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Abstract

This paper investigates the energy complexity of distributed graph problems in multi-hop
radio networks, where the energy cost of an algorithm is measured by the maximum number
of awake rounds of a vertex. Recent works revealed that some problems, such as broadcast,
breadth-first search, and maximal matching, can be solved with energy-efficient algorithms that
consume only poly logn energy. However, there exist some problems, such as computing the
diameter of the graph, that require Ω(n) energy to solve. To improve energy efficiency for these
problems, we focus on a special graph class: bounded-genus graphs. We present algorithms for
computing the exact diameter, the exact global minimum cut size, and a (1 ± ǫ)-approximate
s-t minimum cut size with Õ(

√
n) energy for bounded-genus graphs. Our approach is based

on a generic framework that divides the vertex set into high-degree and low-degree parts and
leverages the structural properties of bounded-genus graphs to control the number of certain
connected components in the subgraph induced by the low-degree part.

1 Introduction

We consider the multi-hop radio network model [16] of distributed computing, where a communi-
cation network is modeled as a graph G = (V,E): Each vertex v ∈ V is a computing device and
each edge {u, v} ∈ E indicates that u and v are within the transmission range of each other. The
graph topology of the underlying network G is initially unknown to all devices, except that two
parameters n = |V | and ∆ = maxv∈V deg(v) are global knowledge.

We assume that the communication proceeds in synchronized rounds. All devices agree on the
same start time. In each round, each device can choose to do one of the following three operations:
(i) listen to the channel, (ii) transmit a message, or (iii) stay idle. We do not allow a device to
simultaneously transmit and listen, and we assume that there is no message size constraint.

Each transmitting or idle device does not receive any feedback from the communication channel,
so a transmitting device u does not know whether its message is successfully received by any of its
neighbors N(u). A listening device v successfully receives a message from a transmitting device
u ∈ N(v) if u is the only transmitting device in N(v). If the number of transmitting devices in
N(v) is zero, then a listening device v hears silence. If the number of transmitting devices in N(v)
is greater than one, then the feedback that a listening device v receives depends on the underlying
model. In the No-CD model (without collision detection), v still hears silence. In the CD model
(with collision detection), v hears collision. All our algorithms presented in this paper work in the
No-CD model.

We assume that each device has access to an unlimited local random source. We say that an
event occurs with high probability (w.h.p.) if the event occurs with probability 1− 1/poly(n). If we
let each vertex v ∈ V locally assign themselves O(log n)-bit identifiers ID(v), then they are distinct
w.h.p., so we may assume that each device has a distinct identifier of length O(log n).

http://arxiv.org/abs/1805.04071v3


Complexity measures. Time and energy are the two main complexity measures of distributed
algorithms in radio networks. The time complexity of an algorithm is the number of rounds of
the algorithm in the worst case. Unless otherwise stated, all our algorithms are Monte Carlo in
that they succeed w.h.p. The energy complexity of an algorithm is the maximum energy cost of
a device in the worst case, where the energy cost of a device v is the number of rounds that v is
non-idle. The motivation for studying energy complexity is that energy is a scarce resource in small
battery-powered wireless devices, and such devices can save energy by entering a low-power sleep
mode.

1.1 Prior work

Most of the early work on the energy complexity focused on single-hop radio networks, which is
the special case where G = (V,E) is a complete graph. Over the last two decades, there has been a
long line of research to optimize the energy complexity of leader election and its related problems
in single-hop radio networks [6, 8, 9, 14, 12, 13, 30, 31, 29, 32, 35, 36, 40].

This line of research was recently extended to multi-hop radio networks [10, 11, 19, 20].
Chang et al. [10] considered the problem of broadcasting a message from one device to all other
devices in a multi-hop radio network. They showed that broadcasting can be done in poly log n
energy. Specifically, they presented randomized broadcasting algorithms for CD and No-CD using

energy O
(

logn log log∆
log log log∆

)

and O(log ∆ log2 n) w.h.p., respectively. They also proved that any algo-

rithm transmitting a message from one endpoint to the other endpoint of an n-vertex path costs
Ω(log n) energy in expectation. The lower bound applies even to the LOCAL model of distributed
computing.

Chang et al. [11] showed that breadth-first search can be done w.h.p. using 2O(
√
logn log logn)

energy in No-CD. Their algorithm is based on a hierarchical clustering using the low-diameter
decomposition algorithm of Miller, Peng, and Xu [39]. The energy complexity of breadth-first search
was recently improved to poly log n by Dani and Thomas [20]. Combining the polylogarithmic-
energy breadth-first search algorithm with the diameter approximation algorithm of Roditty and
Williams [42], an approximation D̃ of the diameter D such that D̃ ∈ [⌊2D/3⌋,D] can be computed
with Õ(

√
n) energy w.h.p. [11]. The notation Õ(·) suppresses any poly log n factor.

Dani et al. [19] showed that a maximal matching can be computed in O(∆ log n) time and
O(log ∆ log n) energy w.h.p in No-CD. There exists a family of graphs such that these time and
energy bounds are simultaneously optimal up to polylogarithmic factors.

1.2 Our contribution

Not all problems admit energy-efficient algorithms in multi-hop radio networks. It was shown in [11]
that any algorithm that computes a (1.5 − ǫ)-approximation of the diameter requires Ω̃(n) energy
w.h.p. The lower bound holds even on graphs with arboricity O(log n) and treewidth O(log n).

Bounded-genus graphs. To improve energy efficiency for diameter computation, we focus on
the class of bounded-genus graphs. The genus of a graph G is the minimum number g such that G
can be drawn on an oriented surface of g handles without crossing. For example, planar graphs are
the graphs with genus zero, and the graphs that can be drawn on a torus without crossing are the
graphs with genus at most one. A class of graphs is called bounded-genus if the genus of all graphs
in the class can be upper bounded by some constant g = O(1).
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Diameter. We show that the diameter of the graph can be computed using Õ(
√
n) energy

w.h.p. in bounded-genus graphs.

Theorem 1.1. There is an algorithm that computes the diameter in Õ(n1.5) time and Õ(
√
n)

energy w.h.p. for bounded-genus graphs in No-CD.

Our approach is based on a generic framework that divides the vertex set into high-degree and
low-degree parts. We then classify the connected components of the subgraph induced by the low-
degree part into several types. We will leverage the structural properties of bounded-genus graphs
to upper-bound the number of connected components of one type. For the remaining connected
components, we will design energy-efficient algorithms that extract all the necessary information
from these connected components for the purpose of diameter computation.

Minimum cut. Our approach is sufficiently general so that it is applicable to other problems as
well. Using the same approach, we show that the exact global minimum cut size and a (1 ± ǫ)-
approximate s-t minimum cut size can also be computed using Õ(

√
n) energy w.h.p. in bounded-

genus graphs.

Theorem 1.2. There is an algorithm that computes the minimum cut size in Õ(n1.5) time and
Õ(

√
n) energy w.h.p. for bounded-genus graphs in No-CD.

Theorem 1.3. There is an algorithm that computes a (1 ± ǫ)-approximate s–t minimum cut size
in Õ(n1.5) + Õ(

√
n) · ǫ−O(1) time and Õ(

√
n + ǫ−O(1)) energy w.h.p. for bounded-genus graphs in

No-CD.

To complement these algorithmic results, we show that any algorithm that computes the exact
size of an s–t minimum cut or a global minimum cut requires Ω(n) energy. The lower bound for
the s–t minimum cut holds even for planar bipartite graphs, so it is necessary that we consider
approximation algorithms for this problem. These lower bounds apply to both No-CD and CD.

Theorem 1.4. For any randomized algorithm that computes the s–t minimum cut size of a planar
bipartite graph w.h.p. in CD, the energy complexity of the algorithm is Ω(n).

Theorem 1.5. For any randomized algorithm that computes the minimum cut size of a unit-disc
graph w.h.p. in CD, the energy complexity of the algorithm is Ω(n).

1.3 Additional related work

Klonowski and Pajak [34] considered a variant of the model where only transmitting costs energy,
and they showed that in No-CD, for any 1 ≤ ϕ ≤ O(log n/ log log n), broadcasting can be solved in
O((D + ϕ)n1/ϕϕ) time using O(ϕ) transmission per device.

There are numerous works studying energy-aware distributed computing in multi-hop networks
from different perspectives. In radio networks, the power of a signal received is proportional to
O(1/dα), where d is the distance to the sender, and α is a constant related to environmental
factors. Kirousis et al. [33] studied the optimization problem of assigning transmission ranges of
devices subject to some connectivity and diameter constraints so as to minimize the total power
consumption. See [2, 17, 44] for related work.

There are several works [7, 22, 43] on the subject of reducing the number of rounds or transmis-
sions required to complete a specific communication task. In the setting of known network topology,
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Gasieniec et al. [23] designed a randomized protocol for broadcasting in O(D + kn1/(k−2) log2 n)
rounds such that each device transmits at most k times.

The energy complexity has recently been studied in the well-known LOCAL and CONGEST

models of distributed computing [3, 5, 15, 21, 27].
There is a large body of research on distributed graph algorithms in special graph classes such

as planar networks, bounded-genus networks, or more broadly H-minor-free networks: distributed
approximation [1, 18, 37, 45], low-congestion shortcuts and its applications [24, 25, 26, 28], and
other planar graph algorithms [38, 41].

2 Tools

In this section, we present the basic tools that we use in our algorithms.

2.1 Communication between two sets of vertices

Let S and R be two vertex sets that are not necessarily disjoint. The task SR-comm [10] is defined
as follows. Each vertex u ∈ S holds a message mu that it wishes to transmit, and each vertex
v ∈ R wants to receive one message from vertices in N+(v) ∩ S, where N+(v) = N(v) ∪ {v} is the
inclusive neighborhood of v. The message that v ∈ R receives can be any message in N+(v) ∩ S.
In other words, the task SR-comm requires that w.h.p. for each vertex v ∈ R with N+(v) ∩ S 6= ∅,
there exists a vertex u ∈ N+(v) ∩ S such that v receives a message mu from u. Several variants of
SR-comm are defined as follows.

All messages: SR-commall. The task SR-commall requires that each vertex v ∈ R receives the
message mu for each u ∈ N+(v) ∩ S w.h.p.

Approximate sum: SR-commapx. Suppose the message mu sent from each vertex u ∈ S is an
integer within the range [W ]. The task SR-commapx requires that each vertex v ∈ R computes
a (1 ± ǫ)-factor approximation of the summation

∑

u∈N+(v)∩S mu w.h.p.

Minimum and maximum: SR-commmin and SR-commmax. The message mu sent from each
vertex u ∈ S contains a key ku from the key space [K] = {1, 2, . . . ,K}. For SR-commmin, it
is required that w.h.p., each vertex v ∈ R with N+(v) ∩ S 6= ∅ receives a message mu from
a vertex u ∈ N+(v) ∩ S such that ku = minu′∈N+(v)∩S ku′ . The task SR-commmax is defined
analogously by replacing minimum with maximum.

Multiple messages: SR-commmulti. Consider the setting where each vertex u ∈ S holds a set of
messages Mu. For each message m, all vertices holding the same message m have access to
some shared random bits associated with m. We assume that for each v ∈ R, the number of
distinct messages in

⋃

u∈N+(v)∩S Mu is upper bounded by a number M that is known to all

vertices. The task SR-commmulti requires that each vertex v ∈ R receives all distinct messages
in

⋃

u∈N+(v)∩S Mu w.h.p.

Table 1 summarizes the time and energy complexities of our algorithms for these tasks. For
SR-commall, the parameter ∆′ can be any known upper bound on |S ∩N(v)|, for each v ∈ R. For
example, we may set ∆′ = ∆ if no better upper bound is known. The proofs for these results are left
to Appendix A. Note that for the special case where S ∩R = ∅ and |R∩N(u)| ≤ 1 for each u ∈ S,
the time complexity of SR-commmin and SR-commmax can be improved to O(logK log ∆ log n).
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Task Time Energy
SR-comm O(log ∆ log n) O(log ∆ log n)
SR-commall O(∆′ log n) O(∆′ log n) ∆′ ≥ |S ∩N(v)|, ∀v ∈ R
SR-commmin

O(K log ∆ log n) O(logK log ∆ log n)
SR-commmax

SR-commapx O(ǫ−6 logW log ∆ log n) O(ǫ−6 logW log ∆ log n)
SR-commmulti O(M log ∆ log2 n) O(M log ∆ log2 n)

Table 1: The time and energy complexities of SR-comm and its variants.

