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Abstract. Overprocessing is a source of waste that occurs when unnec-
essary work is performed in a process. Overprocessing is often found
in application-to-approval processes since a rejected application does
not add value, and thus, work that leads to the rejection constitutes
overprocessing. Analyzing how the knock-out checks are executed can
help analysts to identify opportunities to reduce overprocessing waste
and time. This paper proposes an interpretable process mining app-
roach for discovering improvement opportunities in the knock-out checks
and recommending redesigns to address them. Experiments on synthetic
and real-life event logs show that the approach successfully identifies
improvement opportunities while attaining a performance comparable
to black-box approaches. Moreover, by leveraging interpretable machine
learning techniques, our approach provides further insights on knock-out
check executions, explaining to analysts the logic behind the suggested
redesigns. The approach is implemented as a software tool and its appli-
cability is demonstrated on a real-life process.

Keywords: Business process improvement - Process mining -
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1 Introduction

Minimizing waste is a common process improvement goal [19]. Overprocessing
is a type of waste that occurs when effort is spent performing some activities
in the process, but no value is provided to the customer or the business [24].
Overprocessing waste is typical for processes that contain knock-out checks [2,
24], i.e., activities that classify cases as either “accepted” or “rejected” and that
may then lead to premature termination of a case. When a case is rejected, the
work performed on it up to its rejection is the overprocessing waste. Knock-
out checks are commonly found in application-to-approval processes in banks
(e.g., loan origination processes), insurance companies (e.g., claim-to-settlement
processes), and government agencies [2,24].
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Process mining enables data-driven analysis of business processes by ana-
lyzing process execution data captured in the form of event logs [1]. By using
process mining techniques, analysts can discover the structure of their processes
and analyze their performance [13]. In particular, process mining supports the
identification and analysis of wastes in business processes [18]. However, few
existing process mining-based techniques consider overprocessing waste. In [23],
overprocessing is considered, but the approach does not provide transparency
as it is based on a black-box model. Thus, existing data-driven techniques for
optimizing business processes with knock-out checks either do not consider over-
processing waste or do not provide interpretable results for analysts to consider
when seeking to improve the business process.

In this paper, we address this gap by tackling the following research ques-
tions (RQ): (1) How can improvement opportunities related to knock-out checks
be identified from event logs?, and (2) How can knock-out checks be optimized in
a process to reduce the overprocessing waste? To answer these questions, we pro-
pose an interpretable process mining-based approach to (1) discover knock-out
checks, their decision rules and dependencies from an event log, (2) identify over-
processing waste associated with knock-out checks, and (3) identify improvement
opportunities in knock-out checks and suggest redesigns to reduce overprocess-
ing wastes. The approach has been implemented as a software tool that allows
process analysts to upload an event log and obtain overprocessing waste anal-
ysis results and redesign suggestions w.r.t. discovered knock-out checks. Our
approach is particularly useful for analysts aiming to reduce overprocessing in
processes with multiple knock-out checks.

The rest of the paper is structured as follows. Section 2 presents the back-
ground and related work. Section 3 describes the proposed approach. Section 4
presents the implementation of the approach. Section 5 covers the evaluation of
the approach, and Sect. 6 concludes the paper.

2 Background and Related Work

In this section, we present the concepts of knock-out checks and overprocessing
waste. Then, we position our contribution w.r.t. existing approaches to discover,
analyze, and redesign knock-out checks.

Knock-Out Checks and Overprocessing. Knock-out checks are activities in
business processes that classify cases into two groups: “accepted” and “rejected”.
When the case is “accepted”, it proceeds forward. When “rejected,” the case is
directed to a designated point of the process known as an anchor. An anchor can
be any point in the process, i.e., when the case is rejected, it can be returned to
the earlier stage of the process, sent to a later stage, or to process completion [24].
In this paper, we consider knock-out checks that directly (the anchor is the end
event of the process) [24] or eventually (the anchor is the activity at a later
stage of the process followed by the end event) conclude the case with a negative
outcome. A typical example is application-to-approval processes [7], such as a
loan application process, where a customer applies for a loan, and the application
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goes through several eligibility checks. If a check fails, the application is rejected,
and the process execution ends [24].

