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Abstract. With the rapid development of Artificial Intelligence (AI),
an increasing number of Machine Learning (ML) technologies have been
widely applied in many aspects of life. In the field of education, In-
telligence Tutoring Systems (ITS) have also made significant advance-
ments using these technologies. Developing different teaching strategies
automatically, according to mined student characteristics and learning
styles, could significantly enhance students’ learning efficiency and per-
formance. This requires the ITS to recommend different learning strate-
gies and trajectories for different individual students. However, one of
the greatest challenges is the scarcity of data sets providing interactions
between students and ITS, for training such ITS. One promising solution
to this challenge is to train “sim students”, which imitate real students’
behaviour while using the ITS. The simulated interactions between these
sim students and the ITS can then be generated and used to train the
ITS to provide personalised learning strategies and trajectories to real
students. In this paper, we thus propose SimStu, built upon a Decision
Transformer, to generate learning behavioural data to improve the per-
formance of the trained ITS models. The experimental results suggest
that our SimStu could model real students well in terms of action fre-
quency distribution. Moreover, we evaluate SimStu in an emerging ITS
technology, Knowledge Tracing. The results indicate that SimStu could
improve the efficiency of ITS training.

Keywords: Student Modelling· Decision Transformer · Intelligent Tu-
toring Systems · Behavioural Patterns

1 Introduction

The recent COVID-19 has significantly impacted people’s educational activities,
which promoted the Intelligent Tutoring System (ITS) to achieve outstanding
development. Data-intensive approaches have been proposed for ITS to improve
the quality of education services [23]. However, these need to be powered by data-
hungry machine learning models, whose performance relies heavily on the size of
training data available [22]. Moreover, similar to the scarcity of labelled data in
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many Artificial Intelligence (AI) fields, the shortage of student behavioural data
has become one of the greatest challenges for ITS advancements [24]. Our work
thus aims to tackle this challenge by answering the following research question:

How to create adequate high-fidelity and diverse simulated student

behavioural data for training ITS?

In this paper, we propose a Transformer-based approach based on our pre-
vious work [11]. The intuition of SimStu (shown in Fig. 1) is that after an ITS
collects a small amount of real student behavioural data in the early stage de-
velopment, it feeds the data into a generator, which produces a large amount
of simulated student behavioural data. These simulated data can then be com-
bined with the real student behavioural data, to train the ITS, thus improving
ITS training. The generator, which we call “SimStu”, is built upon the Decision
Transformer [3]. In the subsequent research, to train and evaluate our SimStu
model, we used the EdNet dataset3, which is the largest student-ITS interaction
benchmark dataset so far. Moreover, we improve the model’s performance by
modifying the input and hyperparameters.

In this work, we proposed an upgrade version of the SimStu, which obtains
better performance. The results suggest that our method could simulate real
students well on the metrics of action distribution. In addition, we applied our
method in real educational scenarios, Knowledge Tracing models. Knowledge
Tracing (KT) is a method that predicts the student’s next action based on
their previous ones. Many ITS use KT models’ prediction results to improve the
student learning experience, e.g., giving recommendations for the next learning
materials. Therefore, we applied our method’s generated data in the state-of-the-
art KT models, i.e., SAINT, SSAKT and LTMTL, to evaluate the performance
of our model. The experimental results show that our method could improve the
KT model’s performance.

The main contributions of this paper lie in the following three aspects:

1. We propose a student learning behaviour simulation approach (SimStu)
based on the Decision Transformer, aiming to provide adequate training
data for ITS.

2. Our experiments demonstrate that a trained SimStu model can simulate real
student behaviour well and outperform imitation learning based models.

3. We evaluate SimStu in a real ITS education scenario - applying SimStu in
three state-of-the-art KT models (SAINT, SSAKT, LTMTL), and the results
show that our approach could improve the performance of each KT model.

