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2 ETH Zurich, Zürich, Switzerland
raphaelmario.steiner@inf.ethz.ch

Abstract. We consider the computational problem of finding short paths in the skeleton of
the perfect matching polytope of a bipartite graph. We prove that unless P = NP, there is no
polynomial-time algorithm that computes a path of constant length between two vertices at
distance two of the perfect matching polytope of a bipartite graph. Conditioned on P 6= NP,
this disproves a conjecture by Ito, Kakimura, Kamiyama, Kobayashi and Okamoto [SIAM
Journal on Discrete Mathematics, 36(2), pp. 1102-1123 (2022)]. Assuming the Exponential
Time Hypothesis we prove the stronger result that there exists no polynomial-time algorithm
computing a path of length at most

(
1
4 − o(1)

) log N
log log N

between two vertices at distance two
of the perfect matching polytope of an N -vertex bipartite graph. These results remain true
if the bipartite graph is restricted to be of maximum degree three.
The above has the following interesting implication for the performance of pivot rules for the
simplex algorithm on simply-structured combinatorial polytopes: If P 6= NP, then for every
simplex pivot rule executable in polynomial time and every constant k ∈ N there exists a
linear program on a perfect matching polytope and a starting vertex of the polytope such
that the optimal solution can be reached in two monotone steps from the starting vertex, yet
the pivot rule will require at least k steps to reach the optimal solution. This result remains
true in the more general setting of pivot rules for so-called circuit-augmentation algorithms.

Keywords: Polytopes · Perfect matchings · Linear programming · Simplex method ·
Pivot rules · Circuit-augmentation · Inapproximability · Combinatorial reconfiguration

1 Introduction

The history of linear programming is intimately intertwined with that of Dantzig’s simplex algo-
rithm. While the simplex and its many variants are among the most studied algorithms ever, a
number of fundamental questions remain open. It is not known, for instance, whether there exists a
pivot rule that makes the simplex method run in strongly polynomial time. Since the publication of
the first examples of linear programs that make the original simplex algorithm run in exponential
time, many alternative pivot rules have been proposed, fostering a tremendous amount of work in
the past 75 years, both from the combinatorial and complexity-theoretic point of views.

The simplex algorithm follows a monotone path on the skeleton of the polytope defining the lin-
ear program. The following natural question was recently raised by De Loera, Kafer, and Sanità [14]:
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“Can one hope to find a pivot rule that makes the simplex method use a shortest monotone path?”.

As an answer, they proved that given an initial solution to a linear program, it is NP-hard to
find a 2-approximate shortest monotone path to an optimal solution. It implies that unless P = NP,
no polynomial-time pivot rule for the simplex can be guaranteed to reach an optimal solution in a
minimum number of steps.

A similar result can also be deduced from two independent contributions, by Aichholzer, Car-
dinal, Huynh, Knauer, Mütze, Steiner, and Vogtenhuber [2] on one hand, and by Ito, Kakimura,
Kamiyama, Kobayashi, and Okamoto [26] on the other hand. They proved that the above result
holds for perfect matching polytopes of planar and bipartite graphs, albeit with a slightly weaker
inapproximability factor of 3/2 instead of 2. Ito et al. [26] conjecture that there exists a constant-
factor approximation algorithm for the problem of finding a shortest path between two perfect
matchings on the perfect matching polytope.

Our main result is a disproof of this conjecture under the P 6= NP assumption: Strength-
ening the previous inapproximability results mentioned above, we show that unless P = NP no
k-approximation for a shortest path between two vertices at distance 2 of a bipartite perfect match-
ing polytope can be found in polynomial time, for any (arbitrarily large) choice of k ∈ N. We
also give an even stronger inapproximability result under the Exponential Time Hypothesis (ETH).
The latter states that the 3-SAT problem cannot be solved in worst-case subexponential time, and
is one of the main computational assumptions of the fine-grained complexity program [38]. As a
consequence, there is not much hope of finding a pivot rule for the simplex algorithm yielding good
approximations of the shortest path towards an optimal solution, even when the linear program is
integer and its associated matrix totally unimodular.

1.1 Our result

We consider the complexity of computing short paths on the 0/1 polytope associated with perfect
matchings of a bipartite graph. Given a balanced bipartite graph G = (V,E), where V is partitioned
into two equal-size independent sets A and B, we define the perfect matching polytope PG ⊆ RE of
G as the convex hull of the 0/1 incidence vectors of perfect matchings of G.