When a knock-out check results in the rejection of a case, the work performed
on the case up to the rejection is considered unnecessary since it delivers value
neither to the customer nor to the business [7]. Such unnecessary performed work
is a manifestation of an overprocessing waste [22] and, thereby, an inefficiency
that results in increased process time and costs [4].

Related Work. A number of studies focus on methodologies for improving
business processes [12], in particular, for process redesign. For example, Netjes
et al. [14] presented an approach for “Process Improvement by Creating and
Evaluating process alternatives” (PriCE), as a tool to support the BPM life-
cycle, including the redesign phase. This approach allows analysts to identify
applicable redesigns for the selected process parts and to generate alternative
process models, alongside their performance evaluation. Likewise, Niedermann
and Schwarz [16] introduced a “Deep Business Optimization Platform” that,
given a process model and optimization goals, computes recommended changes
using a redesign pattern catalog. Souza et al. [20] proposed heuristics to auto-
mate the redesign pattern selection. Following the idea of supporting analysts
in process redesign, Fehrer et al. [8] proposed a conceptualization of assisted
Business Process Redesign (aBPR) and a classification of redesign recommenda-
tions by the automation level. These approaches consider collections of redesigns
targeting multiple issues, whereas we focus on optimizing knock-out checks to
reduce overprocessing. Furthermore, these approaches require an as-is process
model as input, whereas we use event logs.

In order to minimize overprocessing waste with knock-out checks, several
redesign options have been proposed [11,15,17]. For instance, van der Aalst
suggests reordering knock-out checks based on their rejection rate and processing
time, combining checks into composite tasks, and placing subsequent checks in
parallel [2]. Another heuristic, called the “knock-out principle” [11], proposes
ordering knock-out checks according to the “least effort to reject” ratio, i.e.,
in decreasing order of effort and in increasing order of the rejection rate [17].
Redesign heuristic “early knockout” suggests moving knock-out checks to the
earliest possible point of a process [15]. In our approach, we analyze the process
to identify when these redesign heuristics can be applied.

Several studies specifically focus on knock-out check optimization. In [2], a set
of heuristics for the knock-out process redesign was described, and an implemen-
tation of the redesign approach was presented that requires a process model in
Petri-Nets notation as input. Verenich et al. [24] proposed a run-time knock-out
check reordering technique with predictive models, as opposed to the design-
time [2]. Verenich et al. [24] take an event log and information about knock-out
checks (the knock-out activity names and the disallowed permutations) as input
and suggest how to re-order the knock-out checks on a case-by-case basis. How-
ever, this approach is based on black-box predictive models, i.e., does not provide
reasoning for the recommended changes.

Process mining is increasingly focusing on the interpretability of the obtained
results [10]. Interpretability appears essential for analysts to understand the logic
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behind suggested redesigns and predicted performance [6] to gain confidence
in making decisions based on recommendations [10]. Thus, Lee [10] proposed
an approach for interpretable prediction of process outcomes at run-time from
event logs that explains the predicted outcomes. Lashkevich et al. [9] presented
an interpretable approach for discovering and analyzing batch processing ineffi-
ciencies with insights on batch processing behavior and associated waiting times.
In this paper, we also develop an interpretable approach but for the discovery,
analysis, and redesign of business processes w.r.t. knock-out checks.

3 Knock-Out Check Discovery and Analysis

In this section, we describe our approach to discover and analyze knock-out check
improvement opportunities in a business process. Our approach takes an event
log as input to produce a report comprising candidate improvement opportu-
nities relating to knock-out checks and recommended redesigns. Optionally, an
analyst can provide insights regarding the process structure as additional input.

Figure 1 depicts an overview of the main steps of the approach. In the first
step, we discover knock-out checks, their knock-out rules, and data dependencies
from the event log. In the second step, we identify how much overprocessing waste
each knock-out check produces and compute their effort-per-rejection rates. In
the third and final step, we determine which knock-out checks can be redesigned
and, if so, suggestions on how they can be redesigned.

3.1 Knock-Out Check Discovery

The first step of our approach is to discover knock-out checks, their decision
rules, and dependencies. As input, we require an event log containing at least
case ID, activity label, and one timestamp. With these minimum required data,
the approach allows for discovering knock-out checks, identifying improvement
opportunities, and presenting redesign options. If the event logs include both
start and end timestamps, the approach can also calculate overprocessing waste
and, if case attributes are available, knock-out decision rules and dependencies.