2 Related Work

2.1 Student Modelling

With increased attention to personalised learning, the traditional one-size-fits-
all method can no longer satisfy user needs [2]. In offline scenarios, personalised
3 http://ednet-leaderboard.s3-website-ap-northeast-1.amazonaws.com
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Fig. 2. SimStu architecture.

learning can be supported by teachers in various ways. For example, a teacher
can gain valuable information about their students, by observing their learning
process and interactions and then design the most suitable and beneficial learning
strategy for them [7]. However, the lack of teacher-student interactions in online
learning environments makes the personalisation process extremely difficult [1,
12]. In such online scenarios, student modelling can and has been applied, as a
powerful tool to combat this issue [5]. Thereby, in the current study, we take
advantage of the benefits of group-level student modelling and train our system
using the learning data from a large number of individual students to learn the
patterns of student learning in the system. This can then enable the system
to recognise "optimal" learning behavioural patterns, which lead to the better
student experience, performance, and learning results, as well as "poor" learning
behavioural patterns, which may result in failure, thus recommending not only
personalised but also optimal learning trajectories to the students, or providing a
reminder of progressing to potential failure. To achieve this objective, it is crucial
to have a decent quality and quantity of training data to feed to ’data-hungry’
machine learning models.

2.2 Knowledge Tracing

Knowledge Tracing (KT) is a common method of personalising learning strate-
gies for individual students. It predicts whether a student has the capability to
master a new piece of knowledge, by tracing the student’s current knowledge
state, which depends on past learning behaviour. The two major KT approaches
are Bayesian Knowledge Tracing (BKT) and Deep Knowledge Tracing (DKT)
[15].

BKT is a probabilistic method for student model generalisation [9]. It uses
the Hidden Markov Model (HMM), to model their knowledge state as a set of
binary parameters, each of which indicates whether a single Knowledge Con-
cept (KC) has been understood or not [6]. DKT considers knowledge tracing
as a sequence prediction problem. It uses Recurrent Neural Network (RNN) to
model a student’s knowledge state in one summarised hidden vector [15]. DKT is
powerful for capturing a complicated depiction of human learning. However, the
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parameters of the DKT model are non-interpretable [10], which may result in stu-
dents distrusting the system and teachers being unable to understand student
behaviour. Additionally, when dealing with sparse data, DKT may encounter
the problem of not generalising well [8]. The main limitation of BKT and DKT
is that they both rely on a huge amount of students’ historical learning data
[13]. Different from BKT and DKT, our approach generates simulated student
learning data, thus not relying on a huge amount of historical data, and more
importantly, the simulated data can be visualised in statistical charts, showing
student’s learning behavioural patterns and thus being able to mitigate the KT
model’s limitation of non-interpretability.

2.3 Transformers
Transformers have risen to prominence in the field of deep learning in recent
years, particularly in natural language processing and image generation tasks
[21, 14]. A Transformer is an encoder-decoder Sequence2Sequence architecture
to model sequential data, which consists of stacked self-attention layers.

Before self-attention was introduced, the best-in-class architecture was the
seq2seq model [18], with an attention component from the decoder to align
weights to input positions in the encoder, deciding how much information to
retrieve from each position of inputs. Based on the Transformer architecture,
Chen et al. [3] proposed the Decision Transformer, which abstracts the rein-
forcement learning problem, as a sequence modelling objective. The key in this
algorithm is to generate actions based on desired returns in the future, rather
than rewards in the past, and they proposed feeding a sequence of returns-to-go
(sum of future rewards) bRt =

PT
t0=t rt0 into the model. This model first learns a

linear layer for each in returns-to-go, state, and action, to project them to the
embedding dimension, followed by a layer normalisation. A time-step embedding
is also learned and added to the tokens, which are then fed into a GPT [17] ar-
chitecture, with the goal of generating future actions. Our proposed Sim is built
upon this model. We feed the sequence of interactive data between students and
the ITS into the Decision Transformer, to generate simulated student behaviour
data.

3 Method

3.1 Architecture
The proposed SimStu is built upon the Decision Transformer [3] originally pro-
posed by Chen et al. It consists of an encoder and a decoder and models the joint
distribution of the sequence of student returns-to-go, states, and actions. Fig. 2
illustrates the architecture. It separates student interactive trajectory sequences
into two parts: one is used as the input embedding of the encoder, and the other
is used as the output embedding of the decoder [21]. Then, the encoder takes the
first part of the trajectory sequence embeddings as input and passes an output
trajectory to the decoder. The decoder accepts a shifted embedding trajectory
as input to produce the final output trajectory.
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3.2 Dataset

The dataset used in our experiment is EdNet [4] - the largest student-ITS in-
teraction benchmark dataset in the field of ITS. It contains more than 780K
students’ data extracted in South Korea over two years by a multi-platform ITS
called SANTA4. EdNet consists of four hierarchical datasets, classified according
to the number of interactions. We conducted our experiments based on EdNet-
KT4, which includes problem-solving logs. Compared to KT-1 to KT-3, KT-4
provides the finest detailed interaction data, allowing access to specific features
and tasks.

