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Abstract. Generating accurate runtime safety estimates for autonomous
systems is vital to ensuring their continued proliferation. However, ex-
haustive reasoning about future behaviors is generally too complex to do
at runtime. To provide scalable and formal safety estimates, we propose
a method for leveraging design-time model checking results at runtime.
Specifically, we model the system as a probabilistic automaton (PA) and
compute bounded-time reachability probabilities over the states of the
PA at design time. At runtime, we combine distributions of state es-
timates with the model checking results to produce a bounded time
safety estimate. We argue that our approach produces well-calibrated
safety probabilities, assuming the estimated state distributions are well-
calibrated. We evaluate our approach on simulated water tanks.

Keywords: Runtime Monitoring · Probabilistic Model Checking · Cal-
ibrated Prediction

1 Introduction

As autonomous systems see increased use and perform critical tasks in an open
world, reasoning about their safety and performance is critical. In particular, it
is vital to know if a system is likely to reach an unsafe state in the near future.

The field of predictive runtime monitoring offers ways for performing this rea-
soning. The basic idea is to reason about the expected future behaviors of the
system and its properties. However, accurately computing future system states
is computationally infeasible at runtime, as it requires running expensive reach-
ability analysis on complex models. Previous works have computed libraries of
reachability analysis results at design time and used them at runtime [9]. But
these approaches require the system dynamics to have certain invariances to
reduce the number of times reachability analysis must be called offline.

Other lines of work use system execution data to learn discrete probabilistic
models of the system, which are then used to perform predictive runtime mon-
itoring, as there is rich literature for runtime monitoring of discrete automata.
These models range from discrete-time Markov chains (DTMCs) [2] to hidden
Markov models (HMMs) [4] to Bayesian networks [17]. However, it is difficult
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to provide guarantees relating the performance of the automata models to the
real system, due to the fact that they are fit using finite data. Of particular
interest is ensuring the models are conservative: it is essential to avoid run-time
overconfidence in the safety of the dynamical system.

In this paper, we propose a method for predictive run-time monitoring of
safety probabilities that builds on the strengths of the existing works. We use a
mix of conservative modeling techniques and data-driven modeling techniques to
transform the dynamical system into a probabilistic automaton (PA).3 We then
employ probabilistic model checking (PMC) to compute the safety of the model
over all its states offline. Finally, we synthesize lightweight monitors that rely on
the model checking results and a well-calibrated state estimator to compute the
probability of system safety at runtime.

Under the assumption that the PA model is conservative and that the state
estimator is well-calibrated, we prove that our runtime monitors are conservative.
We demonstrate that our modeling technique is likely to result in conservative
PA models. Finally, we show that our method produces well-calibrated, accurate,
and conservative monitors on a case study using water tanks.

The contributions of this paper are threefold:

– We present a method for conservatively modeling dynamical systems as PAs
and using PMC results at runtime to monitor the system’s safety.

– We prove that if our PA models are conservative then the monitor safety
estimates will be conservative.

– We demonstrate our approach on a case study of water tanks. We empirically
show that our PA models and runtime monitors are both conservative.

The rest of the paper is structured as follows. We give an overview of the related
work in Section 2, provide the necessary formal background in Section 3, and
formulate the problem in Section 4. Section 5 goes over our proposed approach
and Section 6 provides formal conservatism guarantees for the approach. We
describe the results of our case study in Section 7 and conclude in Section 8.

2 Related Work

We divide the previous works in the area of predictive runtime monitoring into
two bins. The first bin analyzes dynamical system models, while the second
analyzes automata models.

Dynamical systems approaches A large portion of the predictive monitor-
ing for dynamical systems literature focuses on reasoning about the safety of
autonomous vehicles. Prior work has employed reachability analysis to estimate
the future positions of other cars to estimate the safety of a proposed vehicle tra-
jectory [1]. In [18], the authors develop techniques to estimate the probability of

3 In our scope, PAs are equivalent to Markov Decision Processes (MDPs) without
rewards: both have finite states with probabilistic and non-deterministic transitions.
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a proposed trajectory resulting in a collision with other vehicles, which are given
as distributions of states predicted by neural networks (NNs). In [9], the authors
use precomputed reachability analysis and Bayesian inference to compute the
probability of an autonomous vehicle colliding with static obstacles. This ap-
proach requires the system dynamics to have certain invariances to ensure the
reachability analysis can be feasibly run at design time. This approach is con-
ceptually similar to ours, but we employ automata-based abstractions instead of
making invariance assumptions about the system dynamics.