Knock-Out Check Discovery. We propose a semi-automated approach for
discovering knock-out checks from event logs. First, given an event log, the app-
roach requests analysts to specify either post-knock-out activities (one or more

Inputs Approach Outputs

Post-knock-out activities Knock-out check
Success activities Knock-out Check Knock-out Check Improvement Opportunity improvement

Event log Disallowed permutations Discovery Analysis Identification opportunities and

(optional) redesigns

4 h 4

Improvement
opportunities,
suggested redesigns

@ Knock-out checks,
< decision rules,

dependencies

Time waste metrics,
effort-per-rejection

Process analyst

Fig. 1. Overview of the proposed approach.
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activities performed immediately after cases are knocked out) or success activi-
ties (one or more activities performed only for cases that are not knocked out),
or both. In addition, analysts can specify disallowed permutations (prohibited
activity orders). Disallowed permutations, such as activity C cannot be executed
before activity B, are useful when dependencies cannot be automatically discov-
ered from the event log (when no relevant case attributes are available). However,
manually entered parameters are optional, and analysts can skip this step.
Second, the knock-out check discovery is performed.

(1) If the post-knock-out and/or success activities are specified, the technique
identifies knock-out checks as activities preceding post-knock-out and success
activities with a directly-follow relation with them.

(2) If the post-knock-out and/or success activities are not specified, the tech-
nique extracts the process variants based on the recorded unique pathways
and sorts them according to their length. Subsequently, it extracts all tran-
sitions between activities in each variant. The transitions are filtered to
extract those differentiating for each variant, i.e., those that do not occur in
other variants. Among these transitions, the most frequent for each variant
is selected and marked as a potential transition that leads to a knockout.
These possible transitions are filtered to extract only those activities that
led to an early end of the process, i.e., knock-out checks.

(3) If the knock-out checks are known a priori, the analyst can manually mark
them. In such cases, tagging post-knock-out and success activities for knock-
out discovery is not needed.

As such, the approach supports three modes of operation: (1) semi-automatic
discovery with known post-knock-out or success activities, (2) automatic discov-
ery (no input from an analyst is provided, and the discovery is performed exclu-
sively from the event log data), and (3) known knock-out checks (no discovery is
performed, and analysts specify the knock-out checks). These operation modes
aim to provide flexibility to analysts, allowing them to integrate their domain
knowledge of the process.

Decision Rule Discovery. When knock-out checks are identified, we discover
the decision rules used to determine which cases are “rejected”. For each knock-
out check, we obtain a decision rule model and answer the question “given this
case, will the knock-out check reject it?”, i.e., for every knock-out check, we solve
a binary classification problem. We use RIPPER [5], a rule discovery algorithm,
to solve the binary classification problem. Other commonly used classification
algorithms, such as C4.5 and IREP, were also considered for this task. However,
RIPPER has been shown to achieve high accuracy rates in many real-world
applications and is generally more efficient than C4.5 and IREP when working
with large datasets [5]. This is because RIPPER generates a smaller set of more
accurate rules, reducing the computation time needed to classify new instances.
Moreover, RIPPER produces a set of rules in natural language with lower com-
plexity (i.e., easier for humans to understand). Since we aim for interpretability
in data analysis and decision-making, this algorithm is suitable.
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Table 1. Example event log showcasing data dependency.
Case ID | Activity Start Timestamp | End Timestamp | Amount | Risk Score
1 Check Documents | 07/09/2022 16:36 | 07/09/2022 16:46 | 35000 | —
1 Assess Application | 07/09/2022 16:50 | 07/09/2022 17:30 | 35000 | —
1 Assign Risk Score |07/09/2022 18:10|07/09/2022 18:45 | 35000 | 0.56
1 Check Risk Score |07/09/2022 18:45|07/09/2022 18:55 | 35000 | 0.56
1 Notify Rejection | 07/09/2022 19:00 | 07/09/2022 19:01 | 35000 | 0.56

We create feature vectors by sorting events by end timestamp in ascend-
ing order and aggregating event data at the case level, taking the last avail-
able value of the attributes of each case. Then, we train the RIPPER deci-
sion rule model for every knock-out check and obtain a set of rules in disjunc-
tive normal form, such that if it evaluates to True on a given case encoded
as a feature vector, the case is labeled as “rejected”. For example, consider a
knock-out check “Check Liability” and the discovered set of rules (Monthly
Income < 800) V (Owns Vehicle = False). If a case has attributes {Monthly
Income: 1200, Owns Vehicle: False, ...}, the decision rule model of “Check
Liability” indicates that this case will be “rejected” in this knock-out check.