3.3 Trajectory Representation

The key desiderata of selecting the model features are to provide the algorithm
with meaningful information to generate the most likely trajectories. We replaced
the timestamps with the difference between the individual timestamps, i.e., the
time between switching actions. The single timestamp could contain little infor-
mation, and the time values in the UNIX system that generated them are large.
We thus reduced the large UNIX time integers to small values, which also are
more suitable for training. Furthermore, we removed from the modelling data
types with very sparse data, where it is difficult for the Decision Transformer
model to learn anything from the small number of values actually presented in
the data. For instance, as cursor_time is sparse, with a usual value of NaN, we
removed cursor_time from the data. action_type is used to imitate students’
behaviour, denoted by a in the Decision Transformer Trajectory ⌧ . user_answer,
denoted by R, is used for evaluating student performance, thus partitioning them
into groups. We examined whether the student’s answers (options of a, b, c, and
d) matched with the correct answers: if yes, they received a positive reward of
1; and if no, they received a reward of 0. item_id is used for evaluating the
feasibility of the learning paths, which takes as the state of the student and is
denoted by s. Due to the fact that user_id does not affect or represent stu-
dent behaviour, we chose to generate it randomly, after the SimStu generation
procedure ended.

3.4 Experiments

The SimStu was implemented using the Pytorch framework and trained on an
Nvidia RTX 3090 GPU. We used the Adam optimiser with a batch size of 64.
We set Adam betas as (0.9, 0.95). The initial learning rate was 0.0006, and the
dropout rate was 0.1. To evaluate the proposed SimStu, we conducted three
experiments.

In the first experiment, we compared the simulated data generated by the
SimStu model with the original data. More specifically, we examined the av-
erage number of actions for the generated and original data amongst the five
4 https://www.riiid.co/kr
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student groups. Furthermore, we compared the similarity of the generated data
and the original data using the Pearson product-moment correlation coefficient
(PPMCC). PPMCC is a measure of the linear correlation between two variables
[16]. A high PPMCC value in the experiment means a high correlation between
the original and the generated data and thus indicates our SimStu can simulate
student behaviours well.

In the second experiment, we compared our SimStu with Behaviour Cloning,
an imitation learning based method proposed by Torabi [20]. We used RELU as
the nonlinearity function, with a standard batch size of 64. We set the initial
learning rate as 0.0001 and the dropout rate as 0.1. In this experiment, we com-
pared the similarity of students’ “elapsed time” between generated and original
data using PPMCC. As in the first experiment, a high PPMCC indicates a high
simulation performance.

In the third experiment, we evaluated SimStu using three top-performance
KT models selected from the Riiid Answer Correctness Prediction Competition
on Kaggle5, which include SAINT, SSAKT, and LTMTI 6. In the competition,
Kaggle provides a dataset containing 2,500 student records to test models. Each
student record contains the student’s sequence of discrete learning actions. We
thus assume that 2,500 student record is sufficient for KT model training. There-
fore, We selected five datasets that contained 500, 1,500, 2,000, and 2,500 student
records, respectively. We fed these five datasets into the SimStu models, which
then generated another five simulated datasets respectively. The generated data
size was equal to the original data size. Lastly, we fed these five mixed datasets
into the three KT models respectively to compare whether using SimStu could
affect the performance of KT models. The metric we used here is AUC (Area
Under Curve).

4 Result and Discussions

Fig. 3 shows the results from the first experiment: the average number of ac-
tions performed by the real students (on the left) and by the simulated students
(on the right), across all those five groups. This suggests that the distributions
between the real student data and the simulated student data share some sim-
ilar statistical characteristics, i.e., in both real and simulated scenarios: 1) the
“very good student” group (Group 1) is the largest group, whilst the “very poor
student” group (Group 5) is the smallest group; 2) the “good student” group
(Group 2) and the “average student” group (Group 3) have similar sizes; and 3)
both the “good student” group and the “average student” group are much smaller
than the largest “very good student” group (Group 1), and 4) both the “good
student” group (Group 2) and the “average student” group (Group 3) are much
larger than the smallest “very poor student” group (Group 5). However, the only
difference is that in the Real Students scenario (on the left), the “poor student”
group (Group 4) is the second smallest group and smaller than both the “good
5 https://www.kaggle.com/code/datakite/riiid-answer-correctness
6 http://ednet-leaderboard.s3-website-ap-northeast-1.amazonaws.com
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student” group (Group 2) and the “average student” group (Group 3), whilst in
the Simulated Students scenario (on the right), the “poor student” group (Group
4) is the second largest group and larger than the “good student” group (Group
2) and the “average student” group (Group 3). Nevertheless, this result suggests
that our SimStu model can generate student data similar to real student data.