Previous works have also addressed the problem of synthesizing runtime
monitors for signal temporal logic (STL) properties of dynamical systems. Ap-
proaches range from conformal prediction [8,25], design time forward reachability
analysis [33], computing safe envelopes of control commands [32], online linear
regression [15], and uncertainty aware STL monitoring [26].

Automata approaches The first works of this type developed predictive LTL
semantics, also called LTL3 [34,24], for discrete automata. The LTL3 semantics
allowed to the system to determine if every infinite extension of an observed
finite trace would satisfy or not satisfy a specification. Recent work has extended
these ideas to timed systems [28], multi-model systems [12], and systems with
assumptions [10]. Another approach uses neural networks to classify if unsafe
states of a hybrid automaton (HA) can be reached from the current state of
the HA [5,6,7]. They additionally use conformal prediction to get guarantees
about the accuracy of their predictions [31]. However, these frameworks give
very coarse predictions, as they can only determine if a system is guaranteed to
be safe, guaranteed to be unsafe, or not sure.

Another thread of work uses data to learn probabilistic models that can then
be used in conjunction with predictive monitoring techniques. In [4], the authors
learn an HMM model of the system from simulation data and perform bounded
reachability analysis to determine the probability of an LTL specification being
violated from each state of the HMM. This work was extended using abstraction
techniques to simplify the learned models [3]. In [2], the same authors employ
importance sampling to efficiently learn discrete-time Markov chain (DTMC)
models from data, which they then use to synthesize predictive monitors. In [17],
the authors use Bayesian networks to model temporal properties of stochastic
timed automata. The Bayesian networks are updated online to improve their
performance. Finally, in [13] the authors use process mining techniques to learn
predictive models of systems, which are in turn used to synthesize predictive
runtime monitors. An interesting line of future work for us is exploring applying
our runtime monitoring technique using these models as they are updated from
new observations online.

The most similar work to ours presents two methods for synthesizing predic-
tive monitors for partially observable Markov decision processes (POMDPs) [19].
The first approach combines precomputed safety probabilities of each state with
POMDP state estimators to estimate the probability that the system will re-
main safe. However, state estimation of POMDPs is computationally expensive
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since the set of potential state distributions increases exponentially due to the
non-determinism in the model. The second approach uses model checking of con-
ditional probabilities to directly compute the safety of the system based on the
observation trace. A downside of this approach is that it requires running model
checking at runtime. Our method, on the other hand, avoids expensive computa-
tions at run time while maintaining design-time scalability through abstraction.

3 Background

In the following Definitions 1 to 3, borrowed from Kwiatkowska et al. [23], we
use Dist(S) to refer to the set of probability distributions over a set S, ηs as
the distribution with all its probability mass on s ∈ S, and µ1 × µ2 to be the
product distribution of µ1 and µ2.

Definition 1. A probabilistic automaton (PA) is a tuple M = (S, s̄, α, δ, L),
where S is a finite set of states, s̄ ∈ S is the initial state, α is an alphabet of
action labels, δ ⊆ S × α × Dist(S) is a probabilistic transition relation, and
L : S → 2AP is a labeling function from states to sets of atomic propositions
from the set AP.

If (s, a, µ) ∈ δ then the PA can make a transition in state s with action label
a and move based on distribution µ to state s′ with probability µ(s′), which is

denoted by s
a−→ µ. If (s, a, ηs′) ∈ δ then we say the PA can transition from state

s to state s′ via action a. A state s is terminal if no elements of δ contain s. A
path in M is a finite/infinite sequence of transitions π = s0

a0,µ0−−−→ s1
a1,µ1−−−→ . . .

with s0 = s̄ and µi(si+1) > 0. A set of paths is denoted as Π. We use M(s) to
denote the PA M with initial state s.

