(Qj , Ii), as adding Ii cannot satisfy more constraints even if the coefficient ai was Ui − Li.
This observation is crucial for the remaining proof and the reason we scale with γ = 2

smin
instead of 1

smin
.

Since the iteration does not solve the instance by assumption, we have (wj̄ − Lj̄) ≥
1
2 (Uj̄ − Lj̄) by

Line 6. As argued above, this implies that Ij̄ has the best optimistic and actual greedy value when it is
added to the solution, i.e., gs(Qj ∪ Ḡj , Ij̄) = ḡs(Qj ∪ Ḡj , Ij̄) = maxIi∈I\(Qj∪Ḡj) ḡs(Qj ∪ Ḡj , Ii). Thus,

even under the assumption that all elements Ii of I \ (Qj ∪ Ḡj) have coefficients ai = (Ui − Li), interval
Ij̄ achieves the best greedy value.

Let LB denote the optimal solution value for the remaining instance after querying Qj ∪ Ḡj under
exactly this assumption that ai = (Ui − Li) and a′i = γ(Ui − Li) for all Ii ∈ I \ (Qj ∪ Ḡj). Clearly
LB ≤ OPT.

Under the assumption that a′i = γ(Ui − Li) for all Ii ∈ I \ (Qj ∪ Ḡj), the instance is scaled (i.e., it
satisfies that all non-zero coefficients are at least one). Thus, we can apply Lemma 3.4 under the assumption
to get A(Qj ∪ Ḡj ∪ {Ij̄}) ≤ (1 − 1

LB) · A(Qj ∪ Ḡj). Since LB ≤ OPT, this gives us A(Qj ∪ Ḡj ∪

{Ij̄}) ≤ (1 − 1
OPT) · A(Qj ∪ Ḡj). Using A(Qj ∪ Ḡj) ≤ A(Qj) and Gj = Ḡj ∪ {Ij̄}, we can conclude

A(Qj∪Gj) ≤ (1− 1
OPT)·A(Qj), which shows that Gj satisfies Condition 2 of Definition 3.3 for α = 1.

4.2 Multiset Multicover under Stochastic Explorable Uncertainty

We extend the result of the previous section to a stochastic variant of the multiset multicover problem (see,
e.g., [35]), which generalizes the classical set cover problem. We are given a universe U of n elements and
a family M of m multi-sets with M ⊆ U for all M ∈ M. For each e ∈ U , we are given a deterministic
covering requirement be ∈ R+. Each multi-set M ∈ M contains a number of (fractional) copies of element
e ∈ U , denoted by aM,e ∈ R+. The goal is to select a subset C ⊆ M of minimum cardinality that satisfies

17

all covering requirements:

min
∑

M∈M xM
s.t.

∑

M∈M xM · aM,e ≥ be ∀e ∈ U
xM ∈ {0, 1} ∀M ∈ M.

(MINCOVERIP)

In our stochastic variant, MINCOVER under uncertainty, the constraints are uncertain; more precisely, the
coefficients aM,e are initially unknown. We are given uncertainty intervals IM,e = (LM,e, UM,e) with
aM,e ∈ IM,e. We may query a set M ∈ M, which reveals the precise values aM,e for set M and all e ∈ U .
In contrast to MINSET, we study MINCOVER in a query-commit model, which means that we can only add
a set M ∈ M to the solution if we query it, and we have to add all queried sets to the solution. In a sense,
we solve (MINCOVERIP) with uncertainty in the coefficients aM,e and irrevocable decisions: Once we add
a set M to the solution (xM = 1), all aM,e are revealed and we can never remove M from the solution.
Irrevocably adding a set corresponds to querying it. The goal is to find a feasible solution to the ILP with a
minimal number of queries.

From the problem description alone, the problem of solving MINCOVER under uncertainty is quite
similar to solving (MINSETIP) under uncertainty. The difference is that in (MINSETIP), each interval Ii
has the same coefficient ai in all constraints where the variable occurs, i.e., where the variable has a non-zero
coefficient. This value is drawn from a single distribution over Ii. For MINCOVER under uncertainty on the
other hand, each coefficient aM,e of a multiset M can be different and has its own uncertainty interval IM,e.
In contrast to MINSET under uncertainty, we still have deterministic right-hand sides.

4.2.1 Offline MINCOVER.

All our results for offline MINSET directly translate to offline MINCOVER, where we assume full knowledge
of all coefficients aM,e. To see this, we again define an ILP parametrized by the set Q ⊆ M of multisets
that have already been added to the solution and adjust the right-hand sides to the remaining covering
requirement after adding Q. Here, be(Q) = max{be −

∑

M∈Q aM,e, 0} and b(Q) =
∑

e∈U be(Q).

min
∑

M∈M\Q xM
s.t.

∑

M∈M\Q xM · aM,e ≥ be(Q) ∀e ∈ U

xM ∈ {0, 1} ∀M ∈M \Q

(MINCOVERIP-Q)

Based on this ILP, we define an offline greedy algorithm for MINCOVER in the same way as for offline
MINSET, only with slightly different greedy value definitions. The algorithm scales the coefficients such
that all non-zero left-hand side coefficients are at least 1, and then greedily adds the set to the solution that
reduces the right-hand sides the most, i.e., the set M ∈M that maximizes gc(Q,M) = b′(Q)−b′(Q∪{M})
(a′ and b′ indicate scaled coefficients). For a set G ⊆M, we define gc(Q,G) = b′(Q)− b′(Q ∪G).

After b′e(Q) < 1 for all e ∈ U , we can exploit that all scaled non-zero coefficients a′M,e are at least one.
This means that adding a set M satisfies all remaining constraints of elements e with a′M,e > 0. Thus, the
remaining problem reduces to a SETCOVER instance, which can be solved by using the greedy algorithm
by Chvatal [8], which greedily adds the set M that maximizes gs(Q,M) = A(Q) − A(Q ∪ {M}) with
A(Q) = |{e ∈ U | be(Q) > 0}|, i.e., the set that satisfies the largest number of constraints that are not
already satisfied by Q. For a set G ⊆M, we define gs(Q,G) = A(Q)−A(Q ∪G). We call gc(Q,M) and
gs(Q,M) the greedy values of M after adding Q.

This offline algorithm achieves an approximation factor of ρ′(γ) = ⌈ln(γ · n · maxe∈U be)⌉ + ⌈ln(n)⌉
with smin = mine∈U ,M∈M : aM,e>0 aM,e, γ = 1/smin and n = |U| (follows from [11]). It is easy to see
that Definition 3.3, Lemma 3.4, Lemma 3.5, Definition 3.6 and Theorem 3.7 all transfer to MINCOVER

using ρ′ instead of ρ (or ρ̄) and using the adjusted greedy value definitions. This is because none of the

18

Algorithm 4: Algorithm MINCOVER under stochastic explorable uncertainty.

Input: Instance if MINCOVER under stochastic explorable uncertainty.
1 Q← ∅; Scale coefficients by γ = (2

smin
) to a′ and b′ with smin = mine∈U ,M∈M : UM,e>0 UM,e;

2 while the problem is not solved do

3 if b′(Q) ≥ 1 then g = ḡc else g = ḡs;
4 repeat

5 M ← argmaxM ′∈M\Q g(Q,M ′); Query M ; Q← Q ∪ {M};

6 until the problem is solved or gc(Q,M) ≥ 1
2 ḡc(Q,M) (if g = ḡc) or gs(Q,M) ≥ 1

2 ḡs(Q,M)
(if g = ḡs);

proofs actually uses the special case properties of (MINSETIP) that (MINCOVERIP) does not have. In the
following, we will use these definitions, lemmas, and theorems to prove algorithmic results for stochastic
MINCOVER.

4.2.2 MINCOVER under uncertainty.

Similar to MINSET with deterministic right-hand sides, it can happen that the instance has no feasible
solution. In that case, we require every algorithm (including OPT) to reduce the covering requirements as
much as possible.

Our algorithm again relies on the optimistic greedy values ḡc(Q,M) = b′(Q)−
∑

e∈U max{0, b′e(Q)−
γUM,e} (if b′(Q) ≥ 1) and ḡs(Q,M) = A(Q) − |{e ∈ U | b′e(Q) − γUM,e > 0}| (otherwise). For
sets G ⊆ M, we define ḡs(Q,G) and ḡc(Q,G) analogously. Furthermore, the algorithm again scales the
left-hand side coefficients by γ = 2/smin for smin = mine∈U ,M∈M : UM,e>0 UM,e.

In contrast to MINSET under uncertainty, we need a different balancing parameter to take the more
general nature of the coefficients into account. For MINSET under uncertainty, the special structure of the
coefficients for an interval Ii allowed us to relate the event wi ≥

Ui+Li

2 to the actual and optimistic greedy
value of Ii after some set Q has already been queried. For MINCOVER the greedy values of a multiset M
depend on the outcomes of several random variables, one for each e ∈ E with UM,e > 0. In particular, the
greedy value gs(Q,M) now depends on the number of random variables aM,e with a sufficiently large value
that satisfies the corresponding constraint. Similar, the greedy value gc(Q,M) now depends on a sum of

random variables. Even if aM,e ≥
UM,e+LM,e

2 holds with probability τ for each M and e, this property does
not necessarily translate to the greedy values.

For these reasons, we define the balancing parameter τ ′ based on the greedy values for a scaled instance.
We characterize the distributions for an M ∈ M by τ ′M = min{τ ′M,1, τ

′
M,2}, where τ ′M,1 is the minimum

probability Pr[gc(M,Q) ≥ 1
2 ḡc(M,Q)] over all Q ⊆ M \ {M} and all realizations of the elements of

Q. Similar, τ ′M,2 is the minimum probability Pr[gs(M,Q) ≥ 1
2 ḡs(M,Q)] over all Q ⊆ M \ {M} and all

realizations of the elements of Q with b′e(Q) ≤ 1 for all e ∈ U . For the complete instance, we use parameter
τ ′ = minM∈M τ ′M .