Then, the discovered decision rules are filtered based on their confidence; if
it is lower than a given threshold, the rules are not taken into consideration for
the rest of the analysis. Analysts can also choose to keep them in the analysis
with relevant warnings instead. As a result, for each identified knock-out check,
we obtain a collection of rules that capture (up to some level of confidence and
support) the conditions under which a case is rejected by a knock-out check.

Dependency Discovery. Activities might depend on each other for data and
objects. These dependencies must be considered when reordering and relocat-
ing activities [2,17,24]. We identify dependencies by using case attributes that
appear in the discovered decision rules to perform a search in the log and deter-
mine which activity produces the value of each case attribute. If the decision rule
of a knock-out check K involves a case attribute that is available (or stops chang-
ing) after activity A, we consider that the knock-out check K depends on A. For
example, consider a loan application process with a knock-out check “Check Risk
Score” and knock-out rule Risk Score > 0.5. Given a log as in Table 1, we can
identify that Risk Score is produced by “Assign Risk Score” and “Check Risk
Score” depends on “Assign Risk Score” for the Risk Score case attribute. Addi-
tionally, when the data dependencies cannot be detected from the event log, we
allow the user to specify disallowed knock-out check permutations, as in [24].

Thus, the first step results in discovered knock-out checks, their decision
rules, and dependencies on other activities based on the case attributes.

3.2 Knock-Out Check Analysis

Once the knock-out checks, their decision rules, and dependencies are discovered,
we conduct the knock-out check analysis to answer the questions: (1) how much
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Fig. 2. Processing time waste and overprocessing waste.

waste is associated with cases rejected by each knock-out check? and (2) what is
the mean effort associated with each knock-out check? This allows us to assess
how much overprocessing waste is attributed to each knock-out check and how
efficiently they are ordered w.r.t. the “knock-out principle” [11].

When the case is rejected, the effort spent on the case becomes a waste [24].
Therefore, to address question (1), we propose measuring the following metrics:
overprocessing waste, processing time waste, and waiting time waste.

Processing time waste is the total effort (processing time) spent on a
rejected case, except for the processing time of the check by which it was knocked
out. The knock-out check that rejected the case is value-adding since it allows
for the termination of an unnecessary case and, thus, is not considered waste
[24]. Therefore, the ideal knock-out situation is when an unnecessary case is
“rejected” in the first activity (i.e., no overprocessing waste).

Given an application-to-approval process P, a set of resources R € P, a set of
activities A € P , a set of knock-out checks K C A, a set of cases C, a particular
case C;, and a particular knock-out check K; that rejects Cj,

Definition 1. The processing time waste for a case C; due to knock-out
check K; is the sum of the processing times of all activities performed on case
C;, excluding waiting times and the processing time of K; itself (Fig. 2).

Overprocessing waste is the total time spent on a rejected case (processing
and waiting time), except for the processing time of the check by which it was
knocked out. This metric indicates how long the case was in processing before
being knocked out.

Definition 2. The overprocessing waste for a case C; due to knock-out check
K; as the time elapsed since the case started until it finished, including processing
and waiting times but excluding the processing time of K; itself (Fig. 2).

Apart from spending effort (processing time) on the rejected cases, the wait-
ing times of “accepted” cases can increase due to the resource being busy pro-
cessing the cases that are eventually “rejected”. Hence, we use the waiting time
waste metric that defines how much waiting time is induced to the “accepted”
cases while the resource processes the “rejected” cases.

Definition 3. Given the set of cases Cr rejected by K; and the set of cases
Cngr not rejected by K;, we define the waiting time waste associated to K;
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Fig. 3. Waiting time waste. Case I (a non-knocked out case) needs Resource R2 for
advancing, but it has to wait because Resource R2 is busy on Case 2 (a case to be
knocked out).

as the sum of the duration of the intervals (excluding the processing time of K;)
during which Cnpg cases are held on standby because the resources responsible
for performing activities required to advance them are busy performing work on
Cr cases (Fig. 3).