It is well-known (see e.g. Chapter 18 in [36]) that for bipartite graphs G, there is a nice halfspace
representation of PG. An edge-vector (xe)e∈E ∈ RE is in PG if and only if the following hold.

∑
e3v

xe = 1, (∀v ∈ V ) (1)

xe ≥ 0, (∀e ∈ E). (2)

The above is a compact encoding of PG, with a number of constraints and variables of size
polynomial in G. The assumption that G is bipartite is crucial here: For non-bipartite G the
polytope defined by the above constraints has non-integral vertices and is thus not a representation
of PG [36]. The matrix of this representation of a perfect matching polytope of a bipartite graph
G is simply the vertex-edge-incidence matrix of G, which is totally unimodular. The problem of
maximizing a linear functional wTx subject to constraints (1) and (2) corresponds exactly to the
problem of finding a perfect matching M of G whose weight

∑
e∈M we is maximal.

Given that the simplex algorithm moves along the edges of a polytope, it is crucial for our
considerations to understand adjacency of vertices on PG. The following result is well-known [12,27].
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Lemma 1. For a bipartite graph G, two vertices of PG corresponding to two perfect matchings M1
and M2 are adjacent in the skeleton of PG if and only if the symmetric difference M1∆M2 is a
cycle in G.

This cycle is said to be alternating in both matchings, and one matching can be obtained from
the other by flipping this alternating cycle. In general, we will say that two perfect matchings are
at distance at most k from each other on PG, for some positive integer k, if one can be obtained
from the other by successively flipping at most k alternating cycles.

. . .

. . .

Fig. 1. Two perfect matchings at distance two on the perfect matching polytope, but whose symmetric
difference consists of an arbitrarily large number of even cycles.

Note that given any two perfect matchings M1 and M2 of a bipartite graph G, it is always
the case that M1∆M2 is a collection of vertex-disjoint even cycles that are alternating in both
matchings. The number of such cycles is therefore an upper bound on the distance between M1
and M2 on PG. Interestingly, this upper bound can be arbitrarily larger than the actual distance.
Figure 1 shows a construction of a graph G with two matchings at distance two on PG, whose
symmetric difference consists of an arbitrary number of cycles.

Our main result is the following.

Theorem 1. Let k ≥ 2 be any fixed integer. Unless P = NP, there does not exist any polynomial-
time algorithm solving the following problem:

Input: A bipartite graph G of maximum degree 3 and a pair of perfect matchings M1,M2 of G at
distance at most 2 on the polytope PG.

Output: A path from M1 to M2 in the skeleton of PG, of length at most k.

More strongly, for every absolute constant δ > 0, unless the Exponential Time Hypothesis fails,
no polynomial-time algorithm can solve the above problem when k is allowed to grow with the number
N of vertices of G as k(N) =

⌊( 1
4 − δ

) logN
log logN

⌋
.

A path on the perfect matching polytope of a bipartite graph G is said to be monotone with
respect to some weight vector w = (we)e∈E ∈ RE on the edges of G if the perfect matchings along
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the path have monotonically increasing total weights. Given two perfect matchings M1 and M2 at
distance two on the perfect matching polytope, one can assign weights to edges so that (i) the path
of length two between them is strictly monotone, and (ii) M2 is the unique matching of maximal
weight (this will be formally proven later in Lemma 4). This allows us to formulate our result as
one about the hardness of reaching an optimal solution from a given feasible solution of a linear
program on the perfect matching polytope.

Corollary 1. Unless P = NP, there does not exist any polynomial-time constant-factor approxi-
mation algorithm for the following optimization problem:

Input: A bipartite graph G = (V,E) of maximum degree 3, a weight function E → R+, and a
perfect matching M of G.

Output: A shortest monotone path on PG from M to a maximum-weight perfect matching of G.

Furthermore, assuming ETH, for an arbitrary but fixed δ > 0 no polynomial-time algorithm can
achieve an approximation ratio of less than

( 1
8 − δ

) logN
log logN , where N := |V (G)|.

This corollary can be further interpreted as a statement on the existence of a polynomial-time
pivot rule that would make the simplex method use an approximately shortest monotone path to a
solution. Any such pivot rule could be used as an approximation algorithm for the above problem,
contradicting the computational hypotheses.