In contrast to the parameter for MINSET, the parameter τ ′ is defined in a more artificial and restrictive
way. Nevertheless, we argue that small values of 1

τ ′ still capture interesting distributions. For example, if
the distribution of each aM,e is symmetric over the center of IM,e, then τ ′ = 0.5. Our main result is the
following theorem.

Theorem 4.2. There exists an algorithm for MINCOVER under uncertainty with a competitive ratio of
2
τ ′ · ρ

′(γ) ∈ O(1
τ ′ · log n) with γ = 2/smin for smin = mine∈U ,M∈M : UM,e>0 UM,e.

Thus, the algorithm of the theorem loses only a factor 2
τ ′ compared to the greedy approximation fac-

19

tor ρ′(γ) on the corresponding offline problem. We show the theorem by proving that Algorithm 4 is an
(α, β, γ)-GREEDY algorithm for α = 2, β = 1

τ ′ and γ = 2
smin

. Then, Theorem 3.7 implies the theorem. The
algorithm scales the coefficients by factor γ; we use a′ and b′ to refer to the scaled coefficients. Algorithm 4
uses the exact same idea as Algorithm 3 for MINSET with deterministic right-hand sides. That is, it executes
the greedy algorithm by Dobson [11] under the assumption that aM,e = UM,e (and a′M,e = γUM,e) for all
e ∈ U and all not yet queried M ∈ M.

In contrast to gs and gc, Algorithm 4 has sufficient information to compute the optimistic greedy values
ḡs and ḡc and, therefore, can compute the best greedy choice based on the optimistic greedy values. The
algorithm is designed to find, in each iteration, one set M with gc(Q,M) ≥ 1

2 · ḡc(Q,M) for the current
Q (or analogously for ḡs and gs). We show that this ensures that each iteration 2-approximates the greedy
choice for the scaled instance.

Proof of Theorem 4.2. Let i be an arbitrary iteration of the outer while-loop, Xi denote the number of
queries during the iteration, and Yi indicate whether the algorithm executes iteration i (Yi = 1) or not.
Assuming Yi = 1, the algorithm, during i, executes queries to sets M until either gs(Q,M) ≥ 1

2 ḡs(Q,M)
(if g = ḡs) or gc(Q,M) ≥ 1

2 ḡc(Q,M) (if g = ḡc) or the problem is solved. Thus, the iteration terminates
at the latest when it finds an M with gs(Q,M) ≥ 1

2 ḡs(Q,M) or gc(Q,M) ≥ 1
2 ḡc(Q,M) depending on g.

By definition of τ ′, the number of attempts until this happens follows a geometric distribution with success
probability at least τ ′. Hence, E[Xi | Yi = 1] ≤ 1

τ ′ ; proving Property 2 of Definition 3.6.
We continue by proving the first property of (α, β, γ)-GREEDY. Consider a fixed realization. Let Ḡi

denote the queries of iteration i except the last one and let M̄ denote the last query of iteration i. Then Gi =
Ḡi ∪ {M̄} is the set of queries during the iteration. Finally, let Qi denote the set of queries before iteration
i. We show that Gi 2-approximates the greedy choice of the scaled instance, which implies Property 1
of Definition 3.6. If the iteration solves the problem, then Gi clearly 1-approximates the greedy choice and
we are done. Thus, assume otherwise.

We first show that Gi 2-approximates the greedy choice if b′(Qi) ≥ 1. If b′(Qi) ≥ 1, we have g = ḡc
(cf. Line 3). By choice of M̄ , we have ḡc(Qi ∪ Ḡi, M̄) = maxM∈M\(Qi∪Ḡi) ḡc(Qi ∪ Ḡi,M). Then,

gc(Qi∪ Ḡi, M̄) ≥ 1
2 · ḡc(Qi∪ Ḡi, M̄) holds by definition of the algorithm as g = ḡc and iteration i does not

solve the instance. This implies gc(Qi ∪ Ḡi, M̄) ≥ 1
2 ·maxM∈M\(Qi∪Ḡi) gc(Qi ∪ Ḡi,M). By Lemma 3.4,

b′(Qi∪ Ḡi∪{M̄}) ≤ (1− 1
2OPT) · b

′(Qi∪ Ḡi) and, thus, b′(Qi∪Gi) ≤ (1− 1
2OPT) · b

′(Qi), which implies
the property.

Next, we show that Gi 2-approximates the greedy choice if b′(Qi) < 1. By assumption, we have
b′e(Qi) < 1 for all e ∈ U . Recall that we scale by factor γ = 2

smin
with smin = mine∈U ,M∈M : UM,e>0 UM,e.

If a set M satisfies aM,e ≥
1
2 ·UM,e for some e ∈ U with UM,e > 0, then a′M,e = γaM,e ≥

2
smin
· 12 ·UM,e ≥ 1.

Thus, adding M to the solution satisfies the constraint of element e (if it was not already satisfied).
By choice of M̄ , we have ḡs(Qi ∪ Ḡi, M̄) = maxM∈M\(Q∪Ḡi)

ḡs(Qi ∪ Ḡi,M). Let LB denote the
optimal solution value for the remaining instance under the assumption that aM,e = UM,e (and a′M,e =

γUM,e) for all e ∈ U and all not yet queried M ∈ M \ (Qi ∪ Ḡi). Clearly LB ≤ OPT.
Under this assumption, the remaining instance is again just a SETCOVER instance. Similar to the proof

of Lemma 3.4, we can argue that A(Qi∪Ḡi)
LB ≤ ḡs(Qi∪ Ḡi, M̄) as the optimal solution satisfies the remaining

constraints at cost LB, but a single multiset can satisfy at most ḡs(Qi ∪ Ḡi, M̄) constraints.
Observe that gs(Qi ∪ Ḡi, M̄) ≥ 1

2 ḡs(Qi ∪ Ḡi, M̄) holds by definition of the algorithm as M̄ is the
last added set in the iteration with g = ḡs and iteration i does not solve the instance. By definition of gs,
this implies A(Qi ∪ Ḡi) − A(Qi ∪ Ḡi ∪ M̄) = A(Qi ∪ Ḡi) − A(Qi ∪ Gi) ≥

1
2 · ḡs(Qi ∪ Ḡi, M̄). In

combination with A(Qi∪Ḡi)
LB ≤ ḡs(Qi∪ Ḡi, M̄), we get A(Qi∪ Ḡi)−A(Qi∪Gi) ≥

A(Qi∪Ḡi)
2·LB . This implies

A(Qi ∪ Gi) ≤ (1 − 1
2·LB) · A(Qi ∪ Ḡi). As OPT ≥ LB and A(Qi) ≥ A(Qi ∪ Ḡi), we can conclude

A(Qi ∪ Gi) ≤ (1 − 1
2·OPT) · A(Qi), which implies that Gi 2-approximates the greedy choice and, thus,

20

satisfies the first property of (α, β, γ)-GREEDY.

5 MINSET under uncertainty

We consider the general MINSET under uncertainty. In contrast to the previous section, we now also have
uncertainty in the right-hand sides of (MINSETIP). Since we consider the stochastic problem variant, recall
that the balancing parameter is τ = minIi∈I τi with τi = P[wi ≥

Ui+Li

2]. Our goal is to iteratively
add intervals from I to the solution until it becomes feasible for (MINSETIP). To that end, we prove the
following main result.

Theorem 5.1. For τ > 0. There is an algorithm for MINSET under uncertainty with a competitive ratio of

O(1τ · logm · ρ̄(γ)) ⊆ O(
1
τ · log

2m) with γ = 2/smin for smin = minIi∈I : (Ui−Li)>0(Ui − Li).

Exploiting Theorem 3.7, we prove the statement by providing Algorithm 5 and showing that it is an
(α, β, γ)-GREEDY algorithm for α = 2, γ = 2/smin and β = 1

τ (⌈log1.5(m · (2/smin) · maxIi∈I(Ui −
Li))⌉+⌈log2(m)⌉). Note that α and γ are defined as in the previous section for MINSET with deterministic
right-hand sides and will be used analogously. For β on the other hand, we require a larger value to adjust
for the additional uncertainty in the right-hand sides bS = w∗ − LS for the uncertain w∗. Notice that we do
not have sufficient information to just execute Algorithm 3 for MINSET with deterministic right-hand sides
as we need the right-hand side values to compute even the optimistic greedy values.

To handle this additional uncertainty, we want to ensure that each iteration of our algorithm α-approximates
the greedy choice for each possible value of w∗. To do so, we compute and query the best optimistic greedy
choice for several carefully selected possible values of w∗.

To state our algorithm, we define a parametrized variant of (MINSETIP) that states the problem under
the assumptions that w∗ = w for some w and that the set Q ⊆ I has already been queried. The coefficients
are scaled to a′i = (2/smin)(wi − Li) and b′S(Q,w) = max{(2/smin)(w − LS) −

∑

Ii∈Q∩S a
′
i, 0}. As

before, let b′(Q,w) =
∑

S∈S b′S(Q,w) denote the sum of right-hand sides.

min
∑

Ii∈I\Q
xi

s.t.
∑

Ii∈S\Q
xi · a

′
i ≥ b′S(Q,w) ∀S ∈ S

xi ∈ {0, 1} ∀Ii ∈ I

(MINSETIP-QW)

As the right-hand sides are unknown, we define the greedy values for every possible value w for w∗. To
that end, let gc(Q, Ii, w) = b′(Q,w) − b′(Q ∪ {Ii}, w) and gs(Q, Ii, w) = A(Q,w) − A(Q ∪ {Ii}, w),
where A(Q,w) = |{S ∈ S | b′S(Q,w) > 0}| denotes the number of constrains in (MINSETIP-QW) that
are not yet satisfied. As before, gc(Q, Ii, w) and gs(Q, Ii, w) describe how much adding Ii to the solution
reduces the sum of right-hand sides and the number of non-satisfied constraints, respectively; now under
the assumption that w∗ = w. For subsets G ⊆ I \ Q, we define the greedy values in the same way, i.e.,
gs(Q,G,w) = A(Q,w) −A(Q ∪G,w) and gc(Q,G,w) = b′(Q,w) − b′(Q ∪G,w).