Reasoning about PAs also requires the notion of a scheduler, which resolves
the non-determinism during an execution of a PA. For our purposes, a scheduler
σ maps each state of the PA to an available action label in that state. We use
Πσ

M for the set of all paths through M when controlled by scheduler σ and SchM
for the set of all schedulers for M. Finally, given a scheduler σ, we define a
probability space PrσM over the set of paths Πσ

M in the standard manner.
Given PAs M1 and M2, we define parallel composition as follows:

Definition 2. The parallel composition of PAs M1 = (S1, s̄1, α1, δ1, L1) and
M2 = (S2, s̄2, α2, δ2, L2) is given by the PA M1 || M2 = (S1 × S2, (s̄1, s̄2), α1 ∪
α2, δ, L), where L(s1, s2) = L1(s1)∪L2(s2) and δ is such that (s1, s2)

a−→ µ1×µ2

iff one of the following holds: (i) s1
a−→ µ1, s2

a−→ µ2 and a ∈ α1 ∩ α2, (ii)

s1
a−→ µ1, µ2 = ηs2 and a ∈ (α1 \ α2), (iii) µ1 = ηs1 , s2

a−→ µ2 and a ∈ (α2 \ α1).

In this paper, we are concerned with probabilities that the system will not
enter an unsafe state within a bounded amount of time. These are represented
as bounded-time safety properties, which we express using metric temporal logic
(MTL) [21]. Following the notation from [20], we denote these properties as

�≤T s /∈ Sunsafe,
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where Sunsafe ⊂ S is the set of unsafe states and T ≥ 0 is the time bound.

Definition 3. For MTL formula ψ, PA M, and scheduler σ ∈ SchM, the prob-
ability of ψ holding is:

PrσM(ψ) := PrσM{π ∈ Πσ
M | π |= ψ},

where π |= ψ indicates that the path π satisfies ψ in the standard MTL se-
mantics [21]. We specifically consider MTL safety properties, which are MTL
specifications that can be falsified by a finite trace though a model.

Probabilistically verifying an MTL formula ψ against M requires checking
that the probability of satisfying ψ meets a probability bound for all schedulers.
This involves computing the minimum or maximum probability of satisfying ψ
over all schedulers:

PrminM (ψ) := infσ∈SchM
PrσM(ψ)

PrmaxM (ψ) := supσ∈SchM
PrσM(ψ)

We call σ a min scheduler of M if PrσM(ψ) = PrminM (ψ). We use SchminM to
denote the set of min schedulers of M.

Remark: For the rest of this paper, we use Pr when referring to model-
checking probabilities and P for all other probabilities.

Calibration and Conservatism Consider a scenario where a probability es-
timator is predicting probability p̂ that a (desirable) event E will occur (e.g., a
safe outcome). We define the calibration for the probability estimates (adapted
from Equation (1) of [16]):

Definition 4 (Calibration). The probability estimates p̂ of event E are well-
calibrated if

P (E | p̂ = p) = p, ∀p ∈ [0, 1] (1)

Next, we define conservatism for the probability estimates:

Definition 5 (Conservative Probability). The probability estimates p̂ of a
desirable event E are conservative if

P (E | p̂ = p) ≥ p, ∀p ∈ [0, 1] (2)

In other words, the estimates p̂ are conservative if they underestimate the
true probability of event E. Note that any monitor that is well-calibrated (Def-
inition 4) is guaranteed to be conservative (Definition 5), but not vice versa.

Two standard metrics for assessing the calibration of the p̂ estimates are
expected calibration error (ECE) [16] and Brier score [29]. The ECE metric
is computed by dividing the p̂ values into equally spaced bins in [0, 1], within
each bin taking the absolute difference between the average p̂ and the empirical
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probability of event E, and weighted-averaging across bins with their sizes as
weights. So ECE penalizes discrepancies between the estimator confidence and
empirical probability of E within each bin. The Brier score is the mean squared
error of the probability estimates∑

i

(p̂i − 1Ei)
2

4 Problem Statement

Consider the following discrete-time stochastic system titled MOS with dynamics:

X(t+ 1) = f(X(t), U(t))),

Y (t) = g(X(t), V (t)),

X̄(t), Z̄(t) = h(Z̄(t− 1), Y (t),W (t)),

U(t) = c(X̄(t)),

(3)

where X(t) ∈ S ⊂ Rn is the system state (with bounded S); Y (t) ∈ Rp are
the observations; X̄(t) ∈ Rn is the estimated state of the system; Z̄(t) ∈ Rz
is the internal state of the state estimator (e.g., a belief prior in a Bayesian
filter); U(t) ∈ U ⊂ Rm is the control output, which we discretize, resulting
in a finite number |U| of control actions, the functions f : Rn × Rm → Rn,
g : Rn ×Rv → Rp, h : Rz ×Rp ×Rw → Rn ×Rz describe the system dynamics,
perception map, and state estimator respectively; the function c : Rp → Rm
is a stateless controller; and V (t) ∈ Dv ⊆ Rv and W (t) ∈ Dw ⊆ Rw describe
perception and state estimator noise. The V (t) noise models inexact perception,
such as an object detector missing an obstacle. The W (T ) noise accounts for
state estimators that use randomness under the hood. A common example of
this is particle filters randomly perturbing their particles so that they do not
collapse to the exact same value.

