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Abstract. Verification of neural networks relies on activation functions
being piecewise affine (pwa) — enabling an encoding of the verification
problem for theorem provers. In this paper, we present the first formaliza-
tion of pwa activation functions for an interactive theorem prover tailored
to verifying neural networks within Coq using the library Coquelicot
for real analysis. As a proof-of-concept, we construct the popular pwa
activation function ReLU. We integrate our formalization into a Coq
model of neural networks, and devise a verified transformation from a
neural network N to a pwa function representing N by composing pwa
functions that we construct for each layer. This representation enables
encodings for proof automation, e.g. Coq’s tactic lra – a decision pro-
cedure for linear real arithmetic. Further, our formalization paves the
way for integrating Coq in frameworks of neural network verification as
a fallback prover when automated proving fails.

Keywords: Piecewise Affine Function · Neural Network · Interactive
Theorem Prover · Coq· Verification.

1 Introduction

The growing importance of neural networks motivates the search of verification
techniques for them. Verification with automatic theorem provers is vastly under
study, usually targeting feedforward networks with piecewise affine (pwa) acti-
vation functions since the verification problem can be then encoded as an SMT
or MILP problem. In contrast, few attempts exist on investigating interactive
provers. Setting them up for this task though offers not only a fallback option
when automated proving fails but also insight on the verification process.

That is why in this paper, we work towards this goal by presenting the
first formalization of pwa activation functions for an interactive theorem prover
tailored to verifying neural networks with Coq. We constructively define pwa
functions using the polyhedral subdivision of a pwa function [25] since many
algorithms working on polyhedra are known [26] with some tailored to reasoning
about reachability properties of neural networks [30]. Motivated by verification,
we restrict pwa functions by a polyhedron’s constraint to be non-strict in order
to suit linear programming [29] and by employing finitely many polyhedra to fit
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SMT/MILP solvers [11,29]. We use reals supported by the library Coquelicot
to enable reasoning about gradients and matrices with Coq’s standard library
providing the tactic lra – a decision procedure for linear real arithmetic. As a
proof-of-concept, we construct the activation function ReLU– one of the most
popular in industry [20] and formal verification [8]. Furthermore, we devise a
sequential Coq model of feedforward neural networks integrating pwa activation
layers. Most importantly, we present a verified transformation from a neural
network N to a pwa function fN representing N with the main benefit being
again encodings for proof automation. To this end, we introduce two verified
binary operations on pwa functions – usual function composition and an operator
to construct a pwa function for each layer. In particular, we provide the following
contributions with the corresponding Coq code available on GitHub1:

1. a formalization of pwa functions based on polyhedral subdivision tailored to
verification of neural networks (Section 3),

2. a construction of the popular activation function ReLU (Section 3),
3. a sequential model for feedforward neural networks with parameterized layers

(Section 4),
4. composition for pwa functions and an operator for constructing higher di-

mensional pwa functions out of lower dimensional ones (Section 4), and
5. a verified transformation from a feedforward neural network with pwa acti-

vation to a single pwa function representing the network (Section 4).

Related Work. A variety of work on using automatic theorem provers to verify
neural networks exists with the vast majority targeting feedforward neural net-
works with pwa activation functions [6,8,12,15,18,19,24]. In comparison, little
has been done regarding interactive theorem provers with some mechanized re-
sults from machine learning [2,22], a result on verified training in Lean [27] and,
relevant to this paper, pioneering work on verifying networks in Isabelle [7] and
in Coq [3]. Apart from [7] targeting Isabelle instead of Coq, both network
models are not generalized by entailing a formalization of pwa functions and in
addition they do not offer a model of the network as a (pwa) function – both
contributions of this paper.

2 Preliminaries

We clarify notations and definitions important to this paper. We write dom(f)
for a function’s domain, dim(f) for the dimension of dom(f) and (f ◦ g)(x)
for function composition. For a matrix M , MT is the transposed matrix. We
consider block matrices. To clarify notation, consider a block matrix made out
of matrices M1, ...,M4: [

M1 M2

M3 M4

]
1 At https://github.com/verinncoq/formalizing-pwa with matrix_extensions.v
(Section 2), piecewise_affine.v (Section 3.1), neuron_functions.v (Section 3.2), neu-
ral_networks.v (Section 4.1 and 4.4) and pwaf_operations.v (Section 4.2 and 4.3).

https://github.com/verinncoq/formalizing-pwa
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2.1 Piecewise Affine Topology

We give the important definitions regarding pwa functions [23,25,32].