Fig. 3. Action statistics of real student
data (left), and simulated student data
(right).

Fig. 4. Action frequency distribution of
real student data (left), and simulated stu-
dent data (right).

As Fig. 3 shows, the SimStu performed better in simulating the behaviour of
students with higher grades (i.e. groups 1 (“very good”) to 3 (“average”)) than for
lower grades students (i.e. groups 4 “poor” and 5 (“very poor”)). This is in line
with the difference in the amount and the frequency of actions. The reason may
be that students who study better generally spend a longer time interacting with
the ITS, compared to students with relatively poor learning performance. This
pattern makes many actions sparse and the causal relationship between actions
weak, so the model cannot understand students’ behaviours well. To paraphrase
Tolstoy’s words, “All good students may behave alike, but all poor performance
students have their own reasons” [19].

Fig. 4 shows the action frequency distribution of the real student data (on
the left) and the simulated student data (on the right). This result shows that
the simulated data generated by our SimStu is similar to the real data in major
action frequencies. For example, the main actions of the generated data, such as
respond, enter, play_audio, and submit, have similar frequencies in each group.
However, there are some differences in the actions that occur less frequently,
such as pay and undo_erase_choice. The resulting PPMCC value of all actions
is equal to 0.714, which suggests that the simulated student data and the real
student data are 71.4% similar in the average distribution of actions. The result
suggests that simulated data is statistically similar to real data.

In the second experiment, we fed the same training data and test data to
the Behaviour Cloning model, which generated 600 students’ trajectories data
(a total of 4,413,561 actions). The PPMCC value of the SimStu simulated data
versus the real data is 0.762, while the PPMCC value of the Behaviour Cloning
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model simulated data versus the real data is 0.683. This indicates that the SimStu
simulated data is more similar to the real data, which suggests that our SimStu
model outperforms the Behaviour Cloning model. This result may be due to
the fact that when processing sequential student behavioural data, the student
actions sequence context allows the SimStu to identify which policy can result in
an action that promotes better learning states and improve training dynamics.

In the third experiment, we evaluated SimStu using the three state-of-the-
art KT models. Fig. 5 shows the pairwise AUC comparisons of these three KT
models trained on the original datasets (SAINT, SSAKT and LTMTL, in blue)
and trained on the mixed dataset (SAINT*, SSAKT* and LTMTL*, in orange).
In particular, the curves of SSAKT* and LTMTL* are constantly higher than
those of SSAKT and LTMTL. The curve of SAINT* is higher than that of SAINT
in every dataset, except for the dataset size of 3,000. The results suggest that
our method could improve the performance of KT models (AUC, in particular).

Fig. 5. Pairwise AUC comparisons of the three KT models trained on only origi-
nal students’ data (SAINT, SSAKT, LTMTL, in blue) and trained on the mixed
dataset (SAINT*, SSAKT*, LTMTL*, in orange). On the horizontal axis, 500,
1,000,...,2,500 indicate that the grey curve model uses the original dataset, and
(1,000),(2,000),...,(5,000) indicate that the red curve model uses the mixed dataset.

5 Conclusion

In this paper, we have proposed SimStu, a Transformer-based approach to simu-
lating student behaviour, aiming to tackle the challenge of the scarcity of datasets
for training ITS. We used the EdNet data to train the SimStu model, which gen-
erated learning behaviour data that could simulate the learning trajectories of
different students. This method could be implemented in an ITS, such that ITS
starts with collecting a small amount of student data, then uses our method to
generate a large amount of simulated student data, mixes the original data and
the generated data to build a new dataset, and finally uses the new dataset to
train the ITS and improve its performance. The experimental results showed
that SimStu could simulate the students’ behaviour data well in terms of action
distribution. Moreover, we evaluated SimStu by using three state-of-the-art KT
models. The results indicated that our method could improve the performance
of KT models.
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