2.2 Communication via a good labeling

A good labeling is a vertex labeling L : V (G) 7→ {0, . . . , n−1} such that each vertex v with L(v) > 0
has a neighbor u with L(u) = L(v) − 1 [10]. A vertex v is called a layer-i vertex if L(v) = i. If
there is a unique layer-0 vertex r, then L represents a tree T rooted at r, so we call r the root of
L. Since a vertex might have multiple choices of the parent, the tree T is not unique in general.
The following lemma was proved in [10].

Lemma 2.1 ([10]). A good labeling L with a unique layer-0 vertex can be constructed in
O(n log ∆ log2 n) time and O(log ∆ log2 n) energy w.h.p.

The following lemma shows that a good labeling allows the vertices in the graph to broadcast
messages in an energy-efficient manner.

Lemma 2.2. Suppose that we are given a good labeling L with a unique layer-0 vertex. Then we
can achieve the following.

1. It takes O(n∆ log n) time and O(∆ log n) energy for each vertex to broadcast a message to
the entire network w.h.p.

2. It takes O(nx log ∆ log2 n) time and O(x log ∆ log2 n) energy for x vertices to broadcast mes-
sages to the entire network w.h.p.

Proof. Let r be the root of L. For the first task, consider the following algorithm. We relay the
message of each vertex to the root r using the following convergecast algorithm. For i = n−1 down
to 1, do SR-commall with S being the set of all layer-i vertices and R being the set of all layer-(i−1)
vertices. For each execution of SR-commall, each vertex in S transmits not only its message but
also all other messages that it has received so far. Although we perform SR-commall n − 1 times,
each vertex only participates at most twice. By Lemma A.2, the cost of the convergecast algorithm
is O(n∆ log n) time and O(∆ log n) energy.

At the end of the convergecast algorithm, the root r has gathered all messages sent during the
algorithm. After that, the root r then broadcasts this information to all vertices via the following
divergecast algorithm. For i = 0 to n−2, do SR-comm with S being the set of all layer-i vertices and
R being the set of all layer-(i+1) vertices. Similarly, although we perform SR-comm for n−1 times,
each vertex only participates at most twice. By Lemma A.1, the cost of the divergecast algorithm
is O(n log ∆ log n) time and O(log ∆ log n) energy. At the end of the divergecast algorithm, all
vertices have received all messages.

For the rest of the proof, we consider the second task. Let X be the set of x vertices that
attempt to broadcast a message. We solve this task similarly in two steps:
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• We first do a convergecast, using SR-commmulti with M = x, to gather all x messages to the
root. By Lemma A.3, SR-commmulti costs O(x log ∆ log2 n) time and energy, so the converge-
cast costs O(nx log ∆ log2 n) time and O(x log ∆ log2 n) energy.

• After that, we do a divergecast based on SR-comm to broadcast these messages from root to
everyone. The divergecast costs O(n log ∆ log n) time and O(log ∆ log n) energy.

In order to use SR-commmulti, the initial holder of each message m needs to first generate a sufficient
number of random bits and attach them to the message. These random bits serve as the shared
randomness associated with the message m, which is needed in the definition of SR-commmulti.

We make the following observation.

Observation 2.1. There is an algorithm that lets all vertices learn the entire graph topology in
O(n∆ log n) time and O(∆ log n) energy w.h.p.

Proof. We first let each vertex v learn the list of identifiers in N(v) by doing SR-commall with
S = R = V , where the message of each vertex v is ID(v). By Lemma A.2, this step takes
O(∆ log n) time and energy. After that, we apply Lemma 2.1 to construct a good labeling with a
unique layer-0 vertex, and then we apply Lemma 2.2(1) to let all vertices learn the entire network
topology by having each v broadcasting ID(v) and the list of identifiers in N(v). This step takes
O(n∆ log n) time and O(∆ log n) energy.

3 Graph partitioning

In this section, we consider a classification of the connected components of the subgraph induced
by the low-degree vertices in a bounded-genus graph. Our algorithms, which will be presented in
subsequent sections, make use of the classification.

Let G = (V,E) be any bounded-genus graph. Let VH be the set of vertices that have degree at
least

√
n. Let VL = V \VH . Since bounded-genus graphs have arboricity O(1), we have |E| = O(n),

which implies |VH | = O(
√
n).

From now on, we assume |VH | ≥ 1, since otherwise G has maximum degree ∆ ≤ √
n,

in which case we can already solve all problems using O(n∆ log ∆ log n) = Õ(n1.5) time and
O(∆ log ∆ log n) = Õ(

√
n) energy by learning the entire graph topology using the algorithm of

Observation 2.1.
Given a set of vertices S, we write G[S] to denote the subgraph of G induced by S and write

G+[S] to denote the subgraph of G induced by all edges that have at least one endpoint in S. We
classify the connected components of G[VL] into three types.

Type 1. A connected component S of G[VL] is of type-1 if |S| < √
n and |⋃w∈S N(w) ∩ VH | = 1.

For each vertex u ∈ VH , we write C(u) to denote the set of type-1 components S such that
⋃

w∈S N(w) ∩ VH = {u}.

Type 2. A connected component S of G[VL] is of type-2 if |S| < √
n and |⋃w∈S N(w) ∩ VH | = 2.

For each pair of two distinct vertices {u, v} ⊆ VH , we write C(u, v) to denote the set of type-2
components S such that

⋃

w∈S N(w) ∩ VH = {u, v}.

Type 3. A connected component S of G[VL] is of type-3 if it is neither of type-1 nor of type-2.

A connected component S of G[VL] is of type-3 if |S| ≥ √
n or |⋃w∈S N(w) ∩ VH | ≥ 3. The

number of type-3 components S with |S| ≥ √
n is clearly at most |V |/√n =

√
n. Utilizing the
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assumption that G is a bounded-genus graph, we show that the number of type-3 components with
|⋃w∈S N(w) ∩ VH | ≥ 3 is also O(

√
n).

Lemma 3.1. Let G = (V,E) be a bipartite graph of genus at most g. Let V = X ∪ Y be the
bipartition of G. If deg(v) ≥ 3 for each v ∈ X, then |X| ≤ 2|Y | + 4(g − 1).

Proof. Consider any embedding of G into a surface of genus g, and let F be the set of faces of the
embedded graph. In a bipartite graph, each face has at least four edges, and each edge appears
in at most two faces, so |E| ≥ 2|F |. Combining this inequality with Euler’s polyhedral formula
|V | − |E| + |F | ≥ 2 − 2g, we obtain that

2|V | − |E| ≥ 4(1 − g).

Since deg(v) ≥ 3 for each v ∈ X, we have |E| ≥ 3|X|, so

2|V | − |E| = 2(|X| + |Y |) − |E| ≤ 2(|X| + |Y |) − 3|X| = 2|Y | − |X|.

Combining these upper and lower bounds of 2|V | − |E|, we obtain that 2|Y | − |X| ≥ 4(1 − g), so
|X| ≤ 2|Y | + 4(g − 1), as required.

Lemma 3.1 is precisely the reason that our algorithms only apply to bounded-genus graphs and
do not work on an arbitrary H-minor-free graph. Consider a complete bipartite graph with the
bipartition X ∪ Y such that |Y | = 3. Such a graph does not contain K5 as a minor, regardless
of the size of X. Therefore, K5-minor-freeness does not allow us to upper bound |X| by any
function of |Y |. Therefore, the bounded-genus requirement in Lemma 3.1 cannot be relaxed to
H-minor-freeness for an arbitrary H.

Lemma 3.2. If G is a bounded-genus graph, then the number of type-3 components is O(
√
n).

Proof. A connected component S of G[VL] is of type-3 if |S| ≥ √
n or |⋃w∈S N(w) ∩ VH | ≥ 3. As

discussed earlier, the number of type-3 components S with |S| ≥ √
n is at most

√
n, so we just

need to prove that the number of type-3 components S with |⋃w∈S N(w)∩VH | ≥ 3 is also O(
√
n).

Consider a bipartite graph G∗ = (V ∗, E∗) with the bipartition V ∗ = X∗ ∪ Y ∗ defined as follows.

• X∗ is the set of all type-3 components S such that |⋃w∈S N(w) ∩ VH | ≥ 3.

• Y ∗ = VH .

• For each component S ∈ X∗ and each vertex v ∈ Y ∗, {S, v} ∈ E∗ if v ∈ ⋃

w∈S N(w).

Alternatively, G∗ can be constructed from G by the following steps.

• Remove all type-1, type-2, and type-3 components S with |⋃w∈S N(w) ∩ VH | ≤ 2.

• For each type-3 component S with |⋃w∈S N(w) ∩ VH | ≥ 3, contract S into a vertex.

As G∗ can be obtained from G via a sequence of edge contractions and vertex removals, G∗ is a
bounded-genus graph. Observe that deg(S) ≥ 3 for each S ∈ X∗ in G∗, so we may apply Lemma 3.1,
which shows that the number |X∗| of type-3 components S such that |⋃w∈S N(w)∩VH | ≥ 3 satisfies
|X∗| ≤ 2|Y ∗| + O(1) = 2|VH | + O(1) = O(

√
n).

We write GH to denote the graph defined by the vertex set VH and the edge set {{u, v} :
|C(u, v)| > 0}. The following observation is useful.

Observation 3.1. If G is a bounded-genus graph, then GH is also a bounded-genus graph, so the
number of edges in GH is O(

√
n) and there exists an edge orientation of GH such that each vertex

has outdegree O(1).
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Proof. The graph GH can be obtained from G via a sequence of edge contractions and vertex
removals, so GH is a bounded-genus graph. As bounded-genus graphs have arboricity O(1), so the
number of edges in GH is at most linear in the number of vertices in GH , which is O(

√
n), and we

can orient the edges of GH in such a way that each vertex has outdegree O(1).

4 Diameter

In this section, we show that for bounded-genus graphs, the diameter can be computed using Õ(
√
n)

energy. We begin with discussing the high-level proof idea. First of all, using Lemma 2.2, learning
the entire graph topology of the subgraph induced by VH and all type-3 components is doable using
Õ(

√
n) energy. Intuitively, this is due to the following facts: (i) |VH | = O(

√
n), (ii) deg(v) = O(

√
n)

for each v ∈ VL, and (iii) the number of type-3 components is O(
√
n).

The main difficulty in the diameter computation is dealing with type-1 and type-2 components.
For example, a vertex u ∈ VH can be connected to Θ(n) type-1 components in that |C(u)| = Θ(n).
Since we aim for an algorithm with energy complexity Õ(

√
n), throughout the entire algorithm, u

can only receive messages from at most Õ(
√
n) components in C(u). The challenge here is to show

that the diameter can still be calculated with a limited amount of information about type-1 and
type-2 components and show that such information can be extracted in an energy-efficient manner
in the radio network model.

We will define a set of parameters of type-1 and type-2 components and show that with these
parameters, the exact value of the diameter can be calculated. Based on this result, we will define
a subgraph G⋆ of G such that the diameter of G equals the diameter of G⋆, and then we will design
an energy-efficient algorithm to learn the graph topology of G⋆. In the subsequent discussion, we
write eccentricity(u, S) to denote maxv∈S dist(u, v). By default, all distances are measured in the
underlying network G. We use subscripts to describe distances that are measured in a vertex set,
an edge set, or a subgraph.

Parameters for type-1 components. We first consider the type-1 components in C(u), for
any vertex u ∈ VH .

(Ai[u], ai[u]). Let A1[u] be a component S ∈ C(u) that maximizes eccentricity(u, S), and let A2[u]
be a component S ∈ C(u) \ {A1[u]} that maximizes eccentricity(u, S). For i ∈ {1, 2}, we
write ai[u] = eccentricity(u,Ai[u]).

(B[u], b[u]). Let B[u] be a component S ∈ C(u) that maximizes maxs,t∈S∪{u} dist(s, t), and we
write b[u] = maxs,t∈B[u]∪{u} dist(s, t).