Let Sunsafe ⊂ S denote the set of unsafe states of MOS. At time t, we are
interested in whether MOS will lie in Sunsafe at some point in the next T time
steps. This is represented by the bounded time reachability property

ψMOS
= �≤T (X /∈ Sunsafe) (4)

Let P (ψMOS
| Z̄(t)) denote the probability of MOS satisfying ψMOS

. Our goal
is to compute calibrated (Definition 4) and conservative (Definition 5) estimates

of P (ψMOS | Z̄(t)) at runtime, which we denote as “P (ψMOS
| Z̄(t)

)
.

5 Overall Approach

Our approach consists of a design time and runtime portion. At design time,
a PA of the system (including its dynamics, perception, state estimation, and
controller) is constructed using standard conservative abstraction techniques.
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Then the bounded-time safety probability for each state of the model is computed
using model checking and stored in a look-up table. At runtime, the estimated
state (or distribution of states) from the real system’s state estimator is used
to estimate the abstract state (or distribution of abstract states) of the abstract
system. This abstract state (or distribution of states) is used in conjunction with
the lookup table to estimate the bounded-time safety of the real system.

5.1 Design Time

The design time aspect of our approach has two parts. First, we convert the orig-
inal system MOS into a probabilistic automaton MAS. Then we use probabilistic
model checking to compute the bounded time safety of MAS for each state in
the model.

Model Construction To convert MOS into a probabilistic automaton, MAS,
we first need to create probabilistic models of the perception g and state es-
timation h components of MOS. To do this, we simulate MOS and record the
perception errors X(t)− X̄(t). We discretize the domain of these errors and es-
timate a categorical distribution over it. For example, this distribution would
contain information such as “the perception will output a value that is between
2m/s and 3m/s greater than the true velocity of the car with probability 1/7.”

To convert the system dynamics f and controller c to a probabilistic automa-
ton, we use a standard interval abstraction technique. The high-level idea is to
divide the state space S of MOS into a finite set of equally sized hyperrectangles,
denoted as S′. So every s′1 ∈ S′ has a corresponding region S1 ⊂ S. MAS then
has a transition from s′1 to s′2 (in MAS) if at least one state in S1 has a transi-
tion to a state in S2 (in MOS) under some control command u ∈ U. Note that
state s′1 can non-deterministically transition to multiple states in S′ because it
covers an entire hyperrectangle of states in MOS. This ensures that the interval
abstraction is conservative, as it overapproximates the behaviors of MOS.

Finally, the perception error model, controller, and interval abstraction are
all parallel-composed into a single model as per Definition 2.

Remark: In describing the construction of the MAS, we have not mentioned
anything about initial states: we do not keep track of a singular initial state
for MAS. Instead, we will later run model checking for the full range of initial
states of MAS to anticipate all runtime scenarios. For our purposes, the “initial
state-action space” of MAS consists of every abstract state and control action.
We include the control action in the initial state space because when using the
model’s safety probabilities online, we know what the next control action will be.

Safety Property We need to transform the bounded time safety property on
MOS given in Equation (4) into an equivalent property on MAS. To do this, we
compute the corresponding set of unsafe states on MAS, which is defined as

S′unsafe = {s′ | ∃s ∈ Sunsafe, s′ corresponds to s}
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Letting s′ denote the state of MAS, the bounded time safety property for
MAS is

ψMAS
:= �≤T

(
s′ /∈ S′unsafe

)
(5)

Probabilistic Model Checking The final design-time step of our approach
computes the safety probability of MAS for every state in the model. This step
amounts to computing the below values using standard model checking tools:

PrminMAS(s′,u)(ψMAS), ∀s′ ∈ S′, ∀u ∈ U

This requires running model checking on MAS for a range of initial states,
which can be a time-consuming process. To mitigate this, we note that MAS is
simpler to analyze than MOS, since the size of the state space gets reduced dur-
ing the interval abstraction process. Additionally, one can lower the time bound
T on the safety property to further speed up the model checking.