1.2 Pivot rules for circuit-augmentation algorithms.

Our work on distances in the skeleton of PG for bipartite graphs G was originally motivated by
questions regarding so-called circuit moves (or circuit augmentations), that have been recently
studied in linear programming [10,14,32] as well as in the context of relaxations of the Hirsch
conjecture concerning the diameter of polytopes [9,29]. A circuit move extends the simplex-paradigm
of moving along an incident edge of the constraint-polyhedron, by additionally allowing to move
along certain non-edge directions, called circuits. Given a linear program, the circuits in a well-
defined sense represent all possible edge-directions that could occur after changing the right-hand
side of the LP. The following is a formal definition.

Definition 1 (cf. Definition 1 in [14]). Given a polyhedron of the form

P = {x ∈ Rn|Ax = b, Bx ≤ d},

a circuit is a vector g ∈ Rn \ {0} such that

1. Ag = 0, and
2. the support of Bg is inclusion-wise minimal among the collection {By|Ay = 0, y 6= 0}.

Given an LP {max cTx|x ∈ P} for a polyhedron P, a current feasible solution x ∈ P and a
circuit g with cTg > 0, a circuit move then consists of moving to a new feasible solution x′ = x+t∗g,
where t∗ ≥ 0 is maximal w.r.t. x + t∗g ∈ P. Note that in general, an optimization algorithm based
on a pivot rule for circuit moves may traverse several non-vertices of the polyhedron before reaching
an optimal solution.

Our interest in the perfect matching polytope for understanding the complexity of circuit-pivot
algorithms came from the following observation.
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Lemma 2. Let G be a bipartite graph. Then
1. A non-zero vector g ∈ RE is a circuit for PG (defined by the (in)equalities (1) and (2)) if and

only if there exists an even cycle C in G decomposed into matchings C+, C− ⊆ C (alternately
appearing along C) and α > 0 such that g = g(C,α), where

g(C,α)e :=


α, if e ∈ C+,

−α, if e ∈ C−,
0, if e /∈ C.

.

2. If x is a vertex of PG, and x′ 6= x is obtained from x by a circuit move, then x′ is also a vertex
of PG and adjacent to x on the skeleton of PG.
This observation implies that any sequence of circuit moves, applied starting from a vertex of PG,

will follow a monotone path on the skeleton of PG from vertex to vertex. Consequently, Corollary 1
also yields an inapproximability result for polynomial pivot rules for circuit augmentation, as follows.

Corollary 2. Unless P = NP, there does not exist a polynomial-time constant-factor approximation
algorithm for the following problem.
Input: A bipartite graph G of maximum degree 3, a vertex x ∈ PG and a linear objective function.
Output: A shortest sequence of circuit moves on PG from x to an optimal solution.

Furthermore, assuming ETH, no polynomial-time alorithm can achieve an approximation ratio of
less than

( 1
8 − δ

) logN
log logN , where N := |V (G)| and δ > 0 is a constant.

1.3 Related works
Our work relates to two main threads of research in combinatorics and computer science: one
obviously related to the complexity of the simplex method and linear programming in general,
and another more recent one, aiming at building a thorough understanding of the computational
complexity of so-called combinatorial reconfiguration problems.

Complexity of the simplex method. In 1972, Klee and Minty showed that the original simplex
method had an exponential worst-case behavior on what came to be known as Klee-Minty cubes [31].
Since then, many other variants have been shown to have exponential or superpolynomial lower
bounds [28,7,22,4,17], although subexponential rules are known [24]. More dramatic complexity-
theoretic results have been obtained recently [1,18]. In particular, it was shown by Fearney and
Savani [19] that Dantzig’s original simplex method can solve PSPACE-complete problems: Given
an initial vertex, deciding whether some variable will ever be chosen by the algorithm to enter the
basis is PSPACE-complete. The simplex method is also a key motivation for studying the diameter
of polytopes, in particular the Hirsch conjecture, refuted in 2012 by Santos [35].

The hardness result on approximating monotone paths given by De Loera, Kafer, and Sanità [14]
is in fact a corollary of the NP-hardness of the following problem: Given a feasible extreme point
solution of the bipartite matching polytope and an objective function, decide whether there is a
neighbor extreme point that is optimal. A related result for circulation polytopes was proved by
Barahona and Tardos [5]. These two results, as well as the hardness results from Aichholzer et al. [2]
and Ito et al. [26] rely on the NP-hardness of the Hamiltonian cycle problem. In order to deal with
the approximability of the shortest path, we have to resort to more recent inapproximability results
on the longest cycle problem [6].
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Reconfiguration of matchings. The field of combinatorial reconfiguration deals with the prob-
lems of transforming a given discrete structure, typically a feasible solution of a combinatorial
optimization problem, into another one using elementary combinatorial moves [25,37,34,21]. The
reachability problem, for instance, asks whether there exists such a transformation, while the short-
est reconfiguration path problem asks for the minimum number of elementary moves.