In the above definitions, ties can be broken arbitrarily if there are multiple choices. Some of
the above definitions become undefined when |C(u)| is too small. For example, if |C(u)| = 1, then
A2[u] and a2[u] are undefined. In such a case, we set these parameters to their default values: zero
or an empty set. For example, if |C(u)| = 1, then we set A2[u] = ∅ and a2[u] = 0.

For each u ∈ VH , any path connecting a vertex in
⋃

S∈C(u) S to a vertex outside of
⋃

S∈C(u) S
must pass through vertex u, so the amount of information we can afford to extract from

⋃

S∈C(u) S
is limited. Intuitively, for the purpose of calculating the diameter, we only need the following
information from

⋃

S∈C(u) S:

• The longest distance between two vertices in
⋃

S∈C(u) S∪{u}, which is max{b[u], a1[u]+a2[u]}.

• The longest distance between u and a vertex in
⋃

S∈C(u) S, which is a1[u].
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Regardless of the size of C(u), we only need to learn a1[u], a2[u], and b[u] from the components of
C(u). Later we will show that these parameters can be learned efficiently via SR-commmax.

Parameters for type-2 components. Next, we consider the type-2 components in C(u, v), for
any two distinct vertices u, v ∈ VH .

(R[u, v], r[u, v]). Let R[u, v] be a component S ∈ C(u, v) that minimizes distG+[S](u, v), and we
write r[u, v] = distG+[R[u,v]](u, v). In other words, R[u, v] is a component that contains a
shortest path between u and v, among all u–v paths via the vertices in

⋃

S∈C(u,v) S.

(Ak
i [u, v], aki [u, v]). For each component S ∈ C(u, v), we write Su,k to denote the set of vertices

{w ∈ S : distG+[S](w, v) − distG+[S](w, u) ≥ k}. In other words, Su,k is the set of all vertices
in S whose distance to u in G+[S] is shorter than that to v by at least k.

Let Ak
1 [u, v] be a component S ∈ C(u, v) that maximizes eccentricityG+[S](u, S

u,k), and let

Ak
2 [u, v] be a component S ∈ C(u, v) \ {Ak

1 [u, v]} that maximizes eccentricityG+[S](u, S
u,k).

We write aki [u, v] = eccentricityG+[Ak

i
[u,v]](u,A

k
i [u, v]). We only consider k ∈ {−√

n, . . . ,
√
n}.

(Bl[u, v], bl[u, v]). For a component S ∈ C(u, v), we write Gl[S] to denote the graph resulting
from adding to G+[S] a path of length l connecting u and v, and we write φl(S) to denote
the maximum value of distGl[S](s, t) among all pairs of vertices s, t ∈ S ∪ {u, v}. A useful

observation here is that if distV \S(u, v) = l, then φl(S) equals the maximum value of distG(s, t)
among all pairs of vertices s, t ∈ S ∪ {u, v}.

Let Bl[u, v] be a component S ∈ C(u, v) \ {R[u, v]} that maximizes φl(S), and we write
bl(u, v) = φl(Bl[u, v]). We only consider l ∈ {1, . . . ,

√
n}.

Similar to the parameters of type-1 components, all the above parameters are set to their default
values if they are undefined. Note that the definitions of aki [u, v] and Ak

i [u, v] are asymmetric in
the sense that we might have aki [u, v] 6= aki [v, u] and Ak

i [u, v] 6= Ak
i [v, u]. All remaining parameters

for type-2 components are symmetric.
We briefly explain how the above parameters can be used in the diameter calculation. Let

P = (s, . . . , t) be an s–t shortest path in G whose length equals the diameter. There are three
possible ways that P intersects the vertex set

⋃

S∈C(u,v) S.

• Suppose the two endpoints s and t are within G+[S], for a component S ∈ C(u, v). In this
case, if distV \S(u, v) = l, then the length of P equals φl(S) = bl[u, v].

• Suppose there is a subpath P ′ = (u, . . . , v) of P whose intermediate vertices are all in
⋃

S∈C(u,v) S. In this case, the length of P ′ equals r[u, v].

• Suppose there is a component S ∈ C(u, v) such that s ∈ S and t /∈ S ∪ {u, v}. Suppose
u is the first vertex of P that is not in S. Consider the subpath P ′ = (s, . . . , u) of P . If
dist(t, u) − dist(t, v) = k, then we must have s ∈ Su,k, since otherwise dist(s, v) + dist(v, t)
is smaller than the length of P , violating the assumption that P is an s–t shortest path. If
t /∈ Ak

1 [u, v], then the length of P ′ equals ak1 [u, v]. If t ∈ Ak
1 [u, v], then the length of P ′ equals

ak2 [u, v].

Intuitively, the above discussion shows that the parameters described above capture all the
necessary information needed to be extracted from the type-2 components for the purpose of diam-
eter computation. We have O(

√
n) parameters for each C(u, v). We will later show that all these

parameters can be learned using O(
√
n) energy.
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The graph G⋆. We define G⋆ as the subgraph induced by the union of (i) VH , (ii) all type-
3 components, (iii) A1[u], A2[u], and B[u], for all u ∈ VH , and (iv) Ak

i [u, v], Ak
i [v, u], Bl[u, v],

and R[u, v], for all pairs of distinct vertices {u, v} ⊆ VH , i ∈ {1, 2}, k ∈ {−√
n, . . . ,

√
n}, and

l ∈ {1, . . . ,
√
n}. In the subsequent discussion, we prove that the diameter of G equals the diameter

of G⋆, so the task of computing the diameter of G is reduced to learning the topology of G⋆. We
will show that the following two statements are correct.

(S1) For each pair of vertices {s, t} in graph G⋆, we have distG(s, t) = distG⋆(s, t).

(S2) For each pair of vertices {s, t} in graph G, there exists a pair of vertices {s′, t′} in graph G⋆

satisfying distG(s, t) ≤ distG(s′, t′).

These statements imply that G and G⋆ have the same diameter. We first prove that (S1) is true.

Lemma 4.1. For any two vertices s and t in G⋆, we have distG(s, t) = distG⋆(s, t).

Proof. We choose P to be an s–t path in G whose length is distG(s, t) that uses the minimum
number of vertices not in G⋆. If P is entirely in G⋆, then we are done. For the rest of the proof, we
assume that P is not entirely in G⋆. Then P contains a subpath P ′ = (u, . . . , v) whose intermediate
vertices are all within a type-2 component S ∈ C(u, v) that is not included to G⋆. By the definition
of R[u, v], the length of P ′ is at least r[u, v], which is the shortest path length between u and v via
R[u, v]. Therefore, replacing P ′ with a shortest u–v path in R[u, v], which is entirely in G⋆, does
not increase the path length. This contradicts our choice of P . Hence P is entirely in G⋆.

Lemma 4.2. Let S be a type-1 or type-2 component that is not included in G⋆. Let s be any vertex
in S. Let t be any vertex in G that does not belong to G+[S]. Then there exists a vertex s′ in G⋆

such that distG(s′, t) ≥ distG(s, t).

Proof. Let P be an s–t shortest path in G. Suppose that S ∈ C(u) is of type-1. Because S is not
included in G⋆, we must have |C(u)| ≥ 3, so both A1[u] 6= S and A2[u] 6= S are not ∅. Let i ∈ {1, 2}
be an index such that t is not in Ai[u]. Consider the subpath P̃ = (s, . . . , u) of P . By the definition
of ai[u] and Ai[u], the length of P̃ is at most ai[u], and there exists a vertex s′ ∈ Ai[u] such that
the length of the shortest path between s′ and u equals ai[u]. Thus, we have

distG(s′, t) = distG(s′, u) + distG(u, t) ≥ distG(s, u) + distG(u, t) = distG(s, t).

Next, consider the case that S ∈ C(u, v) is of type-2. The path P must contain at least one of
u and v. Without loss of generality, assume that u is the first vertex of P that is not in S, so there
is a subpath P̃ = (s, . . . , u) of P such that all vertices in P̃ other than u are in S. The length of P
equals distG+[S](s, u) + distG(u, t).

Let k = distG+[S](s, v) − distG+[S](s, u), so Su,k ⊇ {s} 6= ∅. Since S is not of type-3, |S| < √
n,

so k ∈ {−√
n, . . . ,

√
n}. Because S is not included in G⋆, both Ak

1 [u, v] 6= S and Ak
1 [u, v] 6= S are

not ∅. At least one of Ak
1 [u, v] and Ak

2 [u, v] does not contain t. We choose S′ = Ak
i [u, v] as any one

of them that does not contain t. We choose s′ ∈ S′ as a vertex such that distG+[S′](s
′, u) = aki [u, v]

and distG+[S′](s
′, v) − distG+[S′](s

′, u) ≥ k. The existence of such a vertex s′ is guaranteed by the

definition of Ak
i [u, v].

Our plan is to show that (i) aki [u, v] + distG(u, t) ≥ distG(s, t) and (ii) distG(s′, t) = aki [u, v] +
distG(u, t). Combining these two inequalities give us the desired result: distG(s′, t) ≥ distG(s, t).
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Proof of (i). By the definition of Ak
i [u, v], we must have

distG+[S′](s
′, u) = aki [u, v] ≥ distG+[S](s, u),

so we have
aki [u, v] + distG(u, t) ≥ distG+[S](s, u) + distG(u, t) = distG(s, t).

Proof of (ii). Suppose that (ii) is not true. Then any shortest path between s′ and t must contain
a subpath P ′ = (s′, . . . , v) such that u is not in P ′, and so we have:

distG(s′, t) = distG+[S′](s
′, v) + distG(v, t) < distG+[S′](s

′, u) + distG(u, t).

Combining this inequality with the known fact distG+[S′](s
′, v) − distG+[S′](s

′, u) ≥ k, we have:

distG(u, t) − distG(v, t) > distG+[S′](s
′, v) − distG+[S′](s

′, u) ≥ k,

which implies that distG(v, t) < distG(u, t) − k (⋆). We calculate an upper bound of distG(s, t):

distG(s, t) ≤ distG+[S](s, v) + distG(v, t)

= (k + distG+[S](s, u)) + distG(v, t) by definition of k.

< (k + distG+[S](s, u)) + (distG(u, t) − k) by (⋆).

= distG+[S](s, u) + distG(u, t).

This contradicts the assumption that P is a shortest path between s and t in G, as the length of
P equals distG+[S](s, u) + distG(u, t).

The following lemma shows that (S2) is true.

Lemma 4.3. For any two vertices s and t in graph G, there exist two vertices s′ and t′ in graph
G⋆ such that distG(s, t) ≤ distG(s′, t′).

Proof. If both s and t are already in G⋆, then we are done by setting s′ = s and t′ = t. In the
subsequent discussion, we focus on the case that at least one of s and t is not in G⋆. By symmetry,
we assume that s is not in G⋆, so there is a type-1 or a type-2 component S that is not included in
G⋆ such that s ∈ S.

Case 1: t belongs to G+[S]. If S ∈ C(u) for some u ∈ VH , then there exist two vertices s′

and t′ in the component B[u] ∈ C(u) such that distG(s′, t′) = b[u] ≥ distG(s, t) by the definition of
B[u].

The remaining case is where S ∈ C(u, v) for some u, v ∈ VH . Let l = distV \S(u, v). We observe
that l ≤ r[u, v]. The reason is that the existence of a component S 6= R[u, v] guarantees that
R[u, v] 6= ∅, which implies that

l = distV \S(u, v) ≤ distG+[R[u,v]](u, v) = r[u, v],

as G+[R[u, v]] is a subgraph of G[V \ S].
Since R[u, v] is of type-2, we have r[u, v] ≤ |R[u, v]| + 1 ≤ √

n, so l ∈ {1, . . . ,
√
n} Consider the

component Bl[u, v] ∈ C(u, v). We observe that l = distV \Bl[u,v](u, v), since the shortest u–v path

length via R[u, v] is at most the length of any u–v path via S or Bl[u, v], by our choice of R[u, v].
More precisely, we have:

l = distV \S(u, v) = distV (u, v) = distV \Bl[u,v](u, v),
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as the above discussion implies that including S and excluding Bl[u, v] in the subscript does not
change the shortest u–v path length. Here we use the fact that Bl[u, v] 6= R[u, v], which is due to
the definition of Bl[u, v].

Since l = distV \Bl[u,v](u, v), by the definition of Bl[u, v], there exist two vertices s′ and t′ in

G+[Bl[u, v]] such that distG(s′, t′) ≥ distG(s, t), since otherwise we would have selected Bl[u, v] = S.