The probabilities from the model checking are stored in a lookup table, which
we denote as G(s′, u). It will be used at runtime to estimate the likelihood of
the system being unsafe in the near future.

Remark: This approach would work for any bounded time MTL properties,
however more complex formulas may take longer to model check.

5.2 Runtime

At runtime, we observe the outputs of the state estimator and controller and run
them through the lookup table to compute the probability of the system avoiding
unsafe states for the next T time steps. We propose two different ways of utilizing
the state estimator. The first way is to simply use the point estimate from the
state estimator. In cases of probabilistic estimators, this means taking the mean
of the distribution. The second way uses the estimated state distribution from
the state estimator. This requires an estimator with a probabilistic output, but
most common state estimators, such as particle filters and Bayesian filters, keep
track of the distribution of the state. The second way takes full advantage of the
available state uncertainty to predict safety.

Point Estimate At time t, the state estimator outputs state estimate X̄(t).
The controller then outputs control command U(t) = c(X̄(t)). Finally, we get a
safety estimate P̂monpoint(X̄(t), U(t)) by plugging X̄(t) and U(t) into G:

P̂monpoint(X̄(t), U(t))) = G(X̄(t), U(t)) (6)

State Distribution Now assume that at time t state estimator additionally
outputs a state estimate X̄(t) and a finite, discrete distribution of the state,
denoted as PX̄(t). The controller still outputs control command U(t) = c(X̄(t)).
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To estimate the safety of the system, we compute a weighted sum of the safety
of each state in PX̄(t) using G and U(t):

P̂mondist (PX̄(t), U(t)) =
∑

s∈Supp(PX̄(t))

PX̄(t)(s) ·G(s′, U(t)) (7)

where Supp
Ä
PX̄(t)

ä
denotes the (finite) support of PX̄(t), PX̄(t)(s) denotes the

estimated probability of MOS being in state s according to PX̄(t), and s′ ∈ S′ is
the state in MAS that corresponds to state s ∈ S in MOS.

6 Conservatism Guarantees

This section proves that our state-distribution monitoring produces safety esti-
mates that are conservative and well-calibrated ; that is, we underestimate the
probability of safety. We require two assumptions for that. The first assumption
is the conservatism of abstract model MAS, by which we mean that its probability
of being safe is always less than that of MOS for the same initial condition. The
second assumption is the calibration of the state estimator, which means that it
produces state probabilities that align with the frequencies of these states. Below
we formalize and discuss these assumptions before proceeding to our proof.

Definition 6 (Model Conservatism). Abstraction MAS is conservative with
respect to system MOS if

PMOS(s,u)(ψ) ≥ PrminMAS(s′,u)(ψ) ∀s ∈ S, u ∈ U (8)

where s′ ∈ S′ is the state in MAS that corresponds to state s in MOS.

In general, it is difficult to achieve provable conservatism of MAS by con-
struction: the model parameters of complex components (e.g., vision-based per-
ception) are estimated from data, and they may have complicated interactions
with the safety chance. Instead, we explain why our approach is likely to be
conservative in practice and validate this assumption in the next section.

Consider MOS and MAS as compositions of two sub-models: dynamics/control
and perception/state estimation. We construct MAS such that its dynamics/control
component always overapproximates the dynamics/control portion of MOS. That
means that any feasible sequence of states and control actions from MOS is also
feasible in MAS. This follows from the use of reachability analysis over the in-
tervals of states to compute the transitions of MAS.

It is unclear how to formally compare the conservatism of perception/state
estimation portions of MAS and MOS when they are created from simulations of
the perception/state estimation component of MOS. First, these components are
not modeled explicitly due to the high dimensionality of learning-based percep-
tion. Thus, when estimating probabilities from samples, we essentially approxi-
mate the average-case behavior of the component. Second, it is often unknown
in which direction the probabilities need to be shifted to induce a conservative
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shift to the model. One opportunity is to use monotonic safety rules [11]; for
now, this remains a promising and important future research direction.

To summarize, the dynamics/control portion of MAS overapproximates that
of MOS, while the perception/state estimation portion of MAS approximates the
average-case behavior of MOS. So one would expect, on average, MAS to be
conservative with respect to MOS, even though we cannot formally prove that.