Since our algorithm again does not have sufficient information to compute the precise greedy values
gs(Q, Ii, w) and gc(Q, Ii, w) even for a fixed w, we again use the optimistic greedy values defined in the
same way as in the previous section. That is

ḡc(Q, Ii, w) =
∑

S∈S : Ii∈S

b′S(Q,w) −max{0, b′S(Q,w) − γ(Ui − Li)}

and
ḡs(Q, Ii, w) = |{S ∈ S : Ii ∈ S | b′S(Q,w) > 0 ∧ b′S(Q,w) − γ(Ui − Li) ≤ 0}|.

For subsets G ⊆ I \Q, the optimistic greedy values are defined analogously.

21

Algorithm 5: Algorithm for MINSET under uncertainty.

Input: Instance of MINSET under uncertainty.
1 Scale all coefficients with γ = 2/smin for smin = minIi∈I : (Ui−Li)>0(Ui − Li);

2 Q← ∅, wmin← minimum possible value w∗ (keep up-to-date);
3 while the problem is not solved do

4 foreach g from the ordered list ḡc, ḡs do

5 d← 1; Q′ ← Q;
6 if g = ḡc then wmax ← max possible value w∗;
7 else wmax ← max w s.t. b′S(Q,w) < 1 for all S ∈ S;
8 while ∃wmin ≤ w ≤ wmax such that maxIh∈I\Q g(Q, Ih, w) ≥ d do

9 repeat

10 w ← min wmin ≤ w ≤ wmax s.t. maxIh∈I\Q g(Q,w, Ih) ≥ d ;

11 Ii ← argmaxIh∈I\Q g(Q, Ih, w); Query Ii; Q← Q ∪ {Ii};

12 Q1/2 ← {Ij ∈ Q \Q′ | wj − Lj ≥
Uj−Lj

2 };

13 if g = ḡc then d← gc(Q
′, Q1/2, w) else d← gs(Q

′, Q1/2, w);

14 until wi − Li ≥
Ui−Li

2 or ∄w ≤ wmax : maxIh∈I\Q g(Q,w, Ih) ≥ d ;

Similar to Algorithm 3, we would like to repeatedly compute and query the best optimistic greedy choice
until the queried Ii satisfies wi − Li ≥

Ui−Li

2 (cf. the repeat-statement). However, we cannot decide which
greedy value, ḡc or ḡs, to use as deciding whether b′S(Q,w∗) < 1 depends on the unknown w∗. Instead, we
compute and query the best optimistic greedy choice for both greedy values (cf. the for-loop). Even then,
the best greedy choice still depends on the unknown right-hand sides. Thus, we compute and query the best
optimistic greedy choice for several carefully selected values w (cf. the inner while-loop) to make sure that
the queries of the iteration approximate the greedy choice for every possible w∗. Additionally, we want to
ensure that we use at most β queries in expectation within an iteration of the outer while-loop.

To illustrate the ideas of the algorithm, consider an iteration of the outer while-loop. In particular,
consider the for-loop iteration with g = ḡs within this iteration. Let Q′ denote the set of queries that were
executed before the start of the iteration. Since we only care about the greedy value gc if there exists some
S ∈ S with b′S(Q

′) ≥ 1 (otherwise we use ḡs and gs instead), we assume that this is the case. If not, we use
a separate analysis for the for-loop iteration with g = ḡs.

Our goal for the iteration is to query a set of intervals Q̄ that 2-approximates the best greedy choice I∗

after querying Q′, i.e., it has a greedy value gc(Q′, Q̄, w∗) ≥ 1
2gc(Q

′, I∗, w∗) and, thus, satisfies Lemma 3.4.
To achieve this for the unknown w∗, the algorithm uses the parameter d, which is initialized with 1 (cf. Line 5),
the minimum possible value for ḡc(Q′, I∗, w∗) under the assumption that there exists some S ∈ S with
b′S(Q

′) ≥ 1. In an iteration of the inner while-loop, the algorithm repeatedly picks the minimal value w
such that the best current optimistic greedy choice has an optimistic greedy value of at least d (cf. Line 10).
If no such value exists, then the loop terminates (cf. Lines 8, 14). Afterwards, it queries the corresponding
best optimistic greedy choice Ii for the selected value w (cf. Line 11). Similar to the algorithms of the
previous section, this is done repeatedly until wi − Li ≥ (Ui − Li)/2.

The key idea to achieve the 2-approximation with an expected number of queries that does not exceed
β, is to always reset the value d to gc(Q

′, Q1/2, w), where Q1/2 is the subset of all intervals Ij that have
already been queried in the current iteration of the outer while-loop and satisfy wj − Lj ≥ (Uj − Lj)/2
(cf. Lines 12, 13). This can be seen as an implicit doubling strategy to search for an unknown value. It leads
to an exponential increase of d over the iterations of the inner while-loop, which will allow us to bound their
number.

22

With the following lemma, we prove that this choice of d also ensures that the queries of the iteration
indeed 2-approximate the best greedy choice for w∗ if there exists a S ∈ S with b′S(Q

′, w∗) ≥ 1. If there is
no such set, we can use a similar proof w.r.t. greedy value gs. For an iteration j of the outer while-loop, let
Gj be the set of queries during the iteration and let Qj =

⋃

j′<j Gj denote the queries before the iteration
(cf. Q′ in the algorithm).

Lemma 5.2. If there is an S ∈ S with b′S(Qj, w
∗) ≥ 1, then Gj 2-approximates the greedy choice for the

scaled instance with w = w∗ after querying Qj .

Proof. For an arbitrary but fixed realization, consider an iteration j of the outer while-loop such that there
exists a set S ∈ S with b′S(Qj , w

∗) ≥ 1.
Consider the subset Ḡj ⊆ Gj of queries that were executed with g = ḡc before the increasing value

w (cf. Line 10) surpasses w∗. That is, Ḡj only contains intervals that were queried for a current value
w ≤ w∗. Let Īi be the element of Ḡj that is queried last. Finally, let d̄j denote the value d computed by
the algorithm in Line 13 directly after querying Īi. We continue to show that Gj 2-approximates the greedy
choice of (MINSETIP-QW) for Q = Qj and w = w∗.

Observe that gc(Qj , Ḡj , w
∗) ≥ d̄j . To see this, recall that d̄j was computed in Line 13 after Īi was

queried. Thus, d̄j = gc(Q
′, Q1/2, w) for Q′ = Qj , Q1/2 = {Ij ∈ Ḡj | wj − Lj ≥

Uj−Lj

2 } and some value
w with w ≤ w∗ by assumption. Since w∗ ≥ w and Q1/2 ⊆ Ḡj , the greedy value gc(Qj , Ḡj , w

∗) can never
be smaller than d̄j = gc(Q

′, Q1/2, w). This implies gc(Qj , Ḡj , w
∗) ≥ d̄j .

We continue by showing that d∗ ≤ 2 · gc(Qj, Ḡj , w
∗) holds for the best greedy value d∗ at the start of

the iteration, i.e., d∗ = maxIi∈I\Qj
gc(Qj , Ii, w

∗). As Ḡj ⊆ Gj , this implies d∗ ≤ 2 · gc(Qj , Gj , w
∗) and,

thus, that Gj satisfies Definition 3.3.
To upper bound d∗, first observe that the best optimistic greedy value d′ after querying Ḡj∪Qj is smaller

than d̄j , i.e., d′ = maxIi∈I\(Qj∪Ḡj)
ḡc(Qj ∪ Ḡj , Ii, w

∗) < d̄j . This follows directly from Line 10 as Īi is

the last query for a value w ≤ w∗ by assumption. As gc(Qj, Ḡj , w
∗) ≥ d̄j , we get gc(Qj, Ḡj , w

∗) ≥ d′.
By definition of gc, the best greedy value after querying Qj can never be larger than the sum of the

greedy value of Ḡj after querying Qj and the best optimistic greedy value after querying Ḡj ∪ Qj . Thus,
we have d∗ ≤ gc(Qj , Ḡj , w

∗) + d′ ≤ 2 · gc(Qj , Ḡj , w
∗). This proves that Ḡj satisfies Lemma 3.4 and, thus,

concludes this proof.

Using a similar proof, we show the following lemma for the case where b′S(Q
′, w∗) < 1 for all S ∈ S ,

which together with Lemma 5.2 implies Property 1 of Definition 3.6. While the main arguments remain
the same as for the previous lemma, the more discrete nature of the greedy values gs and ḡs poses several
additional technical challenges that need to be taken care of. For an iteration j of the outer while-loop, let
Gj again be the set of queries during the iteration and let Qj =

⋃

j′<j Gj denote the queries before the
iteration (cf. set Q′ in the algorithm).

Lemma 5.3. If b′S(Qj, w
∗) < 1 for all S ∈ S , then Gj 2-approximates the greedy choice for the scaled

instance with w = w∗ after querying Qj .

Proof. For an arbitrary but fixed realization, consider an iteration j of the outer while-loop such that
b′S(Qj , w

∗) < 1 for all S ∈ S . Our goal is to prove that Gj approximates the greedy choice for the scaled
instance with w = w∗ after querying Qj within a factor of two. That is, we have to prove A(Qj ∪Gj , w

∗) ≤
(1− 1

2·OPT) ·A(Qj , w
∗). Recall that A(Qj , w

∗) denotes the number of constraints that are not yet satisfied
in the (MINSETIP-QW) instance for Q = Qj and w = w∗.