Case 2: t does not belong to G+[S]. We apply Lemma 4.2 to find a vertex s′ in G⋆ such that
distG(s, t) ≤ distG(s′, t). If t is already in G⋆, then we are done. Otherwise, there is a type-1 or a
type-2 component S′ that is not included in G⋆ such that t ∈ S′. There are two sub-cases.

• Suppose s′ belongs to G+[S′]. Then we may apply the same argument for Case 1 above to
find two vertices s′′ and t′′ in G⋆ such that distG(s, t) ≤ distG(s′, t) ≤ distG(s′′, t′′).

• Suppose s′ does not belong to G+[S′]. Then we may apply Lemma 4.2 again to find a vertex
t′ in G⋆ such that distG(s, t) ≤ distG(s′, t) ≤ distG(s′, t′).

In both sub-cases, we find two vertices in G⋆ whose distance in G is at least distG(s, t).

We are now ready to prove that the diameter of G equals the diameter of G⋆.

Lemma 4.4. The diameter of G equals the diameter of G⋆.

Proof. Lemma 4.1 shows that (S1) is true. Lemma 4.3 shows that (S2) is true. These two results
together imply that G and G⋆ have the same diameter. Statement (S1) implies that the diameter
of G⋆ is at most the diameter of G. For the other direction, let s and t be two vertices in G such
that dist(s, t) equals the diameter of G. By (S2), there exist two vertices s′ and t′ in G⋆ such that
distG(s, t) ≤ distG(s′, t′). By (S1), distG(s′, t′) = distG⋆(s′, t′), so the diameter of G⋆ is at least the
diameter of G.

4.1 Learning the topology of G⋆

By Lemma 4.4, the task of computing the diameter of a bounded-genus graph G is reduced to
computing the diameter of G⋆. In this section, we show that all vertices can learn the graph
topology of G⋆ using Õ(

√
n) energy.

Recall that GH is the graph defined by the vertex set VH and the edge set {{u, v} : |C(u, v)| >
0}. By Observation 3.1, we know that E(GH ) = O(

√
n) and there exists an assignment F :

E(GH) 7→ VH mapping each pair {u, v} ∈ E(GH) to one vertex in {u, v} such that each w ∈ VH is
mapped to at most O(1) times. Let A′ be any deterministic centralized algorithm that finds such
an assignment F , and we fix F ⋆ to be the outcome of A′ on the input GH . If each vertex v ∈ V
already knows the graph GH , then v can locally calculate F ⋆ by simulating A′.

To learn G⋆, we will let each vertex u ∈ V learn the following information:

Basic information I0(u). For each vertex u ∈ V , I0(u) contains the following information: (i)
whether u ∈ VH or u ∈ VL, (ii) the list of vertices in N(u) ∩ VH , and (iii) the set of all pairs
{u′, v′} ∈ E(GH).

If u is in a connected component S of G[VL], then I0(u) contains the following additional
information: (i) the list of vertices in S, and (ii) the topology of the subgraph G+[S].

Information about type-1 components I1(u). For each u ∈ VH , I1(u) contains the graph
topology of G+[S′], for each S′ = A1[u], A2[u], and B[u].
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Information about type-2 components I2(u). For each u ∈ VH , I2(u) contains the following
information. For each pair {u, v} ∈ E(GH) such that F ⋆({u, v}) = u, I2(u) includes the graph
topology of G+[S′], for each S′ = Ak

i [u, v], Ak
i [v, u], Bl[u, v], and R[u, v], for each i ∈ {1, 2},

k ∈ {−√
n, . . . ,

√
n}, and l ∈ {1, . . . ,

√
n}.

Information I0(u) contains the graph topology of GH , allowing each vertex u to calculate F ⋆

locally. Note that I1(u) and I2(u) contain nothing if u ∈ VL. The following lemma shows that the
graph topology of G⋆ can be learned efficiently given that each vertex u ∈ V already knows I0(u),
I1(u), and I2(u).

Lemma 4.5. Given that each u ∈ V already knows I0(u), I1(u), and I2(u), using Õ(n1.5) time
and Õ(

√
n) energy, we can let all vertices in G learn the graph topology of G⋆ w.h.p.

Proof. To learn G⋆, it suffices to know the following information: (i) I1(u) and I2(u) for each
u ∈ VH , (ii) the graph topology of G+[S] for each type-3 component S, and (iii) the graph topology
of the subgraph induced by VH . For each type-3 component S, let rS be the smallest ID vertex in
S. In view of the above, to let each vertex learn the topology of G⋆, it suffices to let the following
O(

√
n) vertices broadcast the following information:

• For each u ∈ VH , u broadcasts I1(u), I2(u), and the list of vertices N(u) ∩ VH , which is
contained in I0(u).

• For each u ∈ VL such that u = rS for a type-3 component S, u broadcasts the graph topology
of G+[S]. Note that each vertex u ∈ VL can decide locally using the information in I0(u)
whether or not u itself is rS for a type-3 component S.

Since |VH | = O(
√
n) and the number of type-3 components is also O(

√
n) by Lemma 3.2, the

number of vertices that has a message to broadcast is O(
√
n). We run the algorithm of Lemma 2.1

to find a good labeling L of G, and then we use Lemma 2.2(2) with x = O(
√
n) to let the above

O(
√
n) vertices broadcast their information. This can be done in time Õ(n1.5) and energy Õ(

√
n).

After that, all vertices know the graph topology of G⋆.

Next, we consider the task of learning the basic information I0(u).

Lemma 4.6. Using Õ(
√
n) time and energy, we can let all vertices v ∈ V learn the following

information w.h.p.

• Each v ∈ V learns whether v ∈ VH or v ∈ VL.

• If v ∈ VH , then v also learns the list of vertices in N(v) ∩ VH .

• If v ∈ VL, then v also learns the two lists of vertices N(v) ∩ VL and N(v) ∩ VH .

Proof. First, we run SR-commapx with W = 1, ǫ = 1/2, S = R = V , and mu = 1, for each u ∈ S.
This step lets each v ∈ V estimate deg(v) up to a factor of 2. This step costs poly log n time, by
Lemma A.6.

After that, we run SR-commall with S = V and R being the set of all vertices v whose estimate
of deg(v) is at most 2

√
n. The message mv for each vertex v is ID(v), and we use the bound

∆′ = 4
√
n for SR-commall. Recall that VL is the set of vertices of degree at most

√
n, so we must

have VL ⊆ R. The algorithm of SR-commall allows each vertex v ∈ R to calculate deg(v) precisely.
Therefore, after this step, each vertex v ∈ V has enough information to decide whether v ∈ VH or
v ∈ VL. Furthermore, if v ∈ VL, then v knows the list of all vertices N(v). This step takes Õ(

√
n)

time, by Lemma A.2.
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In order for each vertex to learn all the required vertex lists, we run SR-commall again with the
following parameters: S = VH , R = V , and the message mv for each vertex v ∈ S is its ID(v).
This time we may use the bound ∆′ =

√
n ≥ |VH |. After the algorithm of SR-commall, each vertex

v ∈ V knows the list of vertices in N(v) ∩ VH . For each v ∈ VL, since v already knows the list of
all vertices N(v), it can locally calculate the list N(v) ∩ VL. This step also takes Õ(

√
n) time.

Lemma 4.7. Using Õ(n1.5) time and Õ(
√
n) energy, we can let all vertices v in all connected

components S of G[VL] learn (i) the vertex set S and (ii) the graph topology of G+[S] w.h.p.

Proof. First, we apply Lemma 4.6 to let all vertices v ∈ VL learn the two lists N(v) ∩ VL and
N(v) ∩ VH . To let all vertices learn the required information in the lemma statement, it suffices to
let each vertex v ∈ S broadcast the two lists N(v) ∩ VL and N(v) ∩ VH to all other vertices in S,
for all connected components S of G[VL].

We do the above broadcasting task in parallel, for all connected components S of G[VL]. We
use Lemma 2.1 to let each component S compute a good labeling, and then we use Lemma 2.2(1)
to let each vertex v ∈ S broadcast the two lists N(v) ∩ VL and N(v) ∩ VH to all other vertices in
S. Recall that the degree of any vertex in VL is less than

√
n, so the algorithm of Lemma 2.2(1)

costs Õ(n1.5) time and Õ(
√
n) energy.

For each connected component S of G[VL], at the end of the algorithm of Lemma 4.7, each
vertex w ∈ S is able to determine the type of S. If S is of type-1, w knows the vertex u ∈ VH such
that S ∈ C(u). If S is of type-2, w knows the two vertices u, v ∈ VH such that S ∈ C(u, v). Given
such information, in the following lemma, we design an algorithm for learning the topology of GH .

Lemma 4.8. Suppose that each vertex in each type-2 component S already knows (i) the vertex set
S and (ii) the graph topology of G+[S]. Using Õ(n1.5) time and Õ(

√
n) energy, all vertices in the

graph can learn the set of all pairs {u, v} ∈ E(GH ) w.h.p.

Proof. First of all, we let all vertices in VH agree on a fixed ordering VH = {v1, . . . , v|H|} as follows.
We use Lemma 2.1 to compute a good labeling of G, and then we use Lemma 2.2(2) with x =

√
n

to let each vertex v ∈ VH broadcast ID(v). After that, we may order VH = {v1, . . . , v|H|} by

increasing ordering of ID. This step takes Õ(n1.5) time and Õ(
√
n) energy.

Next, we consider the task of letting each u ∈ VH learn the list of all v ∈ VH such that
C(u, v) 6= ∅. We solve this task by |VH | invocations of SR-comm. Given a type-2 component
S ∈ C(u, v), we define zu,S as the smallest-ID vertex in N(v)∩S. The vertex zu,S will be responsible
for letting v know that C(u, v) 6= ∅. For i = 1 to |VH |, we do an SR-comm with R = VH and S
being the set of all vertices zvi,S such that S is a type-2 component with vi ∈ G+[S]. Observe
that a vertex u ∈ VH receives a message during the ith iteration if and only if C(u, vi) 6= ∅, i.e.,
{u, vi} ∈ E(GH). By Lemma A.1, this step takes |VH | · poly log n = Õ(

√
n) time.

At the end of the above algorithm, each u ∈ VH knows the list of all v ∈ VH such that
C(u, v) 6= ∅. In order to let all vertices in G learn the topology of GH , it suffices to let all u ∈ VH

broadcast this information. This can be done using Lemma 2.2(2) with x =
√
n, which costs Õ(n1.5)

time and Õ(
√
n) energy.

Lemma 4.9. In Õ(n1.5) time and Õ(
√
n) energy, we can let all u ∈ V learn I0(u) w.h.p.

Proof. This follows from Lemma 4.7 and Lemma 4.8.

Next, we consider the task of learning I1(u) and I2(u).
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Lemma 4.10. Suppose that each v ∈ V knows I0(v). Using Õ(n1.5) time and Õ(
√
n) energy, we

can let all vertices u ∈ VH learn I1(u) and I2(u) w.h.p.

Proof. Consider any vertex u ∈ VH . For each component S ∈ C(u), we let rS,u be the smallest-ID
vertex in the set S ∩ N(u). For each v ∈ VH such that F ⋆({u, v}) = u, and for each component
S ∈ C(u, v), we similarly let rS,u be the smallest-ID vertex in the set S∩N(u). As we will later see,
rS,u will be the vertex in S responsible for sending the graph topology G+[S] to u in case G+[S]
belongs to I1(u) or I2(u).

Recall that I1(u) and I2(u) consist of the graph topology G+[S′] of some selected type-1 and
type-2 components S′ such that u belongs to G+[S′]. We will present a generic approach that lets
u ∈ VH learn one graph topology in I1(u) and I2(u). As we will later see, the cost of learning one
graph topology is poly log n time and energy. If the graph topology to be learned is in C(u), then
only u and the vertices rS,u for all S ∈ C(u) need to participate in the algorithm for learning the
graph topology. If the graph topology to be learned is in C(u, v), then only u and the vertices rS,u
for all S ∈ C(u, v) need to participate in the algorithm for learning the graph topology. We only
describe the algorithms that let u ∈ VH learn A1[u] and A2[u]. The algorithms for learning the
remaining graph topologies are analogous.