A number of recent works in this vein deal with reconfiguration of matchings in graphs [25,30,8,11,23].
Ito et al. [25] proved that the reachability problem between matchings of size at least some input
number k and under single edge addition or removal was solvable in polynomial time. This was ex-
tended to an adjacency relation involving two edges by Kaminsḱı et al. [30]. The problem of finding
the shortest reconfiguration path under this model was shown to be NP-hard [11,23]. Another line
of work involves flip graphs on perfect matchings in which the adjacency relation corresponds to
flips of alternating cycles of length exactly four [15,16,33,8,13]. Note that for bipartite graphs, this
flip graph is precisely the subgraph of the skeleton of the perfect matching polytope that consists
of edges of length two. Bonamy et al. [8] proved that the reachability problem in these flip graphs
is PSPACE-complete.

2 Proof of Theorem 1

2.1 Preliminaries

First note that perfect matchings of a balanced bipartite graph G = (A ∪ B,E) can also be rep-
resented by orientations of G in which every vertex in A has outdegree one and every vertex in B
has indegree one. The edges of the matching are those oriented from A to B. Alternating cycles
in a perfect matching are one-to-one with directed cycles in this orientation, and flipping the cycle
amounts to reverting the orientations of all its arcs. We will switch from one representation to
another when convenient.

We prove Theorem 1 by reducing from the problem of approximating the longest directed cycle
in a digraph. We rely on the following two results from Björklund, Husfeldt, and Khanna given as
Theorems 1 and 2 in [6].

Theorem 2 (Björklund, Husfeldt, Khanna [6]). Consider the problem of computing a long
directed cycle in a given Hamiltonian digraph D on n vertices.

1. For every fixed ε > 0, unless P = NP, there does not exist any polynomial-time algorithm that
returns a directed cycle of length at least nε in D.

2. For every polynomial-time computable increasing function f : N→ N in ω(1), unless the Expo-
nential Time Hypothesis fails, there does not exist any polynomial-time algorithm that returns
a directed cycle of length at least f(n) logn in D.

Note that in the two problems, the input graph is guaranteed to be Hamiltonian, yet it remains
hard to explicitly construct a directed cycle of some guaranteed length. Characterising the approx-
imability of the longest cycle problem in undirected graphs is a longstanding open question [3,20].

The second ingredient of our proof is the following lemma, perhaps of independent interest, that
bounds the increase in length of a longest directed cycle after a number of cycle flips in a digraph.

Lemma 3. Let G be an undirected graph, and let C1, . . . , Ct be a sequence of (not necessarily
distinct) cycles in G. Let D0, D1, . . . , Dt be a sequence of orientations of G such that for each
i ∈ [t] the cycle Ci is directed in Di−1 and such that Di is obtained from Di−1 by flipping Ci.
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There exists a polynomial-time algorithm that, given as input a number `, the orientations
D0, . . . , Dt and a directed cycle C in Dt of length |C| > `t+1, computes a directed cycle in D0 of
length at least `.

The bound of Lemma 3 can be shown to be essentially tight. We refer to Figure 2 for an
illustration of the construction. The proof of Lemma 3 is deferred to the end of this section.

Fig. 2. A subcubic digraph in which the maximum length of a directed cycle is 6, yet after flipping two
cycles, we reach an orientation of the same graph that has the outer face as a directed cycle, and thus
contains a directed cycle of length greater than 3 · 2 · 5 (exactly 42 in this example). In general, by iterating
the same construction, for every integer k one can construct a digraph with maximum directed cycle length
` = 2k and such that after flipping at most t cycles, one can reach an orientation containing a directed
cycle of length at least k · (k − 1)t−1 · (2k − 1) ' 2 · (`/2)t+1.

2.2 Reduction

We now give a proof of Theorem 1, assuming Lemma 3.

Proof (Theorem 1). We consider the first problem in Theorem 2: For a fixed ε > 0, given a Hamil-
tonian digraph D on n vertices, return a directed cycle of length at least nε. We first construct a
digraph D′ from D by replacing every vertex v of D by the gadget illustrated on Figure 3. The
gadgets are obtained by applying the following transformations to every vertex v of D:

1. The set of incoming arcs of v is decomposed into a balanced binary tree with deg−D(v) leaves
and a degree-one root identified to v. Each internal node of this binary tree is further split into
an arc. All arcs of the tree are oriented towards the root.