Definition 1 (Linear Constraint). For some c ∈ Rn, b ∈ R, a linear con-
straint is an inequality of form cTx ≤ b for any x ∈ Rn.

Definition 2 (Polyhedron2). A polyhedron P is the intersection of finitely
many halfspaces, meaning P := {x ∈ Rn|cT1 x ≤ b1 ∧ ... ∧ cTmx ≤ bm} with
ci, bi ∈ Rn, bi ∈ R and i ∈ {1, ...,m}.

We denote the constraints of P as C(P ) := {(cT1 x ≤ b1), ..., (c
T
mx ≤ bm)} for

readability even though a constraint is given by ci and bi while x is arbitrary.

Definition 3 (Affine Function3). A function f : Rm → Rn is called affine
if there exists M ∈ Rn×m and b ∈ Rn such that for all x ∈ Rm holds: f(x) =
Mx+ b.

Definition 4 (Polyhedral Subdivision). A polyhedral subdivision S ⊆ Rn

is a finite set of polyhedra P := {P1, . . . , Pm} such that (1) S =
⋃m

i=1 Pi and
(2) for all Pi, Pj ∈ P, x ∈ Pi ∩ Pj, and for all ε > 0 there exists x′ such that
|x− x′| < ε, and x′ /∈ Pi ∩ Pj.

Definition 5 (Piecewise Affine Function). A continuous function f : D ⊆
Rm → Rn is piecewise-affine if there is a polyhedral subdivision P = {P1, . . . , Pl}
of D and a set of affine functions {f1, . . . , fl} such that for all x ∈ D holds
f(x) = fi(x) if x ∈ Pi.

2.2 Neural Networks

Neural networks approximate functions by learning from sample points during
training [9] with arbitrary precision [10,14,16]. A feedforward neural network is
a directed acyclic graph with the edges having weights and the vertices (neurons)
having biases and being structured in layers. Each layer applies a generic affine
function for summation and an activation function (possibly a pwa function). In
many machine learning frameworks (e.g. PyTorch), these functions are mod-
elled as separate layers followed up by each other. We adopt this structure in
our Coq model with a linear layer implementing the generic affine function.
Every network has an input and an output layer with optional hidden layers in
between.

2 In the literature often referred to as a convex, closed polyhedron.
3 A linear function is a special case of an affine function [31]. However, in literature,
the term linear is sometimes used for both.
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2.3 Interactive Theorem Prover Coq & Library Coquelicot

We use the interactive theorem prover Coq [28] providing a non-turing-complete
functional programming language extractable to selected functional program-
ming languages and a proof development system – a popular choice for formal
verification of programs and formalization of mathematical foundations. Addi-
tionally, we use the real analysis library Coquelicot [5] offering derivatives,
integrals, and matrices compatible with Coq’s standard library.

Extensions in Coq: Column Vectors & Block Matrices. For this paper, we for-
malized column vectors and block matrices on top of Coquelicot. A column
vector colvec is identified with matrices and equipped with a dot product dot on
vectors and some additional lemmas to simplify proofs. Additionally, we formal-
ized several notions for Coquelicot’s matrix type. We provide multiplication
of a matrix with a scalar scalar_mult and transposition transpose of matrices.
We provide operations on different shapes of matrices and vectors such as a right-
to-left construction of block diagonal matrices block_diag_matrix, a special-
ization thereof on vectors colvec_concat and extensions of vectors with zeroes
on the bottom extend_colvec_at_bottom or top extend_colvec_on_top, de-

noted as follows:
[
M1 0
0 M2

]
,

[
~v1
~v2

]
,

[
~v
~0

]
, and

[
~0
~v

]
. Moreover, we proved lemmas

relating all new operations with each other and the existing matrix operations.

3 Formalization of Piecewise Affine Functions in Coq

We formalize pwa functions tailored to neural network verification with pwa
activation. As a proof-of-concept, we construct the activation function Rectified
Linear Unit (ReLU) – one of the most popular activation functions in indus-
try [20] and formal verification [8].

3.1 Inductive Definition of PWA Functions

We define a linear constraint with a dimension dim and parameters, vector
c ∈ Rdim and scalar b ∈ R, being satisfied for a vector x ∈ Rdim if c · x ≤ b:

Inductive LinearConstraint (dim:nat) : Type :=
| Constraint (c: colvec dim)(b: R).