Learning A1[u]. Recall that A1[u] is a component S′ ∈ C(u) that maximizes eccentricity(u, S′).
To learn A1[u], we use SR-commmax with S = {rS,u : S ∈ C(u)} and R = {u}. The
message mv of v = rS,u is the graph topology of G+[S], and the key of v = rS,u is kv =
eccentricity(u, S). Since each type-1 and type-2 component satisfies |S| ≤ √

n, the maximum
possible value of eccentricity(u, S) is

√
n, so the size of the key space for SR-commmax is

K =
√
n.

If |C(u)| > 0, then the message that u receives from SR-commmax is the topology of G+[S′],
for a component S′ ∈ C(u) that attains the maximum value of eccentricity(u, S′) among all
components in C(u), so u may set A1[u] = S′. If |C(u)| = 0, the vertex u receives nothing
from SR-commmax, so u may set A1[u] = ∅. By Lemma A.4, the cost of SR-commmax is
O(logK log ∆ log n) = poly log n.

Learning A2[u]. The procedure for learning A2[u] is almost exactly the same as that for A1[u],
with only one difference. Recall that A2[u] is a component S′ ∈ C(u)\{A1[u]} that maximizes
eccentricity(u, S′), so we need to exclude the component A1[u] from participating. To do so,
before we apply SR-commmax, we use one round to let u send ID(rA1[u],u) to all vertices
{rS,u : S ∈ C(u)}. This allows each rS,u to learn whether or not S = A1[u].

For each u ∈ VH , the number of pairs {u, v} such that F ⋆({u, v}) = u is O(1), so the number of
graph topologies needed to be learned in I1(u) and I2(u) by u is O(

√
n). The total number of graph

topologies needed to be learned, for all u ∈ VH , is at most |VH | ·O(
√
n) = O(n). We fix an ordering

of these learning tasks and solve them sequentially. For each of these tasks, we use the above generic
approach to solve the task, so the time and energy cost for learning one graph topology is poly log n.
Since there are O(n) tasks, the overall time complexity is O(n) · poly log n = Õ(n). Each vertex
participates in O(

√
n) tasks, so the overall energy complexity is O(

√
n) · poly log n = Õ(

√
n).

Lemma 4.11. Using Õ(n1.5) time and Õ(
√
n) energy, we can let all vertices in G learn the graph

topology of G⋆ w.h.p.

Proof. The lemma follows from combining Lemmas 4.5, 4.9 and 4.10.

Now we are ready to prove Theorem 1.1.
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Theorem 1.1. There is an algorithm that computes the diameter in Õ(n1.5) time and Õ(
√
n)

energy w.h.p. for bounded-genus graphs in No-CD.

Proof. The theorem follows from combining Lemmas 4.4 and 4.11.

5 Minimum cut

In this section, we apply the approach introduced in Section 4 to show that (i) the exact global
minimum cut size and (ii) an approximate s–t minimum cut size of any bounded-genus graph can
be computed in Õ(

√
n) energy. We also show energy lower bounds to complement these results.

5.1 Global minimum cut

In this section, we prove Theorem 1.2. Both proofs follow the structure as the one in Section 4.
That is, we still decompose the vertex set into VH and VL, and we classify the connected components
of G[VL] into three types. The only difference here is the information that we extract from type-1
and type-2 components.

Given a cut C = (X,V \X) of G = (V,E), the two vertex sets X 6= ∅ and V \X 6= ∅ are called
the two parts of C, and the cut edges of C are defined as {{u, v} : u ∈ X, v ∈ V \ X}. The size
of a cut C, which we denote as |C|, is defined as the number of cut edges of C. A minimum cut of
a graph is a cut C that minimizes |C| among all possible cuts. An s–t minimum cut of a graph is
a cut C the minimizes |C| among all possible cuts subject to the constraint that s and t belong to
different parts. We consider the following definitions:

c(S). For any type-1 component S, let c(S) be the minimum cut size of G+[S].

c′(S). For any type-2 component S ∈ C(u, v), let c′(S) be the u–v minimum cut size of G+[S].

c′′(S). For any type-2 component S ∈ C(u, v), let c′′(S) be the minimum cut size of G+[S] among
all cuts such that both u and v are within the same part of the cut.

We make the following observations.

Observation 5.1. Let C = (X,V \X) be any minimum cut of G. For any vertex u ∈ VH , one of
the following statements is true:

• One part of the cut contains all vertices in
⋃

S∈C(u) S ∪ {u}.
• the size of the cut is minS∈C(u) c(S).

Proof. Suppose that the first statement is false. Then there exists a component S′ ∈ C(u) such
that S′ ∪{u} intersects both parts of the cut, so C′ = (X ∩ (S′ ∪{u}), (V \X)∩ (S′ ∪{u})) is a cut
of G+[S′]. Therefore, minS∈C(u) c(S) ≤ c(S′) ≤ |C′| ≤ |C|. To prove that the second statement is
true, we just need to show that |C| ≤ minS∈C(u) c(S). This inequality follows from the observation
that for any component S ∈ C(u), any cut of G+[S] can be extended to a cut of G of the same size
by adding all vertices in V \ (S ∪ {u}) to the part of the cut that contains u.

Observation 5.2. Let C = (X,V \ X) be any minimum cut of G. For two distinct vertices
u, v ∈ VH , one of the following statements is true:

• One part of the cut contains all vertices in
⋃

S∈C(u,v) S ∪ {u, v}.
• The size of the cut is minS∈C(u,v) c

′′(S).
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• u and v belong to different parts of the cut, and the number of cut edges that have at least
one endpoint in

⋃

S∈C(u,v) S
′ is

∑

S∈C(u,v) c
′(S).

Proof. Suppose that the first statement is false. We first focus on the case where u and v belong to
the same part of the cut C. In this case, there exists a component S′ ∈ C(u, v) such that S′∪{u, v}
intersects both parts of the cut, so C′ = (X∩(S′∪{u, v}), (V \X)∩(S′∪{u, v})) is a cut of G+[S] such
that u and v belong to the same part of the cut. Therefore, minS∈C(u,v) c

′′(S) ≤ c′′(S′) ≤ |C′| ≤ |C|.
Similar to the proof of Observation 5.1, we also have |C| ≤ minS∈C(u,v) c

′′(S), as any cut of G+[S]
such that u and v belong to the same part of the cut can be extended to a cut of G of the same
size. Therefore, we must have |C| = minS∈C(u,v) c

′′(S), that is, the second statement is true.
For the rest of the proof, we consider the case where u and v belong to different parts of the

cut C. For each component S ∈ C(u, v), we write ZS to denote the number of cut edges of C
that have at least one endpoint in S. Then we must have ZS = c′(S), since otherwise C is not a
minimum cut. Therefore, the number of cut edges that have at least one endpoint in

⋃

S∈C(u,v) S
′

is
∑

S∈C(u,v) c
′(S), that is, the third statement is true.

The graph G⋄. Bounded-genus graphs have bounded arboricity. The minimum degree of any
graph of arboricity α is at most 2α−1. The minimum cut size of any graph is at most the minimum
degree of the graph. Therefore, there is a constant λ0 such that the minimum cut size of G is at
most λ0. We define the graph G⋄ as the result of applying the following operations to G:

• Remove all type-1 components.

• For each pair {u, v} of distinct vertices in VH with |C(u, v)| > 0, replace C(u, v) with
min{λ0,

∑

S∈C(u,v) c
′(S)} multi-edges between u and v.

In the subsequent discussion, we say that a cut C of G is good if it satisfies the following
conditions:

• For each vertex u ∈ VH , one part of the cut contains all vertices in
⋃

S∈C(u) S ∪ {u}.

• For any two distinct vertices u, v ∈ VH , if u and v belong to the same part of the cut, then
this part of the cut contains all vertices in

⋃

S∈C(u,v) S ∪ {u, v}.

Observation 5.3. If a minimum cut of G is good, then both G and G⋄ have the same minimum
cut size.

Proof. This observation follows immediately from the construction of G⋄.

Using Observations 5.1 to 5.3, we prove the following lemma.

Lemma 5.1. The minimum cut size of G is the minimum of the following numbers:

1. The minimum value of minS∈C(u) c(S) among all u ∈ VH such that |C(u)| > 0.

2. The minimum value of minS∈C(u,v) c
′′(S) among all u, v ∈ VH such that |C(u, v)| > 0.

3. The minimum cut size of G⋄.

Proof. For each S ∈ C(u), there exists a cut of G+[S] of size c(S), and such a cut can be extended
to a cut of G of the same size by adding all vertices in V \ (S ∪ {u}) to the part of the cut that
contains u. Similarly, for each S ∈ C(u, v), there exists a cut of G+[S] of size c′′(S) where both u
and v belong to the same part, and such a cut can be extended to a cut of G of the same size by
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adding all vertices in V \ (S ∪ {u, v}) to the part of the cut that contains u and v. Therefore, the
minimum cut size of G is at most the minimum value of Items 1 and 2.

By Lemma 5.1, we infer that the minimum cut size of G is also at most the value of Item 3,
so now we know that the minimum cut size of G is at most the minimum value of Items 1 to 3.
To finish the proof, we will show that the minimum cut size of G is at least the minimum value of
Items 1 to 3. To do so, we assume that the minimum cut size of G is smaller than the minimum
value of Items 1 and 2, and then our goal is to show that the minimum cut size of G is at least the
value of Item 3. By Observations 5.1 and 5.2, such an assumption implies that any minimum cut
of G is good, so its size equals the minimum cut size of G⋄ by Observation 5.3.

Information. For each vertex u ∈ V , we define I⋄
0(u), I⋄

1 (u), and I⋄
2 (u) as follows.

• I⋄
0 (u) is the same as the basic information I0(u) defined in Section 4.

• I⋄
1 (u) contains the number minS∈C(u) c(S).

• I⋄
2 (u) contains the two numbers minS∈C(u,v) c

′′(S) and min{λ0,
∑

S∈C(u,v) c
′(S)}, for all pairs

{u, v} ∈ E(GH) such that F ⋆({u, v}) = u.

Note that I1(u) and I2(u) contain nothing if u ∈ VL.

Theorem 1.2. There is an algorithm that computes the minimum cut size in Õ(n1.5) time and
Õ(

√
n) energy w.h.p. for bounded-genus graphs in No-CD.

Proof. As I⋄
0 (u) = I0(u), we may use the algorithm of Lemma 4.9 to let all vertices u ∈ V learn

the information I⋄
0 (u) using Õ(n1.5) time and Õ(

√
n) energy.

The algorithm of Lemma 4.10 can be modified to allow all vertices u ∈ VH learn the information
I⋄
1 (u) and I⋄

2 (u). Specifically, the number minS∈C(u) c(S) can be learned by the same algorithm
for learning A1[u] described in the proof of Lemma 4.9 by replacing SR-commmax with SR-commmin

and letting v = rS,u use the key kv = c(S). The algorithm for learning minS∈C(u,v) c
′′(S) is similar.

For each pair {u, v} ∈ E(GH ) such that F ⋆({u, v}) = u, to let u learn min{λ0,
∑

S∈C(u,v) c
′(S)},

we use SR-commapx with the following parameters:

• S = {rS,u : S ∈ C(u, v)}, where rS,u is the smallest-ID vertex in the set S ∩N(u).

• R = {u}.

• ǫ = 1/(2λ0 + 1).

• W = λ0.

• For each S ∈ C(u, v), the message mv of the representative v = rS,u of S is min{λ0, c
′(S)}.

After the algorithm of SR-commapx, u learns a (1 ± ǫ)-approximation of

∑

v∈N+(u)∩S
mv =

∑

S∈C(u,v)

min{λ0, c
′(S)}.

We claim that this allows u to calculate min{λ0,
∑

S∈C(u,v) c
′(S)} precisely. To prove this claim,

we break the analysis into two cases. Let x be the approximation of
∑

S∈C(u,v) min{λ0, c
′(S)}

computed by SR-commapx.
If min{λ0,

∑

S∈C(u,v) c
′(S)} = λ0, then

∑

v∈N+(u)∩S
mv =

∑

S∈C(u,v)

min{λ0, c
′(S)} ≥ λ0,
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which implies
x ≥ (1 − ǫ)λ0 > λ0 − 1/2.