2. The set of outgoing arcs are split into a tree with deg+
D(v) leaves in a similar fashion, with all

arcs oriented away from the root.
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Fig. 3. Illustration of the reduction in the proof of Theorem 1. Every vertex in the given Hamiltonian
digraph D (left) is replaced by the depicted gadget (right), yielding a maximum degree-three bipartite
graph with a perfect matching.

3. Finally, the vertex v itself is replaced by a directed 4-cycle, such that the single incoming arc
from the first tree and the single outgoing arc from the second tree have adjacent endpoints on
the cycle.

Fig. 4. Flipping the 4-cycles of each gadget in D′ can be done with two successive cycle flips, using the
Hamiltonian cycle of D.

The digraph D′ thus obtained is bipartite and subcubic. Furthermore, it is easy to see by
construction that for every vertex v ∈ V (D), the corresponding gadget in D′ has at most

4deg−D(v) + 4 + 4deg+
D(v) ≤ 8(n− 1) + 4 < 8n

vertices, such that N := |V (D′)| < n · 8n = 8n2, and D′ is of polynomial size.
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Furthermore, the orientation of D′ is such that every vertex in one side of the bipartition has
outdegree one, and every vertex in the other has indegree one, hence it corresponds to a perfect
matching M1. By flipping the alternating 4-cycle in each gadget, we obtain another perfect matching
M2. We observe that M2 can be obtained from M1 in two cycle flips, by using the Hamiltonian
cycle of D twice (see Figure 4). Hence, while M1∆M2 consists of n disjoint 4-cycles, M2 is in fact
at distance two from M1 on the perfect matching polytope of D′. The underlying undirected graph
of D′ together with the two perfect matchings M1 and M2 therefore constitute an instance of the
problem described in Theorem 1. We now show that any sequence of length at most k of alternating
cycle flips transforming M1 into M2 can be turned in polynomial time into a cycle of length at least
nε in D, for some ε > 0 depending solely on k.

Consider a sequence of k cycles C ′1, C ′2, . . . , C ′k such that C ′1 is alternating in D′, and C ′i is
alternating in the graph obtained from D′ after flipping the cycles C ′1, C ′2, . . . , C ′i−1, in this order,
and such that flipping all k cycles in sequence transforms M1 into M2. Observe that the sum of the
lengths of the cycles in this sequence must be at least n, since all the orientations of the 4-cycles
in the n different gadgets in D′ have to be flipped, and since every single cycle C ′i can intersect at
most |C ′i| different gadget-4-cycles. Let ` = dn1/(k+2)e. We have

k∑
i=1
|C ′i| ≥ n = (1− o(1))`k+2 >

k∑
i=1

`i+1,

hence from the pigeonhole principle, at least one cycle C ′i in the sequence has length |C ′i| > `i+1.
From Lemma 3, we can now compute in polynomial time a directed cycle in D′ of length at least
nε

′ for ε′ = 1/(k + 2). Let us call this cycle C ′. Note that for every gadget in D′ corresponding
to a vertex v of D, either C ′ is vertex-disjoint from this gadget, or it traverses it via exactly one
directed path, consisting of a leaf-to-root path in the in-tree, a directed path of length 7 touching
the 4-cycle of the gadget, and then a root-to-leaf path in the out-tree. From this it follows that by
contracting the edges of the gadgets, the cycle C ′ in D′ can be mapped to a cycle C in D. Note
that the in- and out-degree of a vertex in D is at most n − 1, thus all the in- and out-trees in D′

corresponding to the gadgets have depth at most 2dlog2 ne. Consequently, the length of C ′ can be
shrinked by at most a factor of 4dlog2 ne+ 7 by contracting the gadgets. In other words, we obtain
a directed cycle C in D of length at least nε′

/(4dlog2 ne+7) = nε, for ε = ε′−o(1). Hence if we can
obtain in polynomial time a sequence of at most k = O(1) flips transforming M1 into M2, we can
also find a cycle of length at least nε in D for some fixed ε > 0. This establishes the first statement
of Theorem 1.