Definition satisfies_lc {dim: nat} (x: colvec dim) (l: LinearConstraint dim)
: Prop := match l with | Constraint c b ⇒ dot c x <= b end.

We define a polehydron as a finite set of linear constraints together with a
predicate stating that a point lies in a polyhedron:

Inductive ConvexPolyhedron (dim: nat) : Type :=
| Polyhedron (constraints: list (LinearConstraint dim)).
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Definition in_convex_polyhedron {dim: nat} (x: colvec dim) (p:
ConvexPolyhedron dim) :=

match p with | Polyhedron lcs ⇒
forall constraint, In constraint lcs → satisfies_lc x constraint end.

Finally, we define a pwa function as a record composed of the fields body
holding the polyhedral subdivision for piecewise construction of the function,
and prop for the property univalence (i.e. all “pieces” together yield a function).

Record PWAF (in_dim out_dim: nat): Type := mkPLF {
body: list (ConvexPolyhedron in_dim ∗ ((matrix out_dim in_dim) ∗ colvec

out_dim));
prop: pwaf_univalence body; }.

Piecewise Construction. We construct a pwa function f by a list of polyhedra,
matrices and vectors with a triple (P,M, b) defining a “piece” of f by an affine
function with f(x) = Mx + b if x ∈ P . For evaluation, we search a polyhedron
containing x and compute the affine function:

Fixpoint pwaf_eval_helper {in_dim out_dim: nat}
(body: list (ConvexPolyhedron in_dim ∗ ((matrix (T:=R) out_dim in_dim) ∗

colvec out_dim))) (x: colvec in_dim)
: option (ConvexPolyhedron in_dim ∗ ((matrix out_dim in_dim) ∗ colvec

out_dim)) :=
match body with
| nil ⇒ None
| body_el :: next ⇒

match body_el with
| (polyh, (M, b)) ⇒

match polyhedron_eval x polyh with
| true ⇒ Some (body_el)
| false ⇒ pwaf_eval_helper next x

end end end.

To handle the edge case where no such polyhedron is found (i.e. x /∈ dom(f)),
we use a wrapper function pwaf_eval. For the purpose of proving, we define a
predicate in_pwaf_domain for the existence of such a polyhedron and a predicate
is_pwaf_value for a stating the function is evaluated to a certain value.

Univalence. We enforce the construction to be a function by stating univalence,
in this case all pairs of polyhedra having coinciding affine functions in their
intersection, requiring a proof for each instance of type PWAF:

Definition pwaf_univalence {in_dim out_dim: nat}
(l: list (ConvexPolyhedron in_dim ∗
((matrix out_dim in_dim) ∗ colvec out_dim))) :=

ForallPairs (fun e1 e2 ⇒ let p1 := fst e1 in let p2 := fst e2 in



6 A. Aleksandrov & K. Völlinger

forall x, in_convex_polyhedron x p1 ∧ in_convex_polyhedron x p2 →
let M1 := fst (snd e1) in let b1 := snd (snd e1) in
let M2 := fst (snd e2) in let b2 := snd (snd e2) in
Mplus (Mmult M1 x) b1 = Mplus (Mmult M2 x) b2 ) l.

Class of Formalized PWA Functions. Motivated by pwa activation functions in
the context of neural network verification, our pwa functions are restricted by

(1) all linear constraints being non-strict, and
(2) being defined over a union of finitely many polyhedra.

Restriction (1) is motivated by linear programming usually dealing with non-
strict constraints [29], and restriction (2) by MILP/SMT solvers commonly ac-
cepting finitely many variables [11,29]. Since we use that every continuous pwa
function on Rn admits a polyhedral subdivision of the domain [25], all continuous
pwa functions with a finite subdivision can be encoded.

For pwa functions not belonging to this class, consider any discontinuous
pwa function since discontinuity violates restriction (1), and any periodic pwa
function as excluded by restriction (2) due to having infinitely many "pieces".

Choice of Formalization. We use real numbers (instead of e.g. rationals or floats)
to enable Coquelicot’s reasoning about derivatives interesting for neural net-
works’ gradients. Coquelicot builds up on the reals of Coq’s standard library
allowing the use of Coq’s tactic lra – a Coq-native decision procedure for linear
real arithmetic.

Moreover, we use inductive types since they come with an induction princi-
ple and therefore ease proving. In addition, the type list (e.g. used for the
definition of pwa functions) enjoys extensive support in Coq. For example,
pwaf_univalence is stated using the list predicate ForAllPairs and proofs
intensively involve lemmas from Coq’s standard library.