To address question (2), we use the effort-per-rejection of each knock-out
check that indicates the ratio between the effort spent on the check execution
and its rejection probability [11,17]. It describes how much time is spent on the
check and how frequently the cases are terminated.

Definition 4. We define the effort-per-rejection of a knock-out check as the
ratio between its average processing time and its rejection rate.

When event logs include only one timestamp, the waste metrics calculation is
omitted. In addition, the constant value of processing time is assumed. That is,
the effort-per-rejection of knock-out checks in these situations becomes simply
the inverse of its rejection rate, similar to what is proposed in [24].

After computing the time waste metrics and effort-per-rejection ratio, we
calculate the descriptive statistics for the knock-out checks: (1) total frequency:
the total number of cases in which the knock-out check is performed, (2) case
frequency: the proportion of cases in which the knock-out check is performed,
(3) mean duration: the average duration (including processing and waiting time)
of the given knock-out check across all the cases where it has been performed.
These statistics provide insights into how frequently the knock-out checks are
executed, for how many cases, and how long they take.

3.3 Improvement Opportunity Identification

The final step of our approach is to identify improvement opportunities w.r.t.
knock-out checks and suggest possible redesigns. We identify improvement
opportunities by examining if there are knock-out check orders, positions of
knock-out checks, or different decision rules that can reduce overprocessing.
Therefore, we consider the following redesigns:
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— Knock-out reordering: ordering the knock-out checks by least effort to
reject, as in [24].

— Knock-out relocation: moving the knock-out checks as early in the process
as the case attributes required by their knock-out rules are available (based
on the “early knockout” pattern [15]).

— Knock-out rule adjustment: changing the value (or range) of numerical
attributes of knock-out rules based on the actual distribution of the values
observed in the event log.

The knock-out check reordering options are obtained by computing the opti-
mal and dependency-aware ordering of the checks. We do so by applying the
knock-out principle [11,17], (i.e., in ascending order by their effort-per-rejection
value), taking into account any dependencies detected between activities and
disallowed permutations if specified by analysts. We, then, use the data depen-
dencies to relocate the knock-out checks in the process, i.e., as early as the
case attributes required by their knock-out rules are available. Thus, the tech-
nique automatically provides a suggestion on how the knock-out checks should
be ordered and relocated to obtain overprocessing reduction.

Finally, for every numerical case attribute appearing in the decision rules
of the knock-out checks, we display the distribution of the attribute’s values
captured in the log and highlight the values of the cases knocked out by a
specific check. Although we do not provide suggestions on how the rule should
be changed, this data could help analysts in adjusting the knock-out rule values.
The result of this step is a report specifying alternative knock-out check orders
and positions, and the data on the decision rules that would help to achieve
higher temporal efficiency and, in particular, reduce overprocessing waste.

4 Implementation

The proposed approach has been implemented as a software tool and is available
on GitHub'. Analysts can use this tool to upload event logs with knock-outs
and obtain recommendations on how the processes can be redesigned to reduce
overprocessing waste. In this section, we illustrate how the approach can be
applied on a real-life event log.

For that, we use the environmental permit application process [3]. The log has
1230 cases, 18 activity types, including 3 knock-out checks: “T02-check confirma-
tion of receipt,” “T06-determine necessity of stop advice,” and “T'10-determine
necessity to stop indication”. These checks have dependencies: “T'10” can only
be done after either “T02” or “T06” has been performed [24]. Cases in this log
contain the following data attributes: the channel by which the case has been
lodged, the department that is responsible for the case, the responsible resource,
and its group. The log only contains end timestamps.

We uploaded the event log and specified the disallowed permutations (depen-
dencies). Figure 4 depicts the discovered knock-out checks, their total and case

! https://github.com/AutomatedProcessImprovement /knockouts-redesign.
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Knockouts Analysis

Knockout Check c

Knockouts Redesign Tool

Fig. 4. Screenshot of the tool interface depicting the knock-out check analysis results
for the environmental permit application process.

frequencies, rejection rate, decision rule, and effort-per-rejection. The time waste
metrics are not calculated since the log has only end timestamps.