Consider the subset Ḡj ⊆ Gj of queries to intervals Ii that were executed with g = ḡs for a current
value w ≤ w∗ during iteration j of the outer while-loop. Let Pj ⊆ Gj denote the queries of the iteration
that were executed before Ḡj , i.e., that were executed during the iteration of the for-loop with g = ḡc. Note

23

that Q′ = Qj ∪ Pj is the set of intervals queried before the beginning of the for-loop iteration with g = ḡs
during iteration j of the outer while-loop.

Proof outline. We start the proof by making some preliminary observations regarding greedy value gs
and the scaling factor γ that will be crucial for the remainder of the proof. Then we proceed by proving
that Ḡj approximates the greedy choice of (MINSETIP-QW) for Q = Qj ∪ Pj and w = w∗ within a factor
of 2. To that end, we first derive a lower bound on the greedy value gs(Qj ∪ Pj , Ḡj , w

∗) and afterwards
compare this lower bound with OPT. Finally, we use the fact that Ḡj 2-approximates the greedy choice
after querying Qj ∪ Pj to show that Gj approximates the greedy choice of (MINSETIP-QW) for Q = Qj

and w = w∗ within a factor of 2.
Preliminary observations. Before we start with the proof, recall that an interval Ii with (wi − Li) ≥

1
2 ·(Ui−Li) satisfies a′i =

2·(wi−Li)
smin

≥ Ui−Li

smin
≥ 1 by choice of the scaling parameter γ = 2

smin
. This implies

that adding Ii to the solution satisfies all constraints for sets S with Ii ∈ S as long as we are considering
values w with b′S(Qj, w) ≤ 1 for all S ∈ S . Thus, for such intervals and values w, the greedy value gs of Ii
is then equal to the optimistic greedy value ḡs as even under the assumption a′i = γ(Ui−Li) adding interval
Ii cannot satisfy more constraints. By assumption, this in particular holds for all values w ≤ w∗. This also
means that the greedy values gs and ḡs of such intervals Ii only increase with an increasing value w, as long
as b′S(Qj , w) ≤ 1 still holds for all S ∈ S .

Lower bound on gs(Qj ∪Pj , Ḡj , w
∗). We continue by deriving a lower bound on gs(Qj ∪Pj , Ḡj , w

∗).
Let Īi be the element of Ḡj that is queried last and let d̄j denote the value d computed by the algorithm
in Line 13 directly after querying Īi. We first observe that gs(Qj ∪ Pj , Ḡj , w

∗) ≥ d̄j . To see this, recall
that d̄j was computed in Line 13 after Īi was queried. Thus, d̄j = gs(Q

′, Q1/2, w) for Q′ = Qj ∪ Pj ,

Q1/2 = {Ij ∈ Ḡj | wj − Lj ≥
Uj−Lj

2 } and some value w with w ≤ w∗ by assumption. Since w∗ ≥ w and
Q1/2 ⊆ Ḡj , the greedy value gs(Qj∪Pj, Ḡj , w

∗) can never be smaller than d̄j = gs(Q
′, Q1/2, w) according

to the observations stated at the beginning of the proof. This implies gs(Qj ∪ Pj , Ḡj , w
∗) ≥ d̄j .

Assume for now that the algorithm queried Qs = Ḡj \Q1/2 before Q1/2. We consider the best optimistic
greedy value d∗ after Qj ∪ Pj ∪ Qs has already been queried, i.e, d∗ = maxIi∈I\(Qj∪Pj∪Qs) ḡs(Qj ∪
Pj , Ii, w

∗). To bound d∗, first observe that the best optimistic greedy value d′ after querying Ḡj ∪Qj ∪ Pj

is smaller than d̄j , i.e., d′ = maxIi∈I\(Qj∪Pj∪Ḡj)
ḡs(Qj ∪ Pj ∪ Ḡj , Ii, w

∗) < d̄j . This follows directly

from Line 10 as Īi is the last query for a value w ≤ w∗ by assumption. Since we already showed gs(Qj ∪
Pj , Ḡj , w

∗) ≥ d̄j , we get gs(Qj ∪ Pj , Ḡj , w
∗) ≥ d′.

By definition of ḡs, definition of Q1/2, and the assumption that we only consider values w with b′S(Q
′, w) <

1 for all S ∈ S , the best optimistic greedy value after querying Qj ∪ Pj ∪ Qs can never be larger than the
sum of the optimistic greedy value of Q1/2 after querying Qj ∪Pj ∪Qs and the best optimistic greedy value
after querying Qj ∪ Pj ∪Qs ∪Q1/2 = Qj ∪ Pj ∪ Ḡj . By assumption that we only consider values w with
b′S(Q

′, w) < 1 for all S ∈ S , we have ḡs(Qj ∪Pj ∪Qs, Q1/2, w
∗) = gs(Qj ∪Pj ∪Qs, Q1/2, w

∗) (as argued
at the beginning of the proof). Putting it together, we get

d∗ ≤ ḡs(Qj ∪ Pj ∪Qs, Q1/2, w
∗) + d′

= gs(Qj ∪ Pj ∪Qs, Q1/2, w
∗) + d′

≤ gs(Qj ∪ Pj ∪Qs, Q1/2, w
∗) + gs(Qj ∪ Pj , Ḡj , w

∗)

Proving that Ḡj approximates its greedy choice. We continue the proof by using the inequality for d∗

in order to show that Ḡj approximates its greedy choice.
To that end, we consider a relaxed instance R of (MINSETIP-QW) with Q = Qj ∪ Pj and w = w∗,

i.e., we assume that Qj ∪ Pj has already been queried and consider the right-hand sides b′S(Qj ∪ Pj , w
∗)

for all S ∈ S . We relax the instance by increasing the left-hand side coefficients and decreasing the cost

24

coefficients. Let â denote the relaxed coefficients. First consider the intervals in Ḡj . For these intervals, we
use the original scaled coefficients. That is, we set âi = a′i = γ(wi − Li). Recall that Q1/2 = {Ii ∈ Ḡj |

wi − Li ≥
1
2(Ui − Li)} and Qs = Ḡj \ Q1/2. For intervals Ii ∈ Qs, we set the cost coefficients to zero.

Thus, these intervals can be added to any solution without increasing the objective value. All other intervals
keep their cost coefficients of one. For all other intervals Ii ∈ I \ (Qj ∪ Pj ∪ Ḡj), we set âi = γ(Ui − Li).
That is, we assume that the coefficients of these intervals are slightly larger than their largest possible value.
Since instance R compared to the original instance only increases left-hand side coefficients and decreases
cost coefficients, it clearly is a relaxation and, thus, LB ≤ OPT for the optimal objective value LB of the
relaxed instance R.

Since we assume b′S(Qj ∪ Pj, w
∗) < 1 for all S ∈ S , the right-hand sides of instance R are all strictly

smaller than one. Furthermore, by choice of the scaling parameter γ, all intervals Ii satisfy γ(Ui − Li) ≥
1. Thus, the intervals Ii in Q \ (Qj ∪ Pj ∪ Ḡj) have coefficients âi ≥ 1. By the observations at the
beginning of the proof, the same holds for the intervals in Q1/2. Only the intervals in Qs can potentially
have coefficients smaller than the right-hand sides. This also means that the greedy value gs of an interval
Ii ∈ Q \ (Qj ∪ Pj ∪Qs) for instance R can never be increased by previously adding intervals of Qs to the
solution, since adding Ii already satisfies all constraints for sets S with Ii ∈ S. For intervals in Qs, it might
be the case that previously adding further elements of Qs to the solution increases the greedy value. This is,
because the coefficient of an Ii ∈ Qs might be too small to satisfy a constraint S with Ii ∈ S but previously
adding further intervals from Qs might decrease the right-hand side of S enough such that adding Ii can
satisfy the constraint and, thus, increase the greedy value of Ii.

Now, consider the number of constraints that are initially not satisfied in R. This number is exactly
the same as in the non-relaxed original instance after querying Qj ∪ Pj since R uses the exact same

right-hand sides. Thus, the number of not yet satisfied constraints in R is A(Qj ∪ Pj , w
∗). Let d̂ =

maxIi∈I\(Qj∪Pj∪Qs) |{S ∈ S | b′S(Qj ∪ Pj , w
∗) > 0 ∧ b′S(Qj ∪ Pj , w

∗) − âi −
∑

Ih∈Qs
âh ≤ 0}| denote

the maximum number of constraints that can be satisfied by adding Qs and one interval Ii in Qj ∪ Pj ∪Qs

to the solution for R. In a sense, d̂ is the best possible greedy value gs for instance R that can be achieve by
adding such a set Qs ∪ {Ii} to the solution. Remember that the elements of Qs do not incur any costs, so
d̂ constraints can be satisfied at cost one. Following the arguments in the proof of Lemma 3.4, this implies

d̂ ≥
A(Qj∪Pj ,w

∗)
LB as the optimal solution satisfies A(Qj ∪Pj, w

∗) constraints at cost LB but it is impossible

to satisfy more than d̂ constraints with cost one. This last implication crucially uses the observation that the
greedy values of intervals in Q \ (Qj ∪Pj ∪Qs) cannot increase by previously adding other intervals to the

solution. Because this is the case, even adding an interval later cannot satisfy more than d̂ constraints, which

gives us d̂ ≥
A(Qj∪Pj ,w∗)

LB . We remark that this also is the reason why the offline Algorithm 3 starts with
greedy value gc and only switches to greedy value gs once the instance reduced to a SETCOVER instance.

Taking a closer look at d̂, we can observe that this greedy value is exactly the sum of the greedy values
gs(Qj ∪ Pj , Qs, w

∗) and d∗ = maxIi∈Q\(Qj∪Pj∪Qs) ḡs(Qj ∪ Pj ∪Qs, Ii, w
∗) for the non-relaxed instance.