If min{λ0,
∑

S∈C(u,v) c
′(S)} =

∑

S∈C(u,v) c
′(S), then

∑

v∈N+(u)∩S
mv =

∑

S∈C(u,v)

min{λ0, c
′(S)} =

∑

S∈C(u,v)

c′(S),

which implies

x ∈



(1 − ǫ)
∑

S∈C(u,v)

c′(S), (1 + ǫ)
∑

S∈C(u,v)

c′(S)





⊆









∑

S∈C(u,v)

c′(S)



 − 1

2
,





∑

S∈C(u,v)

c′(S)



 +
1

2



 .

Therefore, u can calculate min{λ0,
∑

S∈C(u,v) c
′(S)} precisely from x. By Lemma A.6, the cost for

u to calculate min{λ0,
∑

S∈C(u,v) c
′(S)} via SR-commapx is poly log n time.

For each u ∈ VH , the number of pairs {u, v} such that F ⋆({u, v}) = u is O(1), so the number of
parameters needed to be learned in I⋄

1 (u) and I⋄
2 (u) by u is O(1). The total number of parameters

needed to be learned, for all u ∈ VH , is at most |VH | ·O(1) = O(
√
n). We fix any ordering of these

learning tasks and solve them sequentially. The time and energy cost for learning one parameter is
poly log n. Since there are O(

√
n) tasks, the overall time complexity for learning I⋄

1 (u) and I⋄
2(u)

for all u ∈ VH is O(
√
n) · poly log n = Õ(

√
n).

In view of Lemma 5.1, the minimum cut size of G can be calculated from the following infor-
mation: (i) I⋄

1 (u) and I⋄
2 (u) for all u ∈ VH , (ii) the topology of G+[S] for each type-3 component

S, and (iii) the topology of the subgraph induced by VH . By replacing I1(u) and I2(u) with I⋄
1(u)

and I⋄
2 (u) in the description of the algorithm of Lemma 4.5, we obtain an algorithm that lets all

vertices learn this information using Õ(n1.5) time and Õ(
√
n) energy.

5.2 Approximate s–t minimum cut

In this section, we prove Theorem 1.3. The proof of Theorem 1.3 is similar to that of Theorem 1.2.
The main difference for the setting of s–t minimum cut is that if s or t happens to be within a
type-1 or a type-2 component S, then we additionally need to learn the topology of G+[S]. Any
type-1 component that does not contain s or t is irrelevant to the s–t minimum cut size.

In the subsequent discussion, we fix s and t to be any two distinct vertices of G. for each
x ∈ {s, t}, let Sx be the type-1 or type-2 component containing x. In case x is not contained in any
type-1 or type-2 component, we let Sx = ∅. We define G• as the result of applying the following
operations to G.

• Remove all type-1 components, except for Ss and St.

• For each pair {u, v} of distinct vertices in VH with |C(u, v) \ {Ss, St}| > 0, replace all com-
ponents in C(u, v) \ {Ss, St} with

∑

S∈C(u,v)\{Ss,St} c
′(S) multi-edges between u and v.

Similar to Observations 5.1 and 5.2, we have the following observation.

Observation 5.4. Both G and G• have the same minimum s–t cut size.
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Proof. Fix C = (X,V \ X) to be any minimum s–t cut of G, where s ∈ X and t ∈ V \ X. To
show that both G and G• have the same minimum s–t cut size, it suffices to show the following
two statements:

• For each type-1 component S that is not Ss and St, we must have either S ⊆ X or S ⊆ V \X.

• For each pair {u, v} of distinct vertices in VH with |C(u, v) \ {Ss, St}| > 0, if u and v belong
to different parts of cut C, then the number of cut edges of C with at least one endpoint in
⋃

S∈C(u,v)\{Ss ,St} S equals
∑

S∈C(u,v)\{Ss,St} c
′(S).

The first statement follows from the observation that for each u ∈ VH , all vertices in
⋃

S∈C(u)\{Ss,St} S must belong to the part of cut C that u belongs to, since otherwise C is not
a minimum s–t cut, as moving all vertices in

⋃

S∈C(u)\{Ss,St} S to the part of cut that u belongs to
reduces the number of cut edges.

To show the second statement, consider a pair {u, v} of distinct vertices in VH with |C(u, v) \
{Ss, St}| > 0 such that u and v belong to different parts of cut C. Similar to the proof of
Observation 5.2, for each component S ∈ C(u, v) \ {Ss, St}, we write ZS to denote the number
of cut edges of C that have at least one endpoint in S. Then we must have ZS = c′(S), since
otherwise C is not a minimum cut. Therefore, the number of cut edges of C that have at least one
endpoint in

⋃

S∈C(u,v)\{Ss,St} S
′ is

∑

S∈C(u,v)\{Ss ,St} c
′(S).

We are ready to prove Theorem 1.3.

Theorem 1.3. There is an algorithm that computes a (1 ± ǫ)-approximate s–t minimum cut size
in Õ(n1.5) + Õ(

√
n) · ǫ−O(1) time and Õ(

√
n + ǫ−O(1)) energy w.h.p. for bounded-genus graphs in

No-CD.

Proof. The proof is very similar to the proof of Theorem 1.2, so here we only describe the differences.
Let G̃• be any graph such that for each pair of vertices {u, v}, the number of multi-edges in G̃• is
within a (1 ± ǫ) factor of the number of multi-edges in G•. By Observation 5.4, the minimum s–t
cut size in G̃• is a (1 ± ǫ)-approximation of the minimum s–t cut size of G. Therefore, the task of
computing the minimum s–t cut size of G is reduced to computing such a graph G̃•.

For each u ∈ VH , we let I•
2(u) contain the number

∑

S∈C(u,v)\{Ss ,St} c
′(S) for all pairs {u, v} ∈

E(GH) with F ⋆({u, v}) = u. The same algorithm for learning I⋄
2 (u) presented in the proof of

Theorem 1.2 can be applied here to let all u ∈ VH learn I•
2 (u). Specifically, for each pair {u, v} ∈

E(GH) such that F ⋆({u, v}) = u, to let u learn
∑

S∈C(u,v)\{Ss,St} c
′(S), we use SR-commapx with ǫ

and the following parameters:

• S = {rS,u : S ∈ C(u, v) \ {Ss, St}}, where rS,u is the smallest-ID vertex in the set S ∩N(u).

• R = {u}.

• W =
(n
2

)

is an upper bound on |E| ≥ c′(S) for any S.

• For each S ∈ C(u, v) \ {Ss, St}, the message mv of the representative v = rS,u of S is c′(S).

By Lemma A.6, the round complexity of SR-commapx is poly(log n, 1/ǫ). For each u ∈ VH , the
number of pairs {u, v} such that F ⋆({u, v}) = u is O(1), so the number of parameters needed to
be learned in I•

2 (u) by u is O(1). The total number of parameters needed to be learned, across all
u ∈ VH , is at most |VH | · O(1) = O(

√
n). Since there are O(

√
n) learning tasks and each vertex

participates in O(1) of them, the overall cost for learning I•
2(u) for all u ∈ VH is Õ(

√
n) · ǫ−O(1)

time and poly(log n, 1/ǫ) energy.
By Observation 5.4, a (1± ǫ)-approximation of the minimum s–t cut size of G can be calculated

from the following information: (i) I•
2 (u) for all u ∈ VH , (ii) the topology of G+[S] for S = Ss,
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S = St, and each type-3 component S, and (iii) the topology of the subgraph induced by VH , as
they allow us to obtain the desired graph G̃•. Same as the proof of Theorem 1.2, we may let all
vertices learn this information using Õ(n1.5) time and Õ(

√
n) energy.

Hence there is an algorithm that computes a (1 ± ǫ)-approximate s–t minimum cut size in
Õ(n1.5) + Õ(

√
n) · ǫ−O(1) time and Õ(

√
n + ǫ−O(1)) energy w.h.p.

5.3 Lower bounds

In this section, we prove the two lower bounds: Theorems 1.4 and 1.5.

Theorem 1.4. For any randomized algorithm that computes the s–t minimum cut size of a planar
bipartite graph w.h.p. in CD, the energy complexity of the algorithm is Ω(n).

Proof. Suppose that there is a randomized algorithm A that computes the exact s–t minimum cut
size of any planar bipartite graph with high probability and using o(n) energy.

Let G be a complete bipartite graph K2,∆ with the bipartition {s, t} ∪ {v1, . . . , v∆}. Set X =
∆/5. We select ∆ to be sufficiently large so that it is guaranteed that both s and t use at most X
unit of energy in an execution of A on G.

Let G′ be the result of removing v∆ from G. The size of a s–t minimum cut of G is ∆, and the
size of a s–t minimum cut of G′ is ∆− 1. Therefore, A allows s to correctly distinguish between G
and G′ with high probability.

Consider an execution of A on G. Let S be the subset of {v1, . . . , v∆} such that vi ∈ S if there
is a time slot τ where (i) vi transmits, (ii) the number of vertices in {v1, . . . , v∆} that transmit is
at most 2, and (iii) at least one of s and t listens.

We claim that |S| ≤ 4X = 4∆/5. Let T be the set of all time slots τ such that the above
conditions (i), (ii), and (iii) hold for at least one vi ∈ {v1, . . . , v∆}. In view of condition (ii), we
must have |T | ≥ |S|/2. In view of condition (iii), if τ ∈ T , then at least one of s and t must listen at
time τ , so the energy cost of one of s and t must be at least |T |/2 ≥ |S|/4, which implies X ≥ |S|/4.

Let E be the event that v∆ /∈ S in an execution of A on G. Whether or not E occurs depends
only on the local randomness stored in the vertices {s, t} and {v1, . . . , v∆}. Since |S| ≤ 4∆/5, at
least 1/5 fraction of the vertices in {v1, . . . , v∆} are not in S. Since the probability that vi /∈ S is
identical for all vi ∈ {v1, . . . , v∆}, we have Pr[E ] ≥ 1/5.

Consider the following scenario. All vertices in {s, t} and {v1, . . . , v∆} have decided their random
bits in advance. With probability 1/2, we run A on G. With probability 1/2, we run A on G′.
If E occurs, then the execution of A on both G and G′ is completely identical from the point of
view of each vertex, except for v∆. Therefore, conditioning on event E , the probability that vertex
s correctly decides whether the underlying graph is G or G′ is at most 1/2, as s can only guess
randomly.

Since Pr[E ] ≥ 1/5, the probability that vertex s fails to correctly decide whether the underlying
graph is G or G′ is at least (1/2) · (1/5) = 1/10, so s fails to correctly calculate the s–t minimum
cut with probability at least 1/10 in the above scenario. This contradicts the assumption that A
is able to compute the s–t minimum cut with high probability.

The lower bound of Theorem 1.4 can be expressed in terms of the maximum degree ∆. For
graphs with maximum degree ∆, the proof of Theorem 1.4 shows an Ω(∆) energy lower bound.

Theorem 1.5. For any randomized algorithm that computes the minimum cut size of a unit-disc
graph w.h.p. in CD, the energy complexity of the algorithm is Ω(n).
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Proof. Consider the case where the underlying graph is Kn with probability 1/2, and is Kn − e
with probability 1/2, where the edge e is chosen uniformly at random from the set of all edges in
Kn. Let A be any randomized algorithm that computes the size of a minimum cut exactly with
high probability. Observe that the size of a minimum cut of Kn is n− 1 and the size of a minimum
cut of Kn − e is n − 2, so A is able to distinguish between Kn and Kn − e with high probability.
It was shown in [11] that any algorithm that distinguishes between Kn and Kn − e with success
probability at least 3/4 necessarily has energy cost Ω(n) in both CD and No-CD, so the randomized
energy complexity of A is Ω(n).
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Appendix

A Algorithms for communication between two sets of vertices

In this section, we present our algorithms for SR-comm and its variants. Recall that SR-comm

requires that each vertex v ∈ R with N+(v)∩S 6= ∅ receives a message mu from at least one vertex
u ∈ N+(v) ∩ S w.h.p.

Lemma A.1 ([4]). SR-comm can be solved in time O(log ∆ log n) and energy O(log ∆ log n).

Proof. By the definition of SR-comm, each vertex v ∈ S ∩R is not required to receive any message
from other vertices, as we already have v ∈ N+(v) ∩ S. Therefore, in the subsequent discussion,
we assume that S ∩ R = ∅.