A constructive definition using the polyhedral subdivision is interesting since
many efficient algorithms are known that work on polyhedra [26] with even algo-
rithms tailored to neural network verification around [30]. We expect that such
algorithms are implementable in an idiomatic functional style using our model.
Furthermore, we anticipate easy-to-implement encodings for proof automation.

3.2 Example: Rectified Linear Unit Activation Function

We construct ReLU as a pwa function defined by two “pieces” each of which
being a linear function. The function is defined as:

ReLU(x) :=

{
0, x < 0

x, x ≥ 0
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Piecewise Construction. The intervals, (−∞, 0) and [0,∞), each correspond to
a polyhedron in R defined by a single constraint4: Pleft := {x ∈ R1|[1] ·x <= 0}
and Pright := {x ∈ R1|[−1] · x <= 0}. We define these polyhedra as follows:5

Definition ReLU1d_polyhedra_left := Polyhedron 1 [Constraint 1 Mone 0].
Definition ReLU1d_polyhedra_right

:= Polyhedron 1 [Constraint 1 (scalar_mult (−1) Mone) 0].

ReLU’s construction list contains these polyhedra each associated with a
matrix and vector, in these cases ([0], [0]) and ([1], [0]), for the affine functions:

Definition ReLU1d_body: list (ConvexPolyhedron 1 ∗ (matrix (T:=R) 1 1 ∗
colvec 1))
:= [( ReLU1d_polyhedra_left, (Mzero, null_vector 1));

(ReLU1d_polyhedra_right, (Mone, null_vector 1))].

Univalence. Note that while ReLU’s intervals are distinct, the according poly-
hedra with non-strict constraints are not. To ensure the construction to be a
function, we prove univalence by proving that only [0] ∈ (Pleft ∩ Pright):

Lemma RelU1d_polyhedra_intersect_0:
forall x, in_convex_polyhedron x ReLU1d_polyhedra_left ∧
in_convex_polyhedron x ReLU1d_polyhedra_right → x = null_vector 1.

Finally, we ensure for each polyhedra pair holds [1] · [0] + [0] = [0] · [0] +
[0], and instantiate a PWAF by Definition ReLU1dPWAF := mkPLF 1 1 ReLU1d_body
ReLU1d_pwaf_univalence.

On the Construction of pwa Functions. Analogously to the ReLU example,
other activation functions sharing its features of being one-dimensional and con-
sisting of a few polyhedra can be constructed similarly. We can construct a
multi-dimensional version out of a one-dimensional function as we will illustrate
for ReLU in Section 4.3. Activation functions that require more effort to con-
struct are for example different types of pooling [9], mostly due to a non-trivial
polyhedra structure and inherent multi-dimensionality. This effort motivates fu-
ture development of more support in constructing pwa functions with the goal
to compile a library of layer types.

4 Matrices involved are one-dimensional vectors since ReLU is one-dimensional. For
technical reasons, in Coq, the spaces R and R1 differ with the latter working on
one-dimensional vectors instead on scalars.

5 Mone is Coquelicot’s identity matrix which in this case is a one-dimensional vector.
scalar_mult is multiplication of a matrix by a scalar (see Section 2).
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4 Verified Transformation of a Neural Network to a pwa
Function

We present our main contribution: a formally verified transformation of a feed-
forward neural network with pwa activations into a single pwa function. First,
we introduce a Coq model for feedforward neural networks (Section 4.1). We
follow up with two verified binary operations on pwa functions at the heart of
the transformation, composition (Section 4.2) and concatenation (Section 4.3),
and finish with the verified transformation (Section 4.4).

4.1 Neural Network Model in Coq

We define a neural network NNSequential as a list-like structure containing layers
parameterized on the type of activation, and the input’s, output’s and hidden
layer’s dimensions with dependent types preventing dimension mismatch:

Inductive NNSequential {input_dim output_dim: nat} :=
| NNOutput : NNSequential
| NNPlainLayer {hidden_dim: nat}:

(colvec input_dim → colvec hidden_dim)
→ NNSequential (input_dim:=hidden_dim) (output_dim:=output_dim)
→ NNSequential

| NNPWALayer {hidden_dim: nat}:
PWAF input_dim hidden_dim
→ NNSequential (input_dim:=hidden_dim) (output_dim:=output_dim)
→ NNSequential

| NNUnknownLayer {hidden_dim: nat}:
NNSequential (input_dim:=hidden_dim) (output_dim:=output_dim)
→ NNSequential.