This is, because the original instance uses the same right-hand sides as R, the coefficients of intervals in
Qs are the same in both instances, and the optimistic greedy value ḡs(Qj ∪ Pj ∪ Qs, Ii, w

∗) like instance
R already assumes that all intervals in Q \ (Qj ∪ Pj ∪ Qs) have coefficients larger than all right-hand

sides. Thus, these three arguments imply d̂ = gs(Qj ∪ Pj , Qs, w
∗) + d∗. Combining this equality with

25

d̂ ≥
A(Qj∪Pj ,w

∗)
LB and the previously derived upper bound on d∗ gives us:

A(Qj ∪ Pj , w
∗)

LB
≤ d̂

= gs(Qj ∪ Pj , Qs, w
∗) + d∗

≤ gs(Qj ∪ Pj , Qs, w
∗) + gs(Qj ∪ Pj ∪Qs, Q1/2, w

∗) + gs(Qj ∪ Pj , Ḡj , w
∗)

= 2 · gs(Qj ∪ Pj , Ḡj , w
∗).

Here the second equality uses that

gs(Qj ∪ Pj , Qs, w
∗) + gs(Qj ∪ Pj ∪Qs, Q1/2, w

∗)

=(A(Qj ∪ Pj , w
∗)−A(Qj ∪ Pj ∪Qs, w

∗))

+(A(Qj ∪ Pj ∪Qs, w
∗)−A(Qj ∪ Pj ∪Qs ∪Q1/2, w

∗))

=A(Qj ∪ Pj , w
∗)−A(Qj ∪ Pj ∪Qs ∪Q1/2, w

∗)

=A(Qj ∪ Pj , w
∗)−A(Qj ∪ Pj ∪ Ḡj , w

∗)

=gs(Qj ∪ Pj , Ḡj , w
∗).

Plugging in the definition of gs and the inequality LB ≤ OPT yields

A(Qj ∪ Pj , w
∗)

LB
≤ 2 · (A(Qj ∪ Pj , w

∗)−A(Qj ∪ Pj ∪ Ḡj , w
∗))

⇔A(Qj ∪ Pj ∪ Ḡj , w
∗) ≤ A(Qj ∪ Pj , w

∗) · (1−
1

2 · LB
)

⇒A(Qj ∪ Pj ∪ Ḡj , w
∗) ≤ A(Qj ∪ Pj , w

∗) · (1−
1

2 ·OPT
).

Thus, Ḡj approximates the greedy choice of (MINSETIP-QW) for Q = Qj ∪Pj and w = w∗ within a factor
of 2.

Concluding the proof. Remember that our goal was to show that Gj approximates the greedy choice
for w = w∗ after querying Qj within a factor of 2. To that end, observe that Pj ∪ Ḡj ⊆ Gj implies
A(Qj ∪ Pj ∪ Ḡj , w

∗) ≥ A(Qj ∪ Gj , w
∗) and that Qj ⊆ Qj ∪ Pj implies A(Qj , w

∗) ≥ A(Qj ∪ Pj, w
∗).

Plugging these inequalities into the previously derived inequality for A(Qj ∪ Pj ∪ Ḡj , w
∗) yields A(Qj ∪

Gj , w
∗) ≤ A(Qj , w

∗) · (1 − 1
2·OPT). This means that Gj also 2-approximates the greedy choice after

querying Qj for w = w∗, which concludes the proof.

Since the Lemmas 5.2 and 5.3 imply Condition 1 of Definition 3.6, it remains to show Condition 2
in order to apply Theorem 3.7. The proof idea is to show that parameter d increases by a factor of at
least 1.5 in each iteration of the inner while-loop with g = ḡc. As ḡc(Q, Ii, w) is upper bounded by
m(2/smin)maxIi∈I(Ui−Li), this means the inner loop executes at most⌈log1.5(m(2/smin)maxIi∈I(Ui−
Li))⌉ iterations for g = ḡc. For g = ḡs, we can argue in a similar way that at most ⌈log2(m)⌉ iterations
are executed. Similar to the previous section on MINSET with deterministic right-hand sides, we can also
show that each iteration of the inner while-loop executes at most 1

τ queries in expectation. Combining these
insights, we can bound the expected number of queries during an execution of the outer while-loop by β.
Formally proving the increase of d by 1.5 requires to take care of several technical challenges. The basic
idea is to exploit that the interval Ii queried in Line 11 has an optimistic greedy value of at least d. If it

26

satisfies wi−Li ≥
1
2(Ui −Li), we show that the actual greedy value is at least d/2. When d is recomputed

in Line 13, then Ii is a new member of the set Q1/2 and leads to the increase of d/2.
We conclude the section by formalizing this proof idea. For each iteration j of the outer while-loop,

let Xj be a random variable denoting the number of queries executed during iteration j and let Yj be a
variable indicating whether the iteration is executed (Yj = 1) or not (Yj = 0). We prove the following
lemma, which implies that the algorithm also satisfies the second condition of Definition 3.6 and, thus,
satisfies Theorem 5.1.

Lemma 5.4. E[Xj | Yj = 1] ≤ β = 1
τ · (⌈log1.5(m ·

2·maxIi∈I(Ui−Li)

smin
)⌉+ ⌈log2(m)⌉).

Proof. Consider an iteration j of the outer while-loop of Algorithm 5. In the following, all probabilities and
expected values are under the condition Yj = 1.

For iteration j, let Ajk and Bjk be random variables denoting the number of queries in iteration k of the
inner while-loop for g = ḡc and g = ḡs, respectively. Then, E[Xj] =

∑

k E[Bjk] +
∑

k E[Ajk].
Let Ājk and B̄jk be random variables indicating whether iteration k of the inner while-loop with g = ḡc

and g = ḡs, respectively, is executed (Ājk = 1, B̄jk = 1) or not. Given that such an iteration is executed,
we can exploit that the termination criterion wi ≥

1
2 · (Ui − Li) occurs with probability P[(wi − Li) ≥

(Ui − Li)/2] ≥ P[wi ≥ (Ui + Li)/2] ≥ τ to show E[Ajk | Ājk = 1] ≤ 1
τ and E[Bjk | B̄jk = 1] ≤ 1

τ .
Using these bounds and exploiting that E[Ajk | Ājk = 0] = E[Bjk | B̄jk = 0] = 0, we get

E[Xj] =
∑

k

(E[Ajk] + E[Bjk])

=
∑

k

P[Ājk = 1] · E[Ajk | Ājk = 1] + P[B̄jk = 0] · E[Bjk | Ājk = 0]

+
∑

k

P[B̄jk = 1] · E[Bjk | B̄jk = 1] + P[B̄jk = 0] · E[Bjk | B̄jk = 0]

=
∑

k

P[Ājk = 1] · E[Ajk | Ājk = 1] +
∑

k

P[B̄jk = 1] · E[Bjk | B̄jk = 1]

≤
1

τ
·

(

∑

k

P[Ājk = 1] +
∑

k

P[B̄jk = 1]

)

.

Thus, it only remains to bound
∑

k P[Ājk = 1] +
∑

k P[B̄jk = 1]. We do this by separately proving
∑

k P[Ājk = 1] ≤ ⌈log1.5 (m · (2/smin) ·maxIi∈I(Ui − Li))⌉ and
∑

k P[B̄jk = 1] ≤ ⌈log2(m)⌉.
Putting all bounds together, we then get E[Xj] ≤

1
τ · (
∑

k P[Ājk = 1]+P[B̄jk = 1]) ≤ 1
τ · (⌈log1.5(m ·

2·maxIi∈I(Ui−Li)

smin
)⌉+ ⌈log2(m)⌉).

Upper bound for
∑

k P[Ājk = 1]. Note that
∑

k P[Ājk = 1] is just the expected number of iterations
of the inner while-loop with g = ḡc during iteration j of the outer while-loop. We bound this number by
showing that the value d increases by a factor of at least 1.5 in each iteration except possibly the first and
last ones. As d is upper bounded by a = (2/smin) ·m ·maxIi∈I(Ui − Li), the number of iterations then is
at most ⌈log1.5 (a)⌉ for every realization of values.

To prove that d increases by a factor of 1.5 in each iteration of the inner while-loop, consider the last
execution of the repeat-statement within an iteration of the inner while-loop with g = ḡc (that is not the first
or last one). Let Ii be the interval queried in that last iteration of the repeat-statement, let Q denote the set
of Ii and all intervals that were queried before Ii, let Q′ denote the set of all intervals queried before the
current execution of the inner while-loop was started, and let Q1/2 = {Ij ∈ Q \ Q′ | wj − Lj ≥

Uj−Lj

2 }.
Furthermore, let w denote the value of Line 10 computed before Ii was queried in the following line. Note
that this notation matches the one used in the algorithm at the execution of Line 12 directly after Ii was
queried.

27

Let d̄ denote the value d computed by the algorithm before Ii was queried. That is, d̄ = gc(Q
′, Q1/2 \

{Ii}, w
′) for the value w′ that was computed in the previous execution of Line 10. By choice of Ii, we have

ḡc(Q \ {Ii}, Ii, w) ≥ d̄ and gc(Q \ {Ii}, Ii, w) ≥ d̄/2 (since wi − Li ≥ (Ui − Li)/2).
The value d computed after querying Ii is defined as

d = gc(Q
′, Q1/2, w) ≥ gc(Q

′, Q1/2 \ {Ii}, w) + gc(Q
′ ∪Q1/2 \ {Ii}, Ii, w)

≥ gc(Q
′, Q1/2 \ {Ii}, w) + gc(Q \ {Ii}, Ii, w),

where the first inequality holds by definition of gc and the second inequality holds because Q \ {Ii} ⊇
Q′ ∪Q1/2 \ {Ii} implies gc(Q′ ∪Q1/2 \ {Ii}, Ii, w) ≥ gc(Q \ {Ii}, Ii, w).