The task SR-comm with S ∩ R = ∅ can be solved using the well-known decay algorithm of [4],
which repeats the following routine for C log n times: For i = 1 to log ∆, let each vertex u ∈ S
transmit with probability 2−i. Each v ∈ R is always listening throughout the procedure. Here
C > 0 is some large enough constant to be determined.

Consider a vertex v ∈ R such that N(v) ∩ S 6= ∅. Let i⋆ be the largest integer i such that
2i ≤ 2|N(v) ∩ S|. Consider a time slot t where each vertex u ∈ S transmits with probability 2−i⋆ .
For notational simplicity, we write n′ = |N(v) ∩ S| and p′ = 2−i⋆ . Our choice of i⋆ implies that
1/n′ ≥ p′ ≥ 1/(2n′). The probability of the event that exactly one vertex in the set N(v) ∩ S
transmits equals n′p′(1− p′)n

′−1 ≥ 1/(2e). The calculation follows from the inequalities n′p′ ≥ 1/2
and (1 − p′)n

′−1 ≥ (1 − 1/n′)n
′−1 ≥ 1/e.

If the above event occurs, then v successfully receives a message mu from a vertex u ∈ N(v)∩S.
The probability that v does not receive any message from vertices in N(v)∩S throughout the entire
algorithm is at most (1 − 1/(2e))C logn = n−Ω(C). By setting C to be a large enough constant, the
algorithm successfully solves SR-comm w.h.p., and the time and energy complexities of the algorithm
are O(log ∆ log n).

Recall that the goal of SR-commall is to let each vertex u ∈ S ∩N+(v) deliver a message mu to
v ∈ R, for each v ∈ R.

Lemma A.2. SR-commall can be solved in time O(∆′ log n) and energy O(∆′ log n), where ∆′ is
an upper bound on |S ∩N(v)|, for each v ∈ R.

Proof. Consider the algorithm which repeats the following routine for C ·∆′ log n rounds, for some
sufficiently large constant C > 0. In each round, each vertex u ∈ S sends mu with probability
1/∆′. For each u ∈ R, if u does not send in this round, then u listens.

Let e = {u, v} be any edge with u ∈ S and v ∈ R. In one round of the above algorithm, u
successfully sends a message to v if (i) all vertices in {v} ∪ (S ∩N(v)) \ {u} do not send, and (ii) u
sends. Therefore, the probability that u successfully sends a message to v is

(1 − 1/∆′)|S∩N(v)|−1 · (1/∆′) ≥ (1 − 1/∆′)∆
′−1 · (1/∆′) ≥ 1/(e∆′)

The probability that u does not successfully send a message to v throughout all C ·∆′ log n rounds
is at most (1− 1/(e∆′))C·∆′ logn = n−Ω(C). Selecting a large enough constant C, by a union bound
for all u ∈ S ∩N(v) and all v ∈ R, we conclude that the algorithm solves SR-commall w.h.p. The
time and energy complexities are O(∆′ log n).

Recall that the task SR-commmulti requires that each vertex v ∈ R receive all distinct messages
in

⋃

u∈N+(v)∩S Mu, where is the Mu is the set of messages hold by u.
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Lemma A.3. SR-commmulti can be solved in time O(M log ∆ log2 n) and energy O(M log ∆ log2 n),
where M is an upper bound on the number of distinct messages in

⋃

u∈N+(v)∩S , for each v ∈ R.

Proof. Consider the algorithm which repeatedly runs SR-comm for C ·M log n times, where in each
iteration, the sets (S ′,R′) for SR-comm are chosen randomly as follows. We select R′ as a random
subset of R such that each v ∈ R joins R′ with probability 1/2. We select S ′ as a random subset
of S \ R′ such that for each message m, all vertices in S \ R′ that hold m join S ′ with probability
1/M , using the shared randomness associated with the message m.

Due to the shared randomness, if u ∈ S \ R′ joins S ′ due to message m, then all vertices in
S \ R′ holding the same message m also joins S ′. Note that a vertex u ∈ S \ R′ might hold
more than one message in that |Mu| > 1. The probability that u ∈ S \ R′ joins S ′ equals
Pr[Binomial(|Mu|, 1/M) ≥ 1], because each message m ∈ Mu lets u join S ′ with probability 1/M
independently.

To analyze the algorithm, we focus on one vertex v ∈ R in one iteration of the above algorithm.
Consider any message m ∈ ⋃

u∈N(v)∩S Mu \Mv. Observe that v receives m if the following three
events E1, E2, and E3 occur:

• E1 is the event that v joins R′.

• E2 is the event that at least one vertex u ∈ N(v) ∩ S with m ∈ Mu does not join R′.

• E3 is the event that the subset of vertices of N(v) ∩ S \ R′ joining S ′ is exactly the set of all
vertices u ∈ N(v) ∩ S \ R′ with m ∈ Mu.

If E1, E2, and E3 occur, then v ∈ R′, N(v)∩S ′ 6= ∅, and all vertices u ∈ N(v)∩S ′ satisfy m ∈ Mu.
Therefore, conditioning on E1, E2, and E3, SR-comm in this iteration allows v to receive message m.

The way R′ is selected implies that Pr[E1] = 1/2 and Pr[E2] ≥ 1/2. Observe that E1 and E2 are
independent events. The way S ′ is selected implies that Pr[E3|E1 ∩ E2] ≥ Pr[Binomial(M, 1/M) =
1] = (1/M) · (1−1/M)M−1 ≥ 1/(eM). Therefore, the probability that v receives m in this iteration
is at least 1/(4eM).

The probability that v does not receive m in all iterations is at most (1 − 1/(4eM))C·M logn =
n−Ω(C). Selecting a large enough constant C, by a union bound for all v ∈ R and all m ∈
⋃

u∈N(v)∩S Mu \ Mv, we conclude that the algorithm solves SR-commall w.h.p. The time and

energy complexities are O(M log ∆ log2 n), as the number of iterations is O(M log n) and the time
complexity of each iteration is O(log ∆ log n) by Lemma A.1.

Consider the setting where the message mu sent from each vertex u ∈ S contains a key ku from
the key space [K] = {1, 2, . . . ,K}. Recall that SR-commmin requires that each vertex v ∈ R with
N+(v)∩S 6= ∅ receives a message mu from a vertex u ∈ N+(v)∩S such that ku = minu′∈N+(v)∩S ku′ .

Lemma A.4. Both SR-commmin and SR-commmax can be solved in time O(K log ∆ log n) and
energy O(logK log ∆ log n). For the special case of S ∩R = ∅ and |R ∩N(u)| ≤ 1 for each u ∈ S,
the time complexity can be improved to O(logK log ∆ log n).

Proof. We only prove the lemma for SR-commmin, as the proof for SR-commmax is the same. The
proof presented here is analogous to the analysis of a deterministic version of SR-comm in [10].
Observe that we can do SR-comm once to let each v ∈ R test whether or not N+(v) ∩ S 6= ∅. If a
vertex v ∈ R knows that N+(v)∩S = ∅, then v may remove itself from R. Thus, in the subsequent
discussion, we assume N+(v) ∩ S 6= ∅ for each v ∈ R.

Let v ∈ R, and we define fv = minu∈N+(v)∩S ku. The high-level idea of the algorithm is to
conduct a binary search to determine all logK bits of the binary representation of fv.
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General case. Suppose at some moment each vertex v ∈ R already knows the first x bits of fv.
The following procedure allows each v ∈ R to learn the (x + 1)th bit of fv. For each (x + 1)-bit
binary string s, we do SR-comm with the following choices of (S ′,R′):

• S ′ is the set of vertices u ∈ S such that the first x + 1 bits of ku equal s.

• R′ is the set of vertices v ∈ R such that the first x bits of fv equal the first x bits of s.

In this procedure, we perform 2x+1 times of SR-comm in total, but each vertex only participates in
at most three of them, as each vertex joins S ′ at most once and joins R′ at most twice. Thus, the
procedure costs O(2x log ∆ log n) time and O(log ∆ log n) energy, by Lemma A.1. For each v ∈ R,
the messages that v receive during the procedure allows v to determine the (x + 1)th bit of fv.

We will run the above procedure for logK iterations from x = 0 to x = logK−1. Observe that
in the last iteration, each vertex v ∈ R is guaranteed to receive a message mu from a vertex u ∈
N+(v)∩S such that ku = fv = minw∈N+(v)∩S kw, so this algorithm allows us to solve SR-commmin.
The overall time complexity of the algorithm is

logK−1
∑

x=0

O(2x log ∆ log n) = O(K log ∆ log n),

and the overall energy complexity of the algorithm is

logK−1
∑

x=0

O(log ∆ log n) = O(logK log ∆ log n).

Special case. For the rest of the proof, we focus on the special case of S∩R = ∅ and |R∩N(u)| ≤ 1
for each u ∈ S. These assumptions imply that the family of sets (S ∩N(v)) ∪ {v} for all v ∈ R are
disjoint. The high-level idea is that for each v ∈ R, we may let the set of vertices (S ∩N(v)) ∪ {v}
jointly conduct a binary search to determine all bits of fv = minu∈N(v)∩S ku, in parallel for all
v ∈ R.

Suppose that for each vertex v ∈ R, all vertices in the set (S∩N(v))∪{v} already know the first
x bits of fv. We present a more efficient algorithm that let all vertices in the set (S ∩N(v)) ∪ {v}
learn the (x + 1)th bit of fv.

Step 1. Perform SR-comm with the following choices of (S ′,R′):

• R′ = R.

• S ′ is the subset of S that contains all vertices u ∈ S satisfying the following conditions:

– The first x bits of ku equal the first x bits of fv, where v is the unique vertex in
R ∩N(u).

– The (x + 1)th bit of ku is 0.

This step allows each v ∈ R to learn the (x + 1)th bit of fv. If v ∈ R receives a message
in SR-comm, then v knows that the (x + 1)th bit of fv is 0. Otherwise, v knows that the
(x + 1)th bit of fv is 1.

Step 2. Perform SR-comm with the following choices of (S ′,R′):

• R′ = S.

27



• S ′ = R.

This step lets each v ∈ R send the (x + 1)th bit of fv to all vertices in S ∩N(v).

The time and energy complexities of this algorithm are asymptotically the same as that of SR-comm,
which are O(log ∆ log n). As discussed earlier, to solve SR-commmin, all we need to do is to run
the above algorithm from x = 0 to x = logK − 1. The overall time and energy complexities of the
algorithm for SR-commmin are O(logK log ∆ log n), as there are logK iterations.

For the rest of the section, we consider the task SR-commapx, which requires each vertex v ∈ R
to compute a (1±ǫ)-factor approximation of the summation

∑

u∈N+(v)∩S mu. We need the following
fact, whose correctness can be verified by means of a simple calculation.

Fact A.1. There exist three universal constants 0 < ǫ0 < 1, N0 ≥ 1, and c0 ≥ 1 such that the
following statement holds: For any pair of numbers (N, ǫ) such that N ≥ N0 and ǫ0 ≥ |ǫ| ≥ c0/

√
N ,

e−1(1 − 0.51ǫ2) ≤ (1 + ǫ)(1 − (1 + ǫ)/N)N−1 ≤ e−1(1 − 0.49ǫ2).

Note that the parameter ǫ in Fact A.1 can be either positive or negative. For the rest of the
section, we assume that the message mu sent from each vertex u ∈ S is an integer within the range
[W ]. We first consider the special case of SR-commapx with W = 1. In this case, SR-commapx is the
same as the approximate counting problem whose goal is to let each v ∈ R compute |N+(v) ∩ S|,
up to a (1 ± ǫ)-factor error.

Lemma A.5. For W = 1, SR-commapx can be solved in O((1/ǫ5) log ∆ log n) time and energy.

Proof. In this proof, we will focus on a slightly different task of estimating |N(v) ∩ S| within a
(1 ± ǫ)-factor approximation, for each v ∈ R. If each v ∈ R knows such an estimate of |N(v) ∩ S|,
then v can locally calculate an estimate of |N+(v)∩S| within a (1±ǫ)-factor approximation, thereby
solving SR-commapx for the case of W = 1.

Basic setup. Let C > 0 be a sufficiently large constant. Let ǫ0, N0, and c0 be the constants in
Fact A.1. We assume that ǫ ≤ ǫ0. If this is not the case, then we may reset ǫ = ǫ0.