The network model has four layer types: NNOutput as the last layer propagates
input values to the output; NNPlainLayer is a layer allowing any function in
Coq defined on real vectors; NNPWALayer is a pwa activation layer – the primary
target of our transformation; and NNUnknownLayer is a stub for a layer with an
unknown function.

Informally speaking, the semantics of our model is as follows: for a layer
NNOutput the identity function6 is evaluated, for NNPlainLayer the passed func-
tion, for NNPWALayer the passed pwa function, and for NNUnknownLayer a failure
is raised. Thus, the NNSequential type does not prescribe any specific functions
of layers but expects them as parameters.

An Example of a Neural Network. In order to give an example, we define specific
layers for a network, in this case the pwa layers Linear and ReLU:

Definition NNLinear {input_dim hidden_dim output_dim: nat}

6 We use the customized identity function flex_dim_copy.
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(M: matrix hidden_dim input_dim) (b: colvec hidden_dim)
(NNnext: NNSequential (input_dim:=hidden_dim) (output_dim:=output_dim))
:= NNPWALayer (LinearPWAF M b) NNnext.

Definition NNReLU {input_dim output_dim: nat}
(NNnext: NNSequential (input_dim:=input_dim) (output_dim:=output_dim))
:= NNPWALayer (input_dim:=input_dim) ReLU_PWAF NNnext.

As an example, we consider a neural network with these two layers:

Definition example_weights: matrix 2 2 := [[2.7, 0],[1, 0.01]].
Definition example_biases: colvec 2 := [[1], [0.25]].
Definition example_nn := (NNLinear example_weights example_biases

(NNReLU (NNOutput (output_dim:=2)))).

From a Trained Neural Network into the World of Coq. As illustrated, we can
construct feedforward neural networks in Coq. Another option is to convert a
neuronal network trained outside of Coq into an instance of the model. In [3] a
python script is used for conversion from PyTorch to their Coq model with-
out any correctness guarantess, while in [7] an import mechanism from Ten-
sorFlow into Isabelle is used, where correctness of the import has to be
established for each instance of their model. We are working with a converter
expecting a neural network in the ONNX format (i.e. a format for neural network
exchange supported by most frameworks) [4] to produce an according instance
in our Coq model [13].7 This converter is mostly written within Coq with its
core functionality being verified.

Choice of Model. While feedforward neural networks are often modeled as di-
rected acyclic graphs [1, 17], in the widely used machine learning frameworks
TensorFlow and PyTorch a sequential model of layers is employed as well.
Our model corresponds to the latter, and is inspired by the, to our knowledge,
only published neural network model in Coq (having been used for general-
ization proofs) [3]. Our model though is more generic by having parameterized
layers instead of being restricted to ReLU activation. Moreover, while their
model works with customized floats, we decided for reals in order to support
Coquelicot’s real analysis as discussed in Section 3.

A graph-based model carries the potential to be extended to other types of
neural networks such as recurrent networks featuring loops in the length of the
input. For the reason of being generic, ONNX employs a graph-based model.
Hence, an even more generic graph-based Coq model is in principle desirable
but it also adds complexity. In [7] the focus is on a sequential model which
the authors showed to be superior to a graph-based model for the purpose of
verification. Hence, we expect that the need for a sequential Coq model for
feedforward networks will stay even in the existence of a graph-based model.
7 A bachlor thesis supervised by one of the authors and scheduled for publication.
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4.2 Composition of PWA functions

Besides composition being a general purpose binary operation closed over pwa
functions [25], it is needed in our transformation to compose pwa layers. Since
for pwa functions f : Rl → Rn and g : Rm → Rl their composition z = f ◦ g is a
pwa function, composition in Coq produces an instance of type PWAF requiring
a construction and a proof of univalence:

Definition pwaf_compose {in_dim hidden_dim out_dim: nat}
(f: PWAF hidden_dim out_dim) (g: PWAF in_dim hidden_dim)
: PWAF in_dim out_dim := mkPLF in_dim out_dim

(pwaf_compose_body f g) (pwaf_compose_univalence f g).

Piecewise Construction of Composition. Assume a pwa function f defined on the
polyhedra set Pf = {P f

1 , . . . , P
f
k } with affine functions given by the parameter

set Af = {(Mf
1 , b

f
1 ), . . . , (M

f
K , b

f
k)}. Analogously, g is given by Pg and Ag. For

computing a composed function z = f ◦ g at any x ∈ Rm, we need a polyhedron
P g
j ∈ Pg such that x ∈ P g

j to compute g(x) = Mg
j x + bgj with (Mg

j , b
g
j ) ∈ Ag.