In an iteration of the for-loop with g = gc, the current value w only increases, which implies w′ ≤
w. Since the greedy value gc only increases for increasing values w, we get gc(Q′, Q1/2 \ {Ii}, w) ≥
gc(Q

′, Q1/2 \ {Ii}, w
′) and, therefore gc(Q

′, Q1/2, w) ≥ gc(Q
′, Q1/2 \ {Ii}, w

′) + gc(Q \ {Ii}, Ii, w).
Plugging in d̄ = gc(Q

′, Q1/2 \ {Ii}, w
′) and gc(Q \ {Ii}, Ii, w) ≥ d̄/2 yields d ≥ 1.5 · d̄.

Note that this only shows that d increases by a factor of 1.5 compared to d̄, the old value computed
in the previous execution of the repeat statement. Our goal was to show that d increases by factor 1.5
compared to the previous iteration of the inner-while loop. However, since the value w only increases,
the greedy values gc only increase. This implies that d̄ can only be larger than the corresponding value
at the end of the previous iteration of the inner while-loop. Thus, we have shown that d increases by a
factor of 1.5 compared to its value at the end of the previous iteration of the inner-while loop. This implies
∑

k P[Ājk = 1] ≤ ⌈log1.5 (m · (2 ·maxIi∈I(Ui − Li))/smin)⌉.
Upper bound for

∑

k P[B̄jk = 1]. Next, we use similar arguments to show
∑

k P[B̄jk = 1] ≤
⌈log2(m)⌉. Consider an iteration j of the outer while-loop.

We first show that, assuming g = ḡs, the value d increases by a factor of at least 2 in each iteration of
the inner while-loop (except possibly the first and last ones) during iteration j of the outer while-loop.

By Line 6, iterations with g = ḡs only consider values w with b′S(Q
′, w) < 1 for all S ∈ S , where Q′ is

the set of intervals queried before the start of the current execution of the inner while-loop. For an interval

Ii with (wi − Li) ≥
1
2 · (Ui − Li), this means a′i =

2·(wi−Li)
ssmin

≥ Ui−Li

smin
≥ 1. This implies that adding Ii

to the solution satisfies all constraints for sets S with Ii ∈ S (at least for all values w with b′S(Q
′, w) < 1

for all S ∈ S). Thus, the greedy value gs of Ii is then equal to the optimistic greedy value ḡs as even if
ai = Ui − Li the interval cannot satisfy more constraints.

Furthermore, as long as we only consider values w with b′S(Q
′, w) < 1 for all S ∈ S , the greedy values

gs and ḡs of intervals Ii with (wi − Li) ≥
1
2 · (Ui − Li) can only increase with increasing w and never

increase for decreasing w. The reason for this is that such an increase in w can only lead to more constraints
becoming not satisfied for the right-hand sides b′S(Q

′, w). Thus, the number of constraints that adding Ii
can satisfy only increases. This also means, that the value w as used by the algorithm will never decrease
during the current iteration of the outer while-loop with g = ḡs.

Using these observations, we can essentially repeat the proof of the previous case to show that the value
d increases by a factor of at least 2 in each iteration of the inner while-loop with g = ḡs (except possibly the
first and last ones).

Let Ii be the interval queried in the last iteration of the repeat-statement within such an iteration of
the inner while-loop, let Q denote the set of Ii and all intervals that were queried before Ii, let Q′ denote
the set of all intervals queried before the current execution of the inner while-loop was started, and let
Q1/2 = {Ij ∈ Q \ Q′ | wj − Lj ≥

Uj−Lj

2 }. Furthermore, let w denote the value of Line 10 computed
before Ii was queried in the following line. Note that this notation matches the one used in the algorithm at
the execution of Line 12 directly after Ii was queried.

Let d̄ denote the value d computed by the algorithm before Ii was queried. That is, d̄ = gs(Q
′, Q1/2 \

{Ii}, w
′) for the value w′ that was computed in the previous execution of Line 10. By choice of Ii, we have

28

ḡs(Q \ {Ii}, Ii, w) ≥ d̄ and gs(Q \ {Ii}, Ii, w) = ḡs(Q \ {Ii}, Ii, w) ≥ d̄ (since wi − Li ≥ (Ui − Li)/2
and as argued above).

The value d computed after querying Ii is defined as

d = gs(Q
′, Q1/2, w) ≥ gs(Q

′, Q1/2 \ {Ii}, w) + gs(Q
′ ∪Q1/2 \ {Ii}, Ii, w)

≥ gs(Q
′, Q1/2 \ {Ii}, w) + gs(Q \ {Ii}, Ii, w).

Here, the first inequality holds by definition of gs, definition of Q1/2, and by the assumption that we only
consider values w with b′S(Q

′, w) < 1 for all S ∈ S . The second inequality holds because Q \ {Ii} ⊇
Q′ ∪Q1/2 \ {Ii} implies gs(Q′ ∪Q1/2 \ {Ii}, Ii, w) ≥ gs(Q \ {Ii}, Ii, w). Note that this implication only
holds under the assumption that b′S(Q

′, w) < 1 for all S ∈ S for intervals Ii with a′i ≥ 1.
As argued above, the value w used by the algorithm only increases, i.e., w′ ≤ w. Furthermore, again as

argued above, the greedy value gs of intervals Ij with a′j ≥ 1 only increases for increasing values w. Thus,
we get gs(Q′, Q1/2 \ {Ii}, w) ≥ gs(Q

′, Q1/2 \ {Ii}, w
′) and, therefore, gs(Q′, Q1/2, w) ≥ gs(Q

′, Q1/2 \
{Ii}, w

′) + gs(Q \ {Ii}, Ii, w). Plugging in d̄ = gs(Q
′, Q1/2 \ {Ii}, w

′) and gs(Q \ {Ii}, Ii, w) ≥ d̄ yields
d ≥ 2 · d̄. This implies that d increased by a factor of at least 2 compared to its old value at the end
of the previous iteration of the inner while-loop. As the greedy value gs is upper bounded by m, we get
∑

k P[B̄jk = 1] ≤ ⌈log2(m)⌉.

The Lemmas 5.2 to 5.4 imply that Algorithm 5 satisfies Definition 3.6 for α = 2, γ = 2/smin and
β = 1

τ (⌈log1.5(m · 2(maxIi∈I(Ui − Li))/smin)⌉+ ⌈log2(m)⌉). Thus, Theorem 3.7 implies Theorem 5.1.

6 Final remarks

In this paper, we provide the first results for MINSET under stochastic explorable uncertainty by exploiting
a connection to a covering problem and extending techniques for solving covering problems to our setting
with uncertainty.

Since our results, in expectation, break adversarial lower bound instances for a number of interesting
combinatorial problems under explorable uncertainty, e.g., matching, knapsack, solving ILPs [33], we hope
that our techniques lay the foundation for solving more general problems. In particular if we consider the
mentioned problems with uncertainty in the cost coefficients and our goal is to query elements until we can
identify an optimal solution to the underlying problem, then all these problems admit the same connection
to covering problems as MINSET and can also be written as covering ILPs with uncertain coefficients and
right-hand sides. The difference to MINSET is that the number of constraints in the covering representation
for these problems might be exponential in the input size of the underlying optimization problem. In a sense,
each feasible solution for the underlying optimization problem would define a constraint in the covering
representation. This means that using the results of this paper as a blackbox to solve such optimization prob-
lems under explorable uncertainty does not yield sublinear competitive ratios as the number of constraints
becomes too large. For future research, we suggest to investigate whether one can exploit the additional
structure in these constraints to still achieve improved competitive ratios.

With respect to the results of this paper, we leave open whether the second log factor in our main result,
Theorem 5.1, is necessary. Furthermore, the best competitive ratio achievable in exponential running time
also remains open. Finally, we remark that we expect our algorithms to be parameterizable by the choice
of the balancing parameter. We defined the parameter as the probability that the precise value is larger than
the center of the corresponding interval. Alternatively, one could pick any fraction of the interval, say one
third, as a threshold and define the parameter as the probability that the precise value lies outside the first
third of its interval. As the only parts of our algorithm that use the definition of the balancing parameter are
the termination criteria of the repeat-statements, the definition of the scaling factor γ and the definition of

29

the set Q1/2 in Algorithm 5, we expect that adjusting these parts to a different balancing parameter suffices
to make our algorithms work for such parameters. The choice of the threshold for the balancing parameter
would then influence the constant factor within the competitive ratios.

References

[1] Arpit Agarwal, Sepehr Assadi, and Sanjeev Khanna. Stochastic submodular cover with limited adap-
tivity. In SODA, pages 323–342. SIAM, 2019.

[2] Noga Alon, Baruch Awerbuch, and Yossi Azar. The online set cover problem. In Proceedings of the

thirty-fifth annual ACM symposium on Theory of computing, pages 100–105, 2003.

[3] Evripidis Bampis, Christoph Dürr, Thomas Erlebach, Murilo Santos de Lima, Nicole Megow, and Jens
Schlöter. Orienting (hyper)graphs under explorable stochastic uncertainty. In ESA, volume 204 of
LIPIcs, pages 10:1–10:18, 2021.

[4] Soheil Behnezhad, Avrim Blum, and Mahsa Derakhshan. Stochastic vertex cover with few queries. In
SODA, pages 1808–1846. SIAM, 2022.

[5] Avrim Blum, John P. Dickerson, Nika Haghtalab, Ariel D. Procaccia, Tuomas Sandholm, and Ankit
Sharma. Ignorance is almost bliss: Near-optimal stochastic matching with few queries. Oper. Res.,
68(1):16–34, 2020.

[6] R. Bruce, M. Hoffmann, D. Krizanc, and R. Raman. Efficient update strategies for geometric comput-
ing with uncertainty. Theory of Computing Systems, 38(4):411–423, 2005.

[7] Steven Chaplick, Magnús M. Halldórsson, Murilo S. de Lima, and Tigran Tonoyan. Query minimiza-
tion under stochastic uncertainty. Theor. Comput. Sci., 895:75–95, 2021.