The algorithm consists of two phases. The first phase of the algorithm aims to achieve the
following goals: For each v ∈ R, either (i) v learns the number |N(v) ∩ S| exactly or (ii) v detects
that ǫ ≥ 10c0/

√

|N(v) ∩ S|. For each vertex v ∈ R that calculates the number |N(v) ∩ S| exactly
in the first phase, we remove v from R. The second phase of the algorithm then solves SR-commapx

for the remaining vertices in R. These vertices v ∈ R satisfy ǫ ≥ 10c0/
√

|N(v) ∩ S|.

The first phase. We define Z = (10c0/ǫ)
2. The algorithm consists of C · Z log n rounds, where

we do the following in each round:

• Each vertex u ∈ S ∪ R flips a biased coin that produces head with probability 1/Z.

• Each u ∈ S sends ID(u) if the outcome of its coin flip is head.

• Each vertex v ∈ R listens if the outcome of its coin flip is tail.

For each vertex v ∈ R, there are two cases:

• Suppose that there is a vertex u ∈ N(v)∩S such that the number of messages that v receives
from is smaller than 0.5·(C log n)/e. Then v decides that ǫ ≥ 10c0/

√

|N(v) ∩ S| and proceeds
to the second phase.
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• Suppose that for all vertices u ∈ N(v) ∩ S, the number of messages that v receives from is
at least 0.5 · (C log n)/e. Then v calculate |N(v) ∩ S| by the number of distinct IDs that v
receives.

The time complexity of the first phase of the algorithm is C · Z log n = O((1/ǫ2) log n).

Analysis. To analyze the algorithm, let e = {u, v} be any edge such that u ∈ S and v ∈ R. In
one round of the above algorithm, u successfully sends a message to v if and only if (i) the outcome
of u’s coin flip is head, and (ii) the outcome of the coin flips of all vertices in (N(v)∩S)∪{v}\{u}
are all tails. This event occurs with probability p⋆ = (1 − 1/Z)|N(v)∩S| · (1/Z). Let X be the
number of times v receives a message from u. To prove the correctness of the algorithm, we show
the following three concentration bounds:

• If v ∈ R satisfies ǫ ≤ 10c0/
√

|N(v) ∩ S|, then Pr[X ≥ 0.8 · (C log n)/e] = 1 − n−Ω(C).

• If v ∈ R satisfies ǫ ≥ 20c0/
√

|N(v) ∩ S|, then Pr[X ≤ 0.2 · (C log n)/e] = 1 − n−Ω(C).

• If v ∈ R satisfies ǫ ≤ 20c0/
√

|N(v) ∩ S|, then Pr[X ≥ 1] = 1 − n−Ω(C).

We show the correctness of the algorithm given these concentration bounds. For the case
ǫ ≥ 20c0/

√

|N(v) ∩ S|, the second bound implies that the number of messages that v receives from
u is greater than 0.5 · (C log n)/e w.h.p., so v correctly decides that ǫ ≥ 10c0/

√

|N(v) ∩ S| and
proceeds to the second phase. For the case ǫ ≤ 20c0/

√

|N(v) ∩ S|, the third bound implies that v
receives at least one message from each vertex in N(v) ∩ S w.h.p., so v can calculate |N(v) ∩ S|
precisely. The only remaining thing to show is that when ǫ is at most 10c0/

√

|N(v) ∩ S|, w.h.p. v
does not decide that ǫ ≥ 10c0/

√

|N(v) ∩ S|. This follows from the first bound, which implies that
the number of messages that v receives from u is greater than 0.5 · (C log n)/e w.h.p.

We prove the three concentration bounds as follows:

• Suppose that vertex v ∈ R satisfies ǫ ≤ 10c0/
√

|N(v) ∩ S|. We show that in this case
the number of messages that v receives from u ∈ N(v) ∩ S is at least 0.8 · (C log n)/e,
with probability 1 − n−Ω(C). In this case, we have Z = (10c0/ǫ)

2 ≥ |N(v) ∩ S|, so p⋆ =
(1−1/Z)|N(v)∩S| · (1/Z) ≥ (1−1/Z)Z · (1/Z) ≥ 0.9/(eZ). The expected value µ of X satisfies
µ = C · Z log n · p⋆ ≥ 0.9(C log n)/e. By a Chernoff bound, Pr[X ≤ 0.8 · (C log n)/e] ≤
exp(−Ω(C log n)) = n−Ω(C).

• Suppose that vertex v ∈ R satisfies ǫ ≥ 20c0/
√

|N(v) ∩ S|. We show that in this case the
number of messages that v receives from u ∈ N(v) ∩ S is at most 0.2 · (C log n)/e, with
probability 1 − n−Ω(C). In this case, we have Z = (10c0/ǫ)

2 ≤ |N(v) ∩ S|/4, so p⋆ =
(1 − 1/Z)|N(v)∩S| · (1/Z) ≤ (1 − 1/Z)4Z · (1/Z) ≤ 1/(e4Z). The expected value µ of X
satisfies µ = C · Z log n · p⋆ ≤ (C log n)/e4 < 0.1(C log n)/e. By a Chernoff bound, Pr[X ≥
0.2 · (C log n)/e] ≤ exp(−Ω(C log n)) = n−Ω(C).

• Suppose that vertex v ∈ R satisfies ǫ ≤ 20c0/
√

|N(v) ∩ S|. We show that in this case the
number of messages that v receives from u ∈ N(v)∩S is at least 1, with probability 1−n−Ω(C).
In this case, we have Z = (10c0/ǫ)

2 ≥ |N(v) ∩ S|/4, so p⋆ = (1 − 1/Z)|N(v)∩S| · (1/Z) ≥ (1 −
1/Z)4Z · (1/Z) ≥ 0.9/(e4Z). We have Pr[X < 1] = (1− p⋆)CZ logn ≤ (1− 0.9/(e4Z))CZ logn =
n−Ω(C).

The second phase. For each vertex v ∈ R that have already calculated the number |N(v) ∩ S|
exactly in the first phase, v removes itself from R. We know that all the remaining vertices in R
satisfy ǫ ≥ 10c0/

√

|N(v) ∩ S|.
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We consider the sequence of sending probabilities: p1 = 2/∆, and pi = min{1, pi−1 · (1 + ǫ)} for
i > 1. We let i⋆ = O((1/ǫ) log ∆) be the smallest index i such that pi = 1.

The second phase of the algorithm consists of i⋆ iterations, where the ith iteration repeats the
following procedure for C · (1/ǫ4) log n times for all vertices v ∈ S ∪ R:

• v flips a fair coin.

• If the outcome of the coin flip is head and v ∈ S, then v sends with probability pi.

• If the outcome of the coin flip is tail and v ∈ R, then v listens to the channel.

After finishing the algorithm, each vertex v ∈ R finds an index i′ such that the number of
messages that v successfully receives during the i′th iteration is the highest. Then v decides that
2/pi′ is an estimate of |N(v) ∩ S| within a factor of (1 ± ǫ). The time complexity of the second
phase of the algorithm is i⋆ · C · (1/ǫ4) log n = O((1/ǫ5) log ∆ log n).

Analysis. To show the correctness of the above algorithm, in the subsequent discussion, we focus
on a vertex v ∈ R in the ith iteration. We say that i is good for v if pi/2 is within a (1±0.6ǫ)-factor
of 1/|N(v) ∩ S|, and we say that i is bad for v if pi/2 is not within a (1± ǫ)-factor of 1/|N(v) ∩ S|.
Our choice of the sequence (p1, p2, . . .) implies that there must be at least one good index i for v.

We write psuci to denote the probability that v successfully receives a message in one round of
the ith iteration. From the description of the algorithm, we have

psuci = (1/2) · |N(v) ∩ S| · (pi/2) · (1 − (pi/2))|N(v)∩S|−1.

We define

pgood = (1/2) · e−1(1 − 0.51(0.6ǫ)2) and pbad = (1/2) · e−1(1 − 0.49ǫ2).

We claim that (i) psuci ≥ pgood if i is good for v and (ii) psuci ≤ pbad if i is bad for v.
We first prove this claim for the case that i is good for v. For simplicity, we write N = |N(v)∩S|.

Since i is good, pi/2 = (1 + ǫ′)/|N(v) ∩ S| for some ǫ′ ∈ [−0.6ǫ, 0.6ǫ]. Using the new notations, we
may rewrite psuci as

psuci = (1/2) · |N(v) ∩ S| · (pi/2) · (1 − (pi/2))|N(v)∩S|−1 = (1/2) · (1 + ǫ′) · (1 − (1 + ǫ′))N−1.

By Fact A.1, we infer that psuci ≥ (1/2) · e−1(1 − 0.51(ǫ′)2) ≥ e−1(1 − 0.51(0.6ǫ)2) = pgood.
Now consider the case i is bad for v. Again, we write N = |N(v) ∩ S|. Since i is bad,

pi/2 = (1+ ǫ′)/|N(v)∩S| for some ǫ′ /∈ (−ǫ, ǫ). The above formula for psuci still applies to this case,
and Fact A.1 implies that psuci ≤ (1/2) · e−1(1 − 0.49(ǫ′)2) ≤ e−1(1 − 0.49ǫ2) = pbad.

Let X be the number of messages that v receives in the ith iteration of the algorithm. The
expected value of X is µ = psuci · C · (1/ǫ4) log n. For the case i is good for v, we have µ ≥
pgood · C · (1/ǫ4) log n, so by a Chernoff bound, we have:

Pr[X ≤ (1 − 0.01ǫ2)pgood · C · (1/ǫ4) log n] = exp(−Ω(ǫ4 · C · (1/ǫ4) log n)) = n−Ω(C).

For the case i is bad for v, we have µ ≤ pbad · C · (1/ǫ4) log n, so by a Chernoff bound, we have:

Pr[X ≥ (1 + 0.01ǫ2)pbad · C · (1/ǫ4) log n] = exp(−Ω(ǫ4 · C · (1/ǫ4) log n)) = n−Ω(C).

Since (1 − 0.01ǫ2)pgood > (1 + 0.01ǫ2)pbad, we conclude that w.h.p. the index i′ selected by v
must be good, which implies that the estimate 2/pi′ calculated by v is within a (1 ± ǫ)-factor of
|N(v) ∩ S|, as we know that pi′/2 is within a (1 ± 0.6ǫ)-factor of 1/|N(v) ∩ S|, as i′ is good.
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In the following lemma, we extend Lemma A.5 to any value of W .

Lemma A.6. SR-commapx can be solved in O((1/ǫ6) logW log ∆ log n) time and energy.

Proof. We let ǫ′ = Θ(ǫ) be chosen such that (1 + ǫ′)2 < 1 + ǫ and (1− ǫ′)2 > 1− ǫ. We consider the
following sequence: w1 = 1 and wi = min{W, (1 + ǫ′)wi−1} for i > 1. Let i⋆ be the smallest index
i such that wi = W .

From i = 1 to i⋆, we run the algorithm of Lemma A.5 with the following setting:

• S ′ is the vertices u ∈ S with mu ∈ (wi−1, wi].

• R′ = R.

• The error parameter is ǫ′.

The algorithm of Lemma A.5 lets each v ∈ R′ compute a (1±ǫ′)-factor approximation of |N+(v)∩S ′|
using O((1/ǫ5) log ∆ log n) time and energy.

For each v ∈ R, we write Ni to denote the number of vertices u ∈ N+(v) ∩ S such that
mu ∈ (wi−1, wi], and we write Ñi to denote the estimate of |N+(v) ∩ S ′| computed by v in the ith
iteration. We have the following observations:

• Ñi is a (1 ± ǫ′)-factor approximation of Ni.

•

∑i⋆

i=1 wiNi is a (1 ± ǫ′)-factor approximation of
∑

u∈N+(v)∩S mu.

Thus,
∑i⋆

i=1wiÑi, which can be calculated locally at v at the end of the algorithm, is a (1±ǫ)-factor
approximation of

∑

u∈N+(v)∩S mu, by our choice of ǫ′.

By Lemma A.5, the time and energy complexities for each iteration are O((1/ǫ5) log ∆ log n).
The total number of iterations is i⋆ = O((1/ǫ) log W ). Thus, the overall time and energy complex-
ities are O((1/ǫ6) logW log ∆ log n).
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