Following, we need a polyhedron P f
i ∈ Pf with g(x) ∈ P f

i to finally compute
z(x) =Mf

i g(x) + bfi with (Mf
i , b

f
i ) ∈ Af .

We have to reckon on function composition on the level of polyhedra sets
to construct z’s polyhedra set Pz. For each pair P f

i ∈ Pf , P g
j ∈ Pg, we create

a polyhedron P z
i,j ∈ Pz such that x ∈ P z

i,j iff x ∈ P g
j and Mg

j x + bgj ∈ P f
i

with (Mg
j , b

g
j ) ∈ Ag. Consequently, C(P g

j ) ⊆ C(P z
i,j) while the constraints of P f

i

have to be modified. For (ci · x ≤ bi) ∈ C(P f
i ) we have the modified constraint

((cTi M
g
j ) ·x ≤ bi− ci · b

g
j ) ∈ C(P z

i,j). We construct a polyhedra set accordingly in
Coq including empty polyhedra in case no qualifying pair of polyhedra exists:

Fixpoint compose_polyhedra_helper {in_dim hidden_dim: nat}
(M: matrix hidden_dim in_dim) (b1: colvec hidden_dim)
(l_f: list (LinearConstraint hidden_dim)) :=
match l_f with
| [] ⇒ []
| (Constraint c b2) :: tail ⇒

Constraint in_dim
(transpose (Mmult (transpose c) M)) (b2 − (dot c b1)) ::

compose_polyhedra_helper M b1 tail
end.

Definition compose_polyhedra {in_dim hidden_dim: nat}
(p_g: ConvexPolyhedron in_dim)
(M: matrix hidden_dim in_dim) (b: colvec hidden_dim)
(p_f: ConvexPolyhedron hidden_dim) :=
match p_g with | Polyhedron l1 ⇒

match p_f with | Polyhedron l2 ⇒
Polyhedron in_dim (l1 ++ compose_polyhedra_helper M b l2)
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end end.

Further, each (Mz
i,j , b

z
i,j) ∈ Az is defined as (Mf

j M
g
i ,M

f
j b

g
i + bfj ) as a result

of usual composition of two affine functions:

Definition compose_affine_functions {in_dim hidden_dim out_dim: nat}
(M_f: matrix (T:=R) out_dim hidden_dim) (b_f: colvec out_dim)
(M_g: matrix (T:=R) hidden_dim in_dim) (b_g: colvec hidden_dim) :=
(Mmult M_f M_g, Mplus (Mmult M_f b_g) b_f).

Univalence of Composition. Due to the level of details, the Coq proof for the
composed function z satisfying univalence is not included in this paper (see
Theorem pwaf_compat_univalence).

Composition Correctness. For establishing the correctness of the composition,
we proved the following theorem:

Theorem pwaf_compose_correct:
forall in_dim hid_dim out_dim x f_x g_x

(f: PWAF hid_dim out_dim) (g: PWAF in_dim hid_dim),
in_pwaf_domain g x → is_pwaf_value g x g_x →
in_pwaf_domain f g_x → is_pwaf_value f g_x f_x →
let fg := pwaf_compose f g in
in_pwaf_domain fg x ∧ is_pwaf_value fg x f_x.

For one of the lemmas (compose_polyhedra_subset_g) we proved that poly-
hedra of g are only getting smaller by composing g with f while the borders that
are set by polyhedra of g being kept.

4.3 Concatenation: Layers of Neural Networks as PWA Functions

While some neural networks come with each layer being one multi-dimensional
function, many neural networks feature layers where each neuron is assigned the
same lower dimensional function independently then applied to each neuron’s
input. Motivated by the transformation of a neural network into a single pwa
function, we introduce a binary operation concatenation that constructs a single
pwa function for each pwa layer of a neural network. Otherwise, concatenation
is interesting due to constructing a multi-dimensional pwa function being chal-
lenging since a user has to define multiple polyhedra with a significant number
of constraints. For illustration, we construct a multi-dimensional ReLU layer.