It remains to prove the second statement. We consider the second problem in Theorem 2, in
which we seek a path of length at least f(n) logn, for some computable function f(n) = ω(1).
Suppose that for some δ > 0 there is a polynomial-time algorithm that can find a sequence of at
most k = k(N) =

⌊( 1
4 − δ

) logN
log logN

⌋
flips transforming M1 into M2. Note that

k + 2 ≤
(

1
4 − δ

)
log 8n2

log log 8n2 + 2 < 1
2(1− δ) logn

log logn

for n large enough (larger than some constant depending only on δ).
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Now, from the same reasoning as above, we can turn such an algorithm into a polynomial-time
algorithm that finds a directed cycle in D of length at least

n1/(k+2)

4dlog2 ne+ 7 >
n2·log logn/((1−δ) logn)

O(logn) = Ω

(
log2/(1−δ) n

logn

)
= f(n) logn,

for a computable function f(n) = Ω(log2δ/(1−δ) n) = ω(1). This, from Theorem 2, is impossible
unless the Exponential Time Hypothesis fails. ut

In order to deduce Corollary 1 from Theorem 1, we need the following lemma.

Lemma 4. Given a bipartite graph G = (V,E), let M1 and M2 be two perfect matchings in G at
distance two on the perfect matching polytope, hence such that M2 = (M1∆C1)∆C2 for some pair
C1, C2 of cycles in G, and such that M1∆C1 =: M ′ is also a perfect matching. Then there exists a
weight function w : E → R+ such that

1. M2 is the unique maximum-weight perfect matching of G,
2. w(M1) < w(M ′) < w(M2) (where w(M) =

∑
e∈M w(e)).

In other words, there exists a linear program over the perfect matching polytope of G such that the
path M1,M1∆C1 = M ′ = M2∆C2,M2 is a strictly monotone path and M2 is the unique optimum.

Proof. We first claim that M1 \ (M2 ∪M ′) 6= ∅. Indeed, the set of edges M2 ∪M ′ forms a subgraph
of G whose components are the edges in M2 \C2 = M ′ \C2 and the cycle C2. From this it is easy to
see that if we were to have that M1 ⊆ M2 ∪M ′, then necessarily M1 ∈ {M2,M

′}, a contradiction
to the fact that M1 and M2 have distance exactly two. Now pick an edge e0 ∈ M1 \ (M2 ∪M ′).
Define a weighting w : E → R of the edges in G as follows: w(e0) := 0, w(e) := 1 for every
e ∈ E \ ({e0} ∪M2) and w(e) := 1 + 1

n for every e ∈ M2, where n denotes the number of vertices
of G. It is now easily verified that M2 is the unique maximum-weight perfect matching in G, and
that w(M1) ≤ 0 + (n2 − 1)(1 + 1

n ) < n
2 ≤ w(M ′) < w(M2). This proves the claim. ut

2.3 Proof of Lemma 3

Proof (Lemma 3). Let the orientations D0, D1, . . . , Dt of G be given as input, together with a
directed cycle C in Dt and a number ` ∈ N such that |C| > `t+1.

Our algorithm starts by computing the sequence of cycles C1, . . . , Ct by determining for each
i ∈ [t] the set of edges with different orientation in Di−1 and Di. Next we compute in polynomial
time the subgraph H of G which is the union of the cycles C1, . . . , Ct in G. We in particular
compute a list of the vertex sets of its connected components, which we call Z1, . . . , Zc for some
number c ≥ 1.

For later use, let us prove the following fact:

Claim (∗). For each r ∈ [c] the induced subdigraph D0[Zr] of D0 is strongly connected.

Proof (Claim (∗)). For each i ∈ [t], let us denote by Hi the subgraph of G consisting of the
vertices and edges on the cycles Ct−i+1, . . . , Ct. Then we have Ht = H. We will establish the claim
by proving inductively that for every i = 1, 2, . . . , t, every connected component of Hi induces a
strongly connected subdigraph of Dt−i.
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In the case i = 1, this holds easily: The only connected component of H1 is the cycle Ct,
and since it forms a directed cycle both in Dt−1 and Dt, its vertices induce a strongly connected
subdigraph of Dt−1, as desired.

For the inductive step suppose we have established for some 1 ≤ i < t that all components of
Hi induces strongly connected subgraphs of Dt−i.

Note that when we move from Hi to Hi+1, the only change that happens is the addition of
the vertices and edges on the cycle Ct−i. If Ct−i is vertex-disjoint from Hi, then it simply forms a
new component in Hi+1 and since it is a directed cycle in Dt−(i+1), it induces a strongly connected
subdigraph thereof, while also all other components still induce strongly connected subdigraphs, as
their orientations are not affected when flipping Ct−i.