[8] Vasek Chvatal. A greedy heuristic for the set-covering problem. Mathematics of Operations Research,
4(3):233–235, 1979.

[9] Amol Deshpande, Lisa Hellerstein, and Devorah Kletenik. Approximation algorithms for stochastic
submodular set cover with applications to boolean function evaluation and min-knapsack. ACM Trans.

Algorithms, 12(3):42:1–42:28, 2016.

[10] Irit Dinur and David Steurer. Analytical approach to parallel repetition. In STOC, pages 624–633.
ACM, 2014.

[11] Gregory Dobson. Worst-case analysis of greedy heuristics for integer programming with nonnegative
data. Mathematics of Operations Research, 7(4):515–531, 1982.

[12] T. Erlebach, M. Hoffmann, and F. Kammer. Query-competitive algorithms for cheapest set problems
under uncertainty. Theoretical Computer Science, 613:51–64, 2016.

[13] Thomas Erlebach, Murilo Santos de Lima, Nicole Megow, and Jens Schlöter. Learning-augmented
query policies for minimum spanning tree with uncertainty. In ESA, volume 244 of LIPIcs, pages
49:1–49:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[14] Thomas Erlebach and Michael Hoffmann. Minimum spanning tree verification under uncertainty. In
WG, volume 8747 of Lecture Notes in Computer Science, pages 164–175. Springer, 2014.

30

[15] Thomas Erlebach, Michael Hoffmann, and Frank Kammer. Query-competitive algorithms for cheapest
set problems under uncertainty. Theoretical Computer Science, 613:51–64, 2016.

[16] T. Feder, R. Motwani, R. Panigrahy, C. Olston, and J. Widom. Computing the median with uncertainty.
SIAM Journal on Computing, 32(2):538–547, 2003.

[17] Rohan Ghuge, Anupam Gupta, and Viswanath Nagarajan. The power of adaptivity for stochastic
submodular cover. In ICML, volume 139 of Proceedings of Machine Learning Research, pages 3702–
3712. PMLR, 2021.

[18] Michel X. Goemans and Jan Vondrák. Covering minimum spanning trees of random subgraphs. Ran-

dom Struct. Algorithms, 29(3):257–276, 2006.

[19] Michel X. Goemans and Jan Vondrák. Stochastic covering and adaptivity. In LATIN, volume 3887 of
Lecture Notes in Computer Science, pages 532–543. Springer, 2006.

[20] Daniel Golovin and Andreas Krause. Adaptive submodularity: Theory and applications in active
learning and stochastic optimization. J. Artif. Intell. Res., 42:427–486, 2011.

[21] Fabrizio Grandoni, Anupam Gupta, Stefano Leonardi, Pauli Miettinen, Piotr Sankowski, and Mohit
Singh. Set covering with our eyes closed. SIAM J. Comput., 42(3):808–830, 2013.

[22] Anupam Gupta, Gregory Kehne, and Roie Levin. Set covering with our eyes wide shut. CoRR,
abs/2304.02063, 2023.

[23] M. M. HalldÃ³rsson and M. S. de Lima. Query-competitive sorting with uncertainty. In MFCS, volume
138 of LIPIcs, pages 7:1–7:15, 2019.

[24] Michael Hoffmann, Thomas Erlebach, Danny Krizanc, Matús Mihalák, and Rajeev Raman. Comput-
ing minimum spanning trees with uncertainty. In STACS, volume 1 of LIPIcs, pages 277–288. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, Germany, 2008.

[25] Sungjin Im, Viswanath Nagarajan, and Ruben van der Zwaan. Minimum latency submodular cover.
ACM Trans. Algorithms, 13(1):13:1–13:28, 2016.

[26] Simon Kahan. A model for data in motion. In STOC, pages 267–277. ACM, 1991.

[27] Prabhanjan Kambadur, Viswanath Nagarajan, and Fatemeh Navidi. Adaptive submodular ranking. In
IPCO, volume 10328 of Lecture Notes in Computer Science, pages 317–329. Springer, 2017.

[28] Stavros G. Kolliopoulos and Neal E. Young. Tight approximation results for general covering integer
programs. In FOCS, pages 522–528. IEEE Computer Society, 2001.

[29] Stavros G. Kolliopoulos and Neal E. Young. Approximation algorithms for covering/packing integer
programs. J. Comput. Syst. Sci., 71(4):495–505, 2005.

[30] Takanori Maehara and Yutaro Yamaguchi. Stochastic packing integer programs with few queries. Math.

Program., 182(1):141–174, 2020.

[31] Takanori Maehara and Yutaro Yamaguchi. Stochastic packing integer programs with few queries.
Mathematical Programming, 182(1):141–174, 2020.

[32] N. Megow, J. Meißner, and M. Skutella. Randomization helps computing a minimum spanning tree
under uncertainty. SIAM Journal on Computing, 46(4):1217–1240, 2017.

31

[33] J. Meißner. Uncertainty Exploration: Algorithms, Competitive Analysis, and Computational Experi-

ments. PhD thesis, Technischen Universität Berlin, 2018.

[34] Fatemeh Navidi, Prabhanjan Kambadur, and Viswanath Nagarajan. Adaptive submodular ranking and
routing. Oper. Res., 68(3):856–877, 2020.

[35] Sridhar Rajagopalan and Vijay V Vazirani. Primal-dual rnc approximation algorithms for set cover
and covering integer programs. SIAM Journal on Computing, 28(2):525–540, 1998.

[36] David B. Shmoys and Chaitanya Swamy. Stochastic optimization is (almost) as easy as deterministic
optimization. In FOCS, pages 228–237. IEEE Computer Society, 2004.

[37] Vijay V Vazirani. Approximation algorithms, volume 1. Springer, 2001.

[38] Jan Vondrák. Shortest-path metric approximation for random subgraphs. Random Struct. Algorithms,
30(1-2):95–104, 2007.

[39] Weina Wang, Anupam Gupta, and Jalani Williams. Probing to minimize. In ITCS, volume 215 of
LIPIcs, pages 120:1–120:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[40] Laurence A. Wolsey. An analysis of the greedy algorithm for the submodular set covering problem.
Comb., 2(4):385–393, 1982.

A Comparison with Maehara and Yamaguchi [31]

We consider the framework by Maehara and Yamaguchi [31] on the set selection problem. Since their
algorithm is designed for maximization problems, we consider the maximization variant of MINSET, i.e.,
we have to find the set S ∈ S of maximum w(S) and determine the corresponding value. We remark that all
our results also translate to the maximization variant (cf. Appendix D).

The algorithm by Maehara and Yamaguchi, in each iteration, solves the LP-relaxation of the optimistic

version of the given ILP, which assumes wi = Ui for all Ii ∈ I . In this case, the ILP under consideration for-
malizes the set selection problem (and not the query minimization problem as formalized by (MINSETIP)).
The following LP-relaxation formulates the optimistic LP for a set selection instance (I,S):

max
∑

Ii∈I
xi · Ui

s.t.
∑

Ii∈S
xi ≥ yS · |S| ∀S ∈ S

∑

Ii∈E
xi ≤

∑

S∈S yS · |S|
∑

S∈S yS = 1
0 ≤ xi ≤ 1 ∀Ii ∈ I
0 ≤ yS ≤ 1 ∀S ∈ S

Here variable yS models whether set S is selected as the set of maximum value (yS = 1) or not (yS = 0) and
the third constraint makes sure that, at least integrally, exactly one set is selected. The variables xi model
whether an interval Ii is part of the selected set or not, and the first two constraints ensure that (integrally)
exactly the members of the selected set S (with yS = 1) are selected. Note that we use this ILP instead
of (SETSELIP) because the algorithm by Maehara and Yamaguchi requires variables that correspond to
elements that can be queried. The algorithm in each iteration solves the LP-relaxation to obtain an optimal
fractional solution (x, y), and queries each Ii with probability xi.

In the following, we give an instance of the set selection problem under stochastic explorable uncertainty
for which the algorithm has a competitive ratio of Ω(n). Let I = {I0, . . . , In} with I0 = (d ·n− ǫ, d ·n+ ǫ)
and Ii = (0, d + ǫ), i > 0, for some large d and some small ǫ > 0. Let S = {S1, S2} with S1 = {I0}

32

and S2 = {I1, . . . , In}. Assume uniform distributions and consider the algorithm that starts by querying I0
and afterwards queries the intervals of S2 in an arbitrary order. In expectation, this algorithm only needs a
constant number of queries to solve the instance.

The algorithm by Maehara and Yamaguchi on the other hand, in the first iteration, solves the LP-
relaxation and obtains the optimal solution (x, y) with x0 = 0 and xi = 1 for all i > 1. This means
that all elements of S2 are queried with a probability of 1. Thus, the algorithm queries at least n elements,
which implies a competitive ratio of Ω(n). This means that applying the algorithm by Maehara and Yam-
aguchi [31] to the set selection problem does not improve upon the adversarial lower bound.

B Equivalence of MINSET and Solving (MINSETIP)

In this paper, we heavily exploit that solving MINSET is equivalent to solving (MINSETIP). With the
following lemma, we show that this is indeed the case.

Lemma B.1. Solving MINSET is equivalent to solving (MINSETIP).

Proof. We show the lemma by proving the following claim: A query set Q ⊆ I is feasible for MINSET

if and only if vector x, with xi = 1 for all Ii ∈ Q and xi = 0 otherwise, is a feasible solution for the
corresponding (MINSETIP).