Concatenation of pwa functions has to yield an instance of type PWAF since
being closed over pwa functions. Concatenation is defined as follows:

Definition 6 (Concatenation). Let f : Rm → Rn and g : Rk → Rl. The
concatenation ⊕ is defined as:

(f ⊕ g)(
[
xf

xg

]
) :=

[
f(xf )
g(xg)

]
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Piecewise Construction of Concatenation. Assume some f, g, Pf ,Pg,Af andAg

as previously used, and z = f ⊕ g. The polyhedra set Pz contains the pairwise
joined polyhedra of Pf and Pg but with each constraint of a polyhedron lifted
to the dimension of z’s domain. Consider a pair P f

i ∈ Pf and P g
j ∈ Pg. For

constraints (cfi · xf ≤ bfi ) ∈ C(P
f
i ) and (cgj · xg ≤ bgj ) ∈ C(P

g
j ) with

[
xf

xg

]
∈

Rdim(f)+dim(g), the following higher dimensional constraints are in C(P z
i,j) with

P z
i,j ∈ Pz:

[
cfi
0

]
·
[
xf

xg

]
≤ bfi and

[
0
cgj

]
·
[
xf

xg

]
≤ bgj . Thus, we get

[
xf

xg

]
∈ P z

i,j iff xf ∈

P f
i and xg ∈ P g

j .
Hence, the concatenation requires the pairwise join of all polyhedra Pf and

Pg each with their constraints lifted to the higher dimension of z’s domain:

Definition concat_polyhedra {in_dim1 in_dim2: nat}
(p_f: ConvexPolyhedron in_dim1) (p_g: ConvexPolyhedron in_dim2):
ConvexPolyhedron (in_dim1 + in_dim2) :=
match p_f with | Polyhedron l1 ⇒

match p_g with | Polyhedron l2 ⇒
Polyhedron (in_dim1 + in_dim2)

(extend_lincons_at_bottom l1 (in_dim1 + in_dim2) ++
extend_lincons_on_top l2 (in_dim1 + in_dim2))

end end.

The Coq code uses two functions for insertion of zeros similar to the dimension
operations (see Section 2). The corresponding affine function of P z

i,j is then:

(Mz
i,j , b

z
i,j) := (

[
Mf

i 0
0 Mg

j

]
,

[
bfi
bgj

]
).

Univalence of Concatenation. The technical proof of concatenation being uni-
valent is outside of the scope of this paper (see pwaf_concat_univalence).

Concatenation Correctness. We proved the correctness of the concatenation:

Theorem pwaf_concat_correct:
forall in_dim1 in_dim2 out_dim1 out_dim2 x1 x2 f_x1 g_x2
(f: PWAF in_dim1 out_dim1) (g: PWAF in_dim2 out_dim2),
in_pwaf_domain f x1 → is_pwaf_value f x1 f_x1 →
in_pwaf_domain g x2 → is_pwaf_value g x2 g_x2 →
let fg := pwaf_concat f g in
let x := colvec_concat x1 x2 in
let fg_x := colvec_concat f_x1 g_x2 in
in_pwaf_domain fg x ∧ is_pwaf_value fg x fg_x.

The proof relies on an extensive number of lemmas connecting matrix operations
to block matrices and vector reshaping.
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Example: ReLU Layer. Using concatenation, we construct a multi-dimensional
ReLU layer using one-dimensional ReLU (see Section 4.1). To construct a
ReLU layer Rn → Rn, we perform n concatenations of one-dimensional ReLU:

Fixpoint ReLU_PWAF_helper (in_dim: nat): PWAF in_dim in_dim :=
match in_dim with
| 0 ⇒ OutputPWAF (in_dim:=0) (out_dim:=0)
| S n ⇒ pwaf_concat ReLU1dPWAF (ReLU_PWAF_helper n)
end.

4.4 Transforming a Neural Network into a pwa Function

Building up on previous efforts, the transformation of a feedforward neural net-
work with pwa activation functions into a single pwa function is straightforward.
Using concatenation, we construct multi-dimensional pwa layers and then com-
pose them to one pwa function representing the whole neural network. The
transformation is illustrated conceptually in Figure 1.

The transformation in Coq simply fails when applied to hidden layers that
are non-pwa:

Fixpoint transform_nn_to_pwaf {in_dim out_dim: nat}
(nn: NNSequential (input_dim := in_dim) (output_dim := out_dim))
: option (PWAF in_dim out_dim) :=
match nn with

| NNOutput ⇒ Some (OutputPWAF)
| NNPlainLayer _ _ _ ⇒ None
| NNUnknownLayer _ _ ⇒ None
| NNPWALayer _ pwaf next ⇒

match transform_nn_to_pwaf next with
| Some next_pwaf ⇒ Some (pwaf_compose next_pwaf pwaf)
| None ⇒ None

end end.