Otherwise, Ct−i together with all components of Hi intersected by it creates a new component
Z of Hi+1. Since each component intersected by Ct−i induces a strongly connected subdigraph of
Dt−i by our assumption, and since Ct−i is directed in Dt−i, it is easy to see that also the new
component X induces a strongly connected subdigraph of Dt−i. The only change when moving
from Dt−i to Dt−(i+1) is that the orientations of the arcs of Ct−i are reverted. However, it is easily
seen that this operation preserves the fact that X induces a strongly connected subdigraph, since
flipping C maintains the pairwise reachability of vertices on C in the subdigraph induced by X.

All components of Hi not intersected by Ct−i remain components also in Hi+1 and have the
same orientations in Dt−(i+1) as in Dt−i. Hence, also they induce strongly connected subdigraphs
of Dt−(i+1), as desired. This concludes the proof by the principle of induction. ut

Let (x0, x1, . . . , xk−1, xk = x0) be the cyclic list of vertices on the directed cycle C in Dt, with
edges oriented from xi to xi+1 for all i ∈ [k−1]. By assumption on the input, we have k = |C| > `t+1.

We first check if C is vertex-disjoint from H, in which case we may return C, which is then also
a directed cycle in D0 of length k > `t+1 ≥ `, as desired.

Otherwise, C intersects some of the components of H. We then for each vertex xi ∈ V (C)
compute a label lab(xi) ∈ [c + 1], defined as lab(xi) := r if xi ∈ Zr lies in the r-th component
of H, and lab(xi) := c + 1 if xi is not a vertex of H. We next compute an auxiliary weighted
directed multigraph M on the vertex set [c] as follows: For every maximal subsequence of C, of
length at least two, of the form xi, xi+1, . . . , xj (addition to be understood modulo k) such that
lab(xs) = c+ 1 for all s = i+ 1, . . . , j − 1 (if any), we add an additional arc from lab(xi) to lab(xj)
and give it weight j− i, the corresponding number of arcs in C. Note that the total arc weight in M
is exactly |C|, while the total number of arcs is exactly |V (C)∩ V (H)| ≤ |V (H)|. The construction
of M is illustrated in Figure 5.

Furthermore, by definition every vertex in M has the same number of incoming and outgoing
arcs. Hence, we may compute in polynomial time an edge-disjoint decomposition of M into directed
cycles (including possible loops) in M . Let W1, . . . ,Wp for some p ∈ N be the list of edge-disjoint
directed cycles in this decomposition of M . We now create, for each Wi, a directed cycle Ki in D0
of length |Ki| ≥ weight(Wi), where weight(Wi) is the total arc weight of Wi, as follows:

Let (l0, l1, . . . , ls = l0) be the cyclic vertex-sequence of Wi.
For each arc (lj , lj+1) in Wi, we consider the corresponding subsequence P (lj , lj+1) of C which

starts in Zlj , ends in Zlj+1 , and all whose internal vertices are not contained in H. We note that
since arcs outside H have the same orientation in D0 and Dt, the subsequence P (lj , lj+1) is a
directed path or a directed cycle also in D0 which starts in Zlj and ends in Zlj+1 .

We first check whether there exists an index j such that P (lj , lj+1) is a directed cycle. In this case,
necessarily Wi is a loop (i.e. s = 0) and lj = lj+1 = l0. We thus may simply put Ki := P (lj , lj+1),
with weight(Wi) = |Ki| satisfied by definition of the weights in M .



12 J. Cardinal and R. Steiner

2 2

1 21

Fig. 5. Construction of the auxiliary directed multigraph M in the proof of Lemma 3. The cycle C is shown
on the left, together with the connected components of H that it intersects. The resulting weighted directed
multigraph M is shown on the right.

Otherwise, each of the P (lj , lj+1) is a directed path in D0. We now make use of Claim (∗),
which tells us that D0[Zlj ] is strongly connected for every j = 0, 1, . . . , s − 1. We may therefore
compute in polynomial time for each j = 0, 1, . . . , s − 1 a directed path Qj in D0[Zlj ] (possibly
consisting of a single vertex) which connects the endpoint of P (lj−1, lj) to the starting point of
P (lj , lj+1) (index-addition modulo s). Crucially, note that any two directed paths in the collection
{P (lj , lj+1), Qj |j = 0, 1, . . . , s−1} are vertex-disjoint except for shared common endpoints. We now
compute the directed cycle Ki in D0, which is the union of the directed paths P (lj , lj+1) and the
directed paths Qj for j = 0, . . . , s− 1. It is clear that its length |Ki| is lower-bounded by the sum
of the lengths of the P (lj , lj+1), which by definition of M equals the sum of arc-weights on Wi, i.e.,
we indeed have |Ki| ≥ weight(Wi) also in this case.