Let Q be feasible for MINSET, and let x be a vector with xi = 1 for all Ii ∈ Q and xi = 0 otherwise.
By definition, each feasible solution for MINSET must query all non-trivial elements of some cheapest set
S∗ with w(S∗) = w∗ as this is the only way to determine the value w∗. Let N(S∗) denote those non-
trivial elements, then we can rewrite the initial lower limit of S∗ as LS∗ = w∗ +

∑

Ii∈N(S∗)(Li − wi) (the
lower limits of trivial elements are covered by w∗). This implies w∗ − LS∗ =

∑

Ii∈N(S∗)(wi − Li). As
N(S∗) ⊆ Q, we get

∑

Ii∈S∗ xi · (wi − Li) =
∑

Ii∈S∗∩Q(wi − Li) ≥ w∗ − LS∗ . Thus, x satisfies the
constraint for S∗. Let S 6= S∗. Since Q is feasible, LS(Q) has to be at least w∗ as otherwise querying Q
would not prove that w∗ is the minimum set value. After querying Q, the lower limit of set S is

LS(Q) =
∑

Ii∈S\Q

Li +
∑

Ii∈S∩Q

wi

=
∑

Ii∈S

Li −
∑

Ii∈S∩Q

Li +
∑

Ii∈S∩Q

wi

= LS +
∑

Ii∈S∩Q

(wi − Li).

Thus, LS(Q) = LS +
∑

Ii∈S∩Q
(wi − Li) ≥ w∗ must hold, which implies

∑

Ii∈S∩Q
(wi − Li) ≥ w∗ − LS

and
∑

Ii∈S
xi · (wi − Li) ≥ w∗ − LS . We can conclude that x is feasible.

For the other direction consider a feasible solution x for (MINSETIP) and the corresponding set Q =
{Ii | xi = 1}. Consider some cheapest set S∗. As

∑

Ii∈N(S∗)(wi−Li) = w∗−LS∗ and
∑

Ii∈S∗\N(S∗)(wi−
Li) =

∑

Ii∈S∗\N(S∗)(wi − wi) = 0, for x to be feasible it must hold xi = 1 for all Ii ∈ N(S∗). Thus,
Q contains all non-trivial elements of some cheapest set S∗. To show that Q is a feasible solution for
MINSET, it remains to show that LS(Q) ≥ w∗ for all S 6= S∗. Consider an arbitrary S 6= S∗. As
∑

Ii∈S
xi · (wi − Li) ≥ (w∗ − LS), we have

∑

Ii∈S∩Q
(wi − Li) ≥ w∗ − LS , which implies LS(Q) =

LS +
∑

Ii∈S∩Q
(wi − Li) ≥ w∗.

C Hardness of Approximation

In the following, we show that (MINSETIP) is not only a special case of the multiset multicover problem
but also contains the hard instances of this problem.

33

Erlebach et al. [15] showed that offline MINSET, for the problem variant where it is not necessary to
compute the value w∗, is NP-hard via reduction from vertex cover. In the reduction by [15] all intervals of
the set S∗ with w(S∗) = w∗ are trivial and, thus, the result translates to the problem variant where one has
to compute w∗. In the following, we strengthen this result by showing that the offline problem is as hard to
approximate as SETCOVER.

In SETCOVER, we are given a set of elements U = {1, . . . , n} and a family of sets S̄ = {S̄1, . . . , S̄m}
with S̄j ⊆ U . The goal is to find a subset H ⊆ S̄ of minimum cardinality such that

⋃

S̄j∈H
S̄j = U .

Theorem C.1. There is an approximation-factor preserving reduction from SETCOVER to offline MINSET.

Proof. Given an instance (U, S̄) of SETCOVER, we construct an offline MINSET instance as follows:

1. Add a trivial interval Ir = {wr}.

2. Add a single set C = {Ir}.

3. For each j ∈ U , add a set Sj .

4. For each S̄i ∈ S̄:

(a) Add an interval Ii = (Li, Ui) with Li = 0, Ui = wr + δ and wi = wr + ǫ for a common
δ > ǫ > 0 and some infinitesimally small ǫ > 0.

(b) For each j ∈ S̄i, add interval Ii to set Sj .

This reduction clearly runs in polynomial time. To finish the proof, we show the following claim: There

is a SETCOVER solution H of cardinality k if and only if there is a feasible query set Q for the constructed

offline MINSET instance with |Q| = k.

By definition of the constructed instance, set C = {Ir} is the set of minimum value w∗ = wr. Each
feasible query set Q for the offline MINSET instance must prove that LS(Q) ≥ wr holds for each S ∈
S \ {C}. Recall that LS(Q) is the lower limit of S after querying Q. By definition of the constructed
intervals and sets, a query set Q is feasible if and only if |Q ∩ S| ≥ 1 for each S ∈ S \ {C}, i.e., Q has to
contain at least one element of each S ∈ S \ {C}.

For the first direction, consider an arbitrary set cover H for the given SETCOVER instance and construct
Q = {Ii | S̄i ∈ H}. Clearly |Q| = |H|. Since H is a set cover, each j ∈ U is contained in at least one
S̄i ∈ H . If j ∈ U is contained in S̄i, then, by construction, Ii is contained in Sj . Thus, as H covers all
elements j ∈ U , set Q contains at least one member of each Sj ∈ S \{C} and, therefore, is a feasible query
set.

For the second direction, consider an arbitrary feasible query set Q of the constructed instance and
construct H = {S̄i | Ii ∈ Q}. Clearly, |Q| = |H|. Since Q is feasible, it contains at least one member of
each Sj ∈ S \ {C}. If Ii ∈ Sj is contained in Q, then, by construction, set S̄i ∈ H covers element j. As Q
contains at least one member of each Sj ∈ S \ {C}, it follows that H covers U .

Dinur and Steurer [10] showed that it is NP-hard to approximate SETCOVER within a factor of (1 −
α) · lnn for any α > 0, where n is the number of elements in the instance, via a reduction running in
time n1/α. Consider the construction of Theorem C.1. Since the sets in the constructed offline MINSET

instance correspond to the elements in the input SETCOVER instance, the construction implies the following
corollary.

Corollary C.2. For every α > 0, it is NP-hard to approximate offline MINSET within a factor of (1− α) ·
lnm, where m = |S| is the number of sets. The reduction runs in time m1/α.

34

We show that Theorem C.1 and Corollary C.2 apply also to MINSET under stochastic explorable un-
certainty, even if the precise value wi of each Ii is drawn independently and uniformly at random from
(Li, Ui).

Theorem 3.1. For any fixed α > 0, it is NP-hard to compute a query strategy that is (1 − α) · lnm-

competitive for MINSET under uncertainty even if the precise value wi of each Ii is drawn independently

and uniformly at random from (Li, Ui). The same inapproximability holds also for offline MINSET.

Proof. The hardness of approximation for offline MINSET follows directly from Corollary C.2.
We continue to show the statement on MINSET under uncertainty with uniform distributions. Consider

the reduction of Theorem C.1 with wr towards 0 and/or δ towards∞. With wr running towards 0 and/or δ
running towards∞, the probability that it is sufficient to query one Ii ∈ Sj to show that wr ≤ LSj

(Q), for
some query set Q, goes towards 1. Thus, the probability that any set Q that contains at least one member
of each S ∈ S is feasible goes towards one as well. Thus, limwr→0 E[OPT] = limδ→∞ E[OPT] = |H∗|,
where H∗ is the optimal solution for the input SETCOVER instance. Therefore, by Theorem C.1, in order to
be ((1−α) · lnm)-competitive, the query strategy has to compute an ((1−α) · lnn)-approximation for set
cover. This implies NP-hardness.

D The Maximization Variant of MINSET

Consider the set selection problem MAXSET, which has the same input as MINSET, but now the goal is to
determine a set of maximum value and to determine the corresponding value.

In MAXSET, a set Q ⊆ I is feasible if all non-trivial elements of a set S∗ of maximum value w∗ are in
Q and US(Q) ≤ w∗ for all sets S 6= S∗. If Q would not contain all non-trivial elements of some set S∗ of
maximum value, then the maximum value w∗ would still be unknown and the problem would not be solved
yet. If US(Q) ≥ w∗ for some S, then both S∗ and S could still be of maximum value or not and we have
not yet determined the set of maximum value. Thus, the problem would not be solved yet. Our goal is again
to adaptively query a feasible query set and minimize the number of queries.

In the following, we briefly sketch why all our results on MINSET transfer to MAXSET. Analogous to
MINSET, one can show that the following ILP characterizes the problem. That is, a query set Q is feasible
if and only if vector x with xi = 1 if Ii ∈ Q and xi = 0 otherwise is feasible for the ILP.

min
∑

Ii∈I
xi

s.t.
∑

Ii∈S
xi · (Ui −wi) ≥ (US − w∗) ∀S ∈ S

xi ∈ {0, 1} ∀Ii ∈ I
(MAXSETIP)

In the offline setting, the ILP is the exact same special case of the multiset multicover problem as (MINSETIP),
which suffices to observe that all our observations on offline MINSET translate to offline MAXSET. Under
uncertainty, the only difference to MINSET is, that, in contrast to (MINSETIP), a small value wi leads to a
larger coefficient (Ui − wi) and a small value w∗ leads to larger right-hand sides. Using the inverse balanc-
ing parameter τ̄ = minIi∈I τ̄i with τ̄i = P[wi ≤

Ui+Li

2], it is not hard to see, that, even under uncertainty,
MINSET and MAXSET are essentially the same problem. Thus, all our results translate.

35

	Introduction
	The Covering Point of View
	Our Results
	Further Previous Work
	Previous Work on Query Problems
	Previous Work on Covering Problems with Uncertainty

	Outline

	Disjoint MinSet
	Algorithmic framework
	Offline Problems and Hardness of Approximation
	Algorithmic framework

	MinSet with Deterministic Right-Hand Sides and More Covering Problems
	MinSet With Deterministic Right-Hand Sides
	Multiset Multicover under Stochastic Explorable Uncertainty
	Offline MinCover.
	MinCover under uncertainty.

	MinSet under uncertainty
	Final remarks
	Comparison with Maehara and Yamaguchi maehara2020
	Equivalence of MinSet and Solving (MinSetIP)
	Hardness of Approximation
	The Maximization Variant of MinSet