Correctness of Transformation. For this transformation, we have also proven
the following theorem in Coq to establish its correctness:

Theorem transform_nn_to_pwaf_correct:
forall in_dim out_dim (x: colvec in_dim) (f_x: colvec out_dim) nn

nn_pwaf,
Some nn_pwaf = transform_nn_to_pwaf_correct nn →
in_pwaf_domain nn_pwaf x →
is_pwaf_value nn_pwaf x f_x ↔ nn_eval nn x = Some f_x.

For a neural networkN and its transformed pwa function fN , the theorem states
that for all inputs x ∈ dom(fN ) holds fN (x) = N (x). The proof of this theorem
relies on several relatively simple properties of the composition. Note that for



14 A. Aleksandrov & K. Völlinger

i1

i2

im

... ...

f1
2

fp
2

...

f1
s

fq
s

...

f1
out

fr
out

...

f2
1

fk-1
1

fk
1

...

f1
1

neural network N

input layer hidden layers 1,2, ..., s output layer

+

+ +

+

+ +

++

+operators: concatenation 

composition 

function FN of network N:
FN = f out o f s o ... o f 2 o f 1

f 1= 
       

 
f1

1

     f2
1

     fk-1
1

     fk
1

function f 1 of layer 1: 

Fig. 1. Transformation of a feedforward network N with pwa activation functions into
its representation as a pwa function FN by concatenating neuron activation within
each layer followed up by composing pwa layers.

dom(fN ) = ∅ the theorem trivially holds, and in fact an additional proof is
required for fN ’s polyhedra being a subdivision of dom(N ) (i.e. dom(fN (x)) =
dom(N (x))).

On the Representation of a Neural Network as a pwa Function. The main benefit
of having a pwa function obtained from neural network lies in the option to use
simple-to-implement encodings of pwa functions for different solvers, e.g. Coq’s
tactic lra or MILP/SMT solvers. Hence, this representation paves the way for
proof automation when stating theorems about the input-output relation of a
network in Coq.

Furthermore, a representation as a pwa function moves the structural com-
plexity of a neural network to the polyhedral subdivision of the pwa function.
This is interesting since local search can be applied to the set of polyhedra for
reasoning about reachability properties in neural networks [30]. Furthermore, one
may estimate the size of a pwa function’s polyhedral subdivision for different
architectures of neural network [21].



Piecewise Affine Activation Functions of Neural Networks in Coq 15

5 Discussion

We were working towards neural network verification in Coq with a verified
transformation from a network to a pwa function being the main contribution.

Summary. We presented the first formalization of pwa activation functions for
an interactive theorem prover tailored to verifying neural networks with Coq.
For our constructive formalization, we used a pwa function’s polyhedral sub-
division due to the numerous efficient algorithms working on polyhedra. Our
class of pwa functions is on-purpose restricted to suit linear programming by
using non-strict constraints and to fit SMT/MILP solvers by employing finitely
many polyhedra. Using Coquelicot’s reals, we enabled reasoning about gra-
dients and support Coq’s tactic lra. With ReLU, we constructed one of the
most popular activation functions. We presented a verified transformation from
a neural network to its representation as a pwa function enabling encodings for
proof automation for theorems about the input-output relation. To this end,
we devised a sequential model of neural networks, and introduced two verified
binary operation on pwa functions – usual function composition together with
an operator to construct a pwa function for each layer.

Future Work. Since the main benefit of having a pwa function obtained from
neural network lies in the many available encodings [8, 12] targeting different
solvers, we envision encodings for our network model. These encodings have to
be adapted to the verification within Coq with our starting point being the
tactic lra – a Coq-native decision procedure for linear real arithmetic.

Moreover, moving the structural complexity of a neural network to the poly-
hedral subdivision of a pwa function, opens up on investigating algorithms work-
ing on polyhedra for proof automation with our main candidate being local
search on polyhedra for reasoning about reachability properties in neural net-
works [30].

Further, for our model of neural networks, we intend a library of pwa acti-
vation functions with proof automation to ease construction. We also plan on
a generic graph-based model for neural networks in Coq but as argued, we ex-
pect the sequential model to stay the mean of choice for feedforward networks.
Additionally, since tensors are used in machine learning to incorporate complex
mathematical operations, we aim to integrate a formalization of tensors tailored
to neural network verification.
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