Further, the tool provides possible redesign options. The tool computes the
optimal ordering of the knock-out checks considering constraints, specifically
“T06” -> “T10” -> “T02” (Fig.4). If “T10” did not require either “T06” or
“T02” to be performed before, it would be suggested as the first knock-out
check to perform, given its very high rejection rate and consequently low effort-
per-rejection value compared to the other checks.

As for the relocation redesign, we observe that the knock-out checks have
been placed as early as possible in the process, considering the discovered data
dependencies. Figure 4 depicts the relocation option for the most frequent process
variants. Theoretically, the knock-out checks could be placed right after the
process start since such an order does not violate any discovered dependencies.
However, we observed that “Confirmation of receipt” was always performed after
the start. Therefore, we marked “Confirmation of receipt” as the start activity
of the process, and thus, the relocation did not affect this activity. This showed
that in our approach, the dependency detection between activities is limited by
the availability and granularity of data.

In this event log, the decision rules of the knock-out checks are based on
categorical case attributes (e.g., org:group=Groupl in Fig. 4). The knock-out
rule adjustment redesign focuses on amending numerical case attributes based
on which decision rules are formulated (e.g., Loan Amount > 10000). Therefore,
for this log, no data for the knock-out rule adjustment is presented.
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5 Evaluation

In this section, we present the evaluation of our proposed approach, based on
the implementation described in the previous section. We evaluate the app-
roach by answering the following evaluation question: (EQ1)To what extent is
the technique able to correctly discover knock-out checks, associated overprocess-
ing waste, and relevant redesigns? We used synthetic data to address this ques-
tion and, thereby, validate the ability of the technique to accurately rediscover
knock-out checks, overprocessing waste, and improvement opportunities known
to be present in the event log (Subsect. 5.1). Further, we compare the accu-
racy of our approach with the results of the approach proposed in [24], which
we consider as baseline (Subsect. 5.2), to answer the following evaluation ques-
tion: (EQ2) To what extent the proposed approach sacrifices accuracy (in favor
of interpretability) w.r.t. the baseline approach?

The datasets used in the evaluation and the detailed results are available at
https://github.com/AutomatedProcessIlmprovement /knockouts-redesign.

5.1 Evaluation of Rediscovery Accuracy

To answer EQ1, we created a synthetic event log of a credit application pro-
cess. The log includes 3000 cases, 6 activity types with resources, start and
end timestamps, including 4 knock-out checks: “Check liability”, “Check risk”,
“Check monthly income” and “Assess application” (see Fig.5). Cases that suc-
cessfully pass all checks move to “Make credit offer”, those that fail any of the
checks move to “Notify rejection” and the process is terminated. For all knock-
out checks, we assigned rejection rates (see R.R. in Fig.5) and decision rules.
For instance, “Check risk” was assigned a rejection rate of 30% and a decision
rule of (Loan Amount > 10000). For that, we post-processed the log to add case
attributes with values that reflected the rules and rejection rates.

To test the technique’s ability to identify data dependencies, we replicated
the situation described in Table 1, namely, “Assess application” can be executed
only after “Check risk” is performed. We did so by selectively removing the value

'External Risk Score’ > 0.3

‘Total Debt' > 5000 ‘Loan Amount’ > 10000 'Monthly Income’ < 1000 R.R: 80 %
or
‘Owns Vehicle' = False R.R: 30% RR: 50 % * ‘External Risk Score’ is available

only after activity ‘Check Risk’
R.R: 20%
gran
@ credit offer
Rekok? Nonthy hcome
oK?
eck Ris| ect m"

Fig. 5. Synthetic credit application process.
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Table 2. Discovered knock-out checks and their decision rules.

Knock-out check Decision rule Confidence | Support

Assess application [[External Risk_Score=0.36-0.64] V| 1.000 0.732
[External Risk_Score=>0.64]]

Check liability [[Total_Debt=>5219.85] V 1.000 0.193
[Owns_Vehicle=FALSE]]

Check monthly income | [[Monthly_Income=<564.21] V 0.933 0.536

[Monthly Income=564.21-830.79] V
[Monthly_Income=830.79-1020.15]]

Check risk [[Loan_Amount=11647.32-16709.71] | 1.000 0.252
V [Loan_Amount=>16709.71]]

of the “External risk score” attribute such that it becomes available only after
“Check risk” is executed. We assess the approach’s performance through time-
series cross-validation using a temporal split of 80% of the cases for training and
20% for testing on each partition as recommended for time-series data [21].