After having computed the directed cycles K1, . . . ,Kp in D0, the algorithm checks whether one
of the cycles has length |Ki| ≥ `. If so, it returns the cycle Ki and the algorithm stops with the
desired output. Otherwise, we have |Ki| < ` for i = 1, . . . , p, which implies that

`t+1 < |C| = weight(M) =
p∑
i=1

weight(Wi) ≤
p∑
i=1
|Ki| ≤ p(`− 1).

Note that p is at most as large as the number of arcs in M , which in turn is bounded by |V (H)|.
We thus obtain

`t+1 < |V (H)| · (`− 1) ≤
t∑
i=1
|Ci| · (`− 1).

This yields that
t∑
i=1
|Ci| >

`t+1

`− 1 >

t∑
i=1

`i.

Therefore there exists i ∈ {1, . . . , t} such that |Ci| > `i. The algorithm proceeds by finding one
cycle Ci with this property. Note that Ci is a directed cycle in the orientation Di−1 of G. Hence a
recursive call of the algorithm to the input D0, D1, . . . , Di−1 and the cycle Ci will yield a directed
cycle of length at least ` in D0, as desired.



Inapproximability of shortest paths on perfect matching polytopes 13

This proves the correctness of the described algorithm. As all the steps between two recursive
calls are executable in polynomial time in the size of G and t, and since there will clearly be at
most t−1 recursive calls in any execution of the algorithm, the whole algorithm runs in polynomial
time, as desired. ut

2.4 Proof of Lemma 2

Proof (Lemma 2).

1. We start by noting that the hyperplane restrictions (1) and (2) for the perfect matching polytope
PG can be expressed as PG = {x ∈ RE |Ax = b, Bx ≤ d}, where A ∈ RV×E is the vertex-edge
incidence matrix of G, b = 1, B = −IE and d = 0. Applying Definition 1, this means that a
vector g ∈ RE \ {0} is a circuit for PG if and only if it is a support-minimal member of the set

Y =
{

y ∈ RE \ {0}
∣∣∣∣∑
e3v

ye = 0 for every v ∈ V
}
.

Now consider a circuit g ∈ Y and let H be the subgraph of G spanned by those e ∈ E for which
ge 6= 0. The defining equations of Y immediately imply that H has minimum degree at least
2. Thus H contains a cycle C, which is necessarily even. It is easy to check that the vectors
g(C,α), α > 0 described in the lemma form members of Y. The support-minimality of g thus
implies that g is non-zero only on C. It now easily follows that g = g(C,α) for some α > 0.
This concludes the proof of the first item.

2. Let x be a vertex of PG and M the corresponding perfect matching of G. Let x′ ∈ PG be a vector
reachable via a circuit-move from x. This means that there is an even cycle C in G decomposed
into two matchings C+ and C−, some α > 0 and t∗ > 0 such that x′ = x + t∗g(C,α). The
feasibility of x′ implies that xe < 1 for every e ∈ C+ and xe > 0 for every e ∈ C−, for otherwise
an entry of x′ would be strictly bigger than one or negative. However, since x is the incidence
vector of M , this implies that C+ = C \M and C− = C ∩M . Thus C is an alternating cycle
for M , and M ′ := M∆C is another perfect matching of M . By Lemma 1 1M ′ is adjacent to
x = 1M on the skeleton of PG. We now show that x′ := 1M ′ , which will conclude the proof
of the claim. To see this, note that by definition of a circuit-move, t∗ ≥ 0 was chosen maximal
such that x + t∗g(C,α) ∈ PG. Since moving in the direction of the circuit g(C,α) preserves
all equality-constraints (1) in the hyperplane description of PG, the maximality implies that
moving t above t∗ would violate one of the inequality-constraints (2). Thus, there has to exist
e ∈ C such that x′e = 0. On the other hand, we know that

0 = x′e = xe︸︷︷︸
∈{0,1}

± t∗α︸︷︷︸
>0

,

which implies that t∗α = 1. It follows that x′ = x + t∗g(C,α) = 1M ′ , as desired.
ut
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