The technique correctly discovered all four knock-out checks without any input
provided by the analyst (the discovery was performed solely from the event log
data) and their decision rules (see Table 2). To quantify the performance of the
decision rule models obtained for the knock-out checks, we use standard metrics
for binary classification performance: the ROC curve and the area under it (AUC).
We report the resulting ROC curves and AUC values averaged over five cross-
validation folds in Fig. 6. We can observe ROC curves and AUC values near 1.00
(perfect classifier). This observation, together with the high values of confidence
(Table 2) and coherence between discovered rules and injected patterns in the log,
confirms that the classification models perform as expected.

The technique then calculated the effort-per-rejection rate and the time waste
metrics — total overprocessing waste, total processing time waste, and total and
mean waiting time waste (see Fig.7). The correctness of the metrics calcula-
tion was verified with a set of unit tests included in the code repository of the
approach’s implementation.

We verified the correctness of the suggested redesigns by manual compari-
son against the expected redesigns. The suggested redesigns complied with the
expected results. In particular, the technique proposed to re-order the knock-
out checks as follows: “Check monthly income” -> “Check risk” -> “Assess

ROC curve for ‘Check Risk’ ROC curve for ‘Check Monthly Income' ROC curve for ‘Check Liabilty" ROC curve for ‘Assess application’

Fig. 6. ROC curves of the decision rule models for the knock-out checks of the synthetic
event log.
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Total Mean
Total

Knockout Total ~ Case Rejection Effortper ~ Mean Total PT  Waiting Waiting
Rejection rule (IREP) o . Overprocessing ) )
Check frequency ~ frequency  rate rejection  Duration Waste Time Time
aste
Waste Waste

Assess . 139 days,

0 836 27.87% 80.02% [[External_Risk_Score=0.35-0.64] V 502 | 1:06:57 178 days, 0:35:20 0:00:00 0:00:00
application 6:45:45

[External_Risk_Score=>0.64]]

Check » 33days,
1 3000 100.0% 20.17% [[Owns_Vehicle=FALSE] V 202.83 1:08:10 55 days, 18:56:48 0:00:00 0:00:00
Liability 15:40:30
[Total_Debt=>5200.1]]

Check
i 114 days,
2 Monthly 1674 | 55.8% 50.06% [[Monthly_Income=555.77-830.79] v 4308 0:35:56 1edays 42445 Y 00000 0:00:00
Income o

[Monthly_income=<555.77]V
[Monthly_income=830.79-1019.68]]

[[Loan_Ammount=11693.71-16840.45] 93 days,
3 CheckRisk 2395 | 79.83% 30.1% 13654 | 1:08:30 143 days, 1:12:24 . 0:00:00 0:00:00
¥ 4:40:17

[Loan_Ammount=>16840.45]]

Fig. 7. Knock-out analysis report for the synthetic event log.

application” -> “Check liability”. The proposed order indicated that the tech-
nique was able to capture the inserted data dependency (“Assess application”
depends on the case attribute produced by “Check risk”) and consider it for
computing the redesigns. If there were no dependencies, “Assess application”’
would be ordered before “Check risk” and “Check liability” due to a smaller
effort-per-rejection.

All decision rules of the knock-out checks include numerical case attributes
(that are expressed as ranges of numerical values). Therefore, for each numerical
case attribute of decision rules, the technique provided a graph with the distri-
bution of numerical attribute values and highlighted values of the knocked-out
cases. The graphs are coherent with the assigned case attributes and decision
rules. For instance, Fig. 8 depicts the graph for the “Total dept” case attribute
based on which the knock out in “Check liability” is performed. Using these data,
analysts might consider adjusting the knock-out rule by, e.g., rejecting cases with
a lower debt amount and, thus, reducing the number of cases processed further
in the process and, subsequently, the overprocessing waste. In this way, we have
verified that the approach identifies improvement opportunities in the form of
redesign recommendations considering data dependencies.

Check Liability

s Values of "Total Debt" across cases
Knocked-out cases

250
200

$ 150

38

100

50

0- T
0 2000 4000 6000 8000 10000
Total Debt

Fig. 8. Data for the knock-out rule adjustment for the synthetics event log.
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5.2 Evaluation of Classification Rule Quality

To answer EQ2, we compare our approach with the one proposed by Verenich
et al. [24] that we consider the baseline. More specifically, we compare the clas-
sification accuracy of the decision rules for knock-out checks discovered by the
approach, relative to the classification accuracy of the predictive models used by
the baseline [24]. Note that the baseline focuses on run-time optimization using
black-bor models, with an emphasis on classification accuracy. In this research,
we focus on design-time optimization and place emphasis on interpretability.
Accordingly, we expect a priori that the proposed approach would achieve a
lower classification accuracy than the baseline, as it sacrifices accuracy in favor
of interpretability. What we seek to determine here is the magnitude of the
accuracy loss relative to the baseline.

To address this question, we use the same event log as [24], which is an
environmental permit application process [3] introduced in Sect. 4. To replicate
the experimental conditions of the baseline, we use the same dataset splitting
proportions, namely 80% of the cases for training and 20% for testing. Verenich
et al. [24] observed that the environmental permit application event log is highly
imbalanced regarding the proportions of accepted and rejected cases. Therefore,
they performed class balancing by undersampling the accepted (non-knocked-
out) cases. We followed this same strategy.

We use the ROC curve and AUC metric to compare the performance of our
models with the baseline. To do so, same as Verenich et al. [24], we performed the
5-fold cross-validation procedure using stratified random-sampling-based split-
ting. We observe AUC values ranging from 0.571 (“T'10”) to 0.744 (“T02”).
These values seem encouraging to a certain extent, especially considering that
the AUC values in the baseline ranged from 0.527 (“T06”) to 0.645 (“T10”) [24].
However, we also observe relatively high standard deviations, e.g., the classifier
for “T02” obtained the highest mean AUC value of 0.744 but a standard devi-
ation of 0.37. This can be due to a few positive examples available for training
the rule model of this knock-out check: “T02” rejected only 0.4% of all cases,
as opposed to “T10”, which rejected 64.6%. Nonetheless, the performance of
our classification model is comparable to that of the baseline, and no significant
performance loss is observed by using an interpretable decision rule-based model
instead of black-box models.

This observation suggests that the discovered rules can be used as a proxy
for determining how to order knock-out checks in a process (cf. the knock-out
reordering strategy in Sect. 3.3) and to relocate the knock-out checks as early as
possible in the process (cf. the knock-out relocation strategy).

5.3 Threats to Validity

The observations derived from the above evaluation are subject to the following
threats to validity. First, we acknowledge a threat to construct validity due to the
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choice of classification accuracy measures (AUC) to address the evaluation ques-
tions. While the proposed approach discovers decision rules with relatively high
accuracy, comparable to the baseline, this may or may not translate into compa-
rable overprocessing reductions in practical scenarios. Second, we acknowledge a
threat to external validity (generalizability) due to the fact that the evaluation
relies on one synthetic and one real-life dataset. As such, the conclusions should
be seen as preliminary and subject to additional validation.

6 Conclusion

This paper outlines an interpretable process mining approach to identify
improvement opportunities in processes containing knock-out checks and rec-
ommend redesigns to reduce overprocessing waste. Given an event log, the app-
roach discovers knock-out checks, their decision rules, and dependencies, and
calculates time wastes associated with knock-out checks. Next, the approach
identifies improvement opportunities and suggests redesigns for reducing over-
processing waste. We present the approach’s implementation as a software tool
that allows analysts to upload an event log and obtain suggested redesigns.
The evaluation shows that our approach can accurately discover and quan-
tify improvement opportunities and suggest relevant redesigns considering data
dependencies. Compared to the baseline, we did not lose performance, but we
gained explainability. However, the effectiveness of our approach on real-life logs
is limited by the availability and granularity of event log data.

In future work, we aim to extend the proposed approach with a simulation
phase to uncover further potential improvement opportunities to reduce over-
processing waste. We foresee that a simulation phase would enable us to capture
the impact of reordering and relocating knock-out checks for different subsets
of cases. Another avenue for future work is to extend the proposed technique to
address other types of waste, including waiting waste, transportation waste, and
defect waste.
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