Next, we define the calibration for the state estimator (adapted from Equa-
tion (1) of [16]):

Definition 7 (Calibration). Given the dynamical system from Equation (3)
and state estimator h that outputs a discrete, finite distribution of the estimated
state, denoted Px̄(t), we say that h is well-calibrated if

P (x(t) = s | Px̄(t)(s) = p) = p, ∀p ∈ [0, 1] (9)

Intuitively, what this definition means is that if the state estimator says that
there is probability p that the system is in state s, then the system will be in
state s with probability p. Calibration is an increasingly common requirement
for learning-based detectors [16,27,14,30] and we validate it in our experiments.

Now we are ready for our main theoretical result: assuming that MAS is con-
servative with respect to MOS and that the state estimator is well-calibrated, we
show that the safety estimates of our monitoring are conservatively calibrated.

Theorem 1. Let the system MOS in Equation (3) be given with a well-calibrated
state estimator (Definition 7). Let MAS be a conservative model of MOS (Defini-
tion 6). Finally, assume that the safety of MOS conditioned on the true state of
the system is independent of the safety estimate from the monitor. Given state
estimator distribution PX̄(t) and control command U ∈ U, the safety estimates
from the state distribution monitor (Equation (7)) are conservative:

P (ψMOS | P̂mondist (PX̄(t), U(t)) = p) ≥ p ∀p ∈ [0, 1] (10)

Proof. We start with conditioning the safety of the system on the state of the
system and proceed with equivalent transformations:

P (ψMOS
| P̂mondist (PX̄(t), U(t)) = p) =∫

s∈S
P
(
ψMOS | X(t) = s, P̂mondist

(
PX̄(t), U(t)

)
= p
)
·

P
(
X(t) = s | P̂mondist

(
PX̄(t), U(t)

)
= p
)
ds =∫

s∈S
P (ψMOS

| X(t) = s) · PX̄(t)(s)ds =∑
s∈PX̄(t)

P (ψMOS
| X(t) = s) · PX̄(t)(s) =

∑
s∈PX̄(t)

PMOS(s,U(t))(ψ) · PX̄(t)(s) ≥
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s∈PX̄(t)

PrminMAS(s↓,U(t))(ψ) · PX̄(t)(s) = p

The first step comes from marginalizing the state X(t) into the left side of
Equation (10). The second step comes from the assumption that the safety of the
system given the state is independent of the monitor output and the assumed
calibration of the monitor from Equation (9). The third step follows from the
discrete, finite support of the state estimator output and the calibration. The
fourth step comes from substituting and rearranging terms. The final step comes
from the assumed conservatism of MAS in Definition 6.

7 Case Study

Our experimental evaluation aims to demonstrate that the safety estimates from
our monitoring approach are conservative and accurate. Additionally, we com-
pare the effect of using the point-wise and distribution-wise state estimation. We
perform the evaluation on a simulated water tank system and use the PRISM
model checker [22] to perform the probabilistic model checking. The code and
models for the experiments can be found on Github.

7.1 Water Tanks

Consider a system consisting of J water tanks, each of size TS, draining over
time, and a central controller that aims to maintain some water level in each
tank. With wi[t] as the water level in the ith tank at time t, the discrete-time
dynamics for the water level in the tank is given by:

wi[t+ 1] = wi[t]− outi[t] + ini[t], (11)

where ini[t] and outi[t] are the amounts of water entering (“inflow”) and leaving
(“outflow”) respectively the ith tank at time t. The inflow is determined by the
controller and the outflow is a constant determined by the environment.

Each tank is equipped with a noisy sensor to report its current perceived
water level, ŵ, which is a noisy function of the true current water level, w. The
noise on the sensor outputs is a Gaussian with zero mean and known variance.
Additionally, with constant probability the perception outputs ŵ = 0 or ŵ = TS.

Each water tank uses a standard Bayesian filter as a state estimator. The
filter maintains a discrete distribution over the system state. On each perception
reading, the filter updates its state distribution using a standard application of
the Bayes rule. The mean of the state distribution at this point is the estimator’s
point prediction, which is sent to the controller. Once the control action is com-
puted, the filter updates its state distribution by applying the system dynamics.

The central controller has a single source of water to fill one tank at a time
(or none at all) based on the estimated water levels. Then this tank receives a
constant value in > 0 of water, whereas the other tanks receive 0 water. Each
tank has a local controller that requests itself to be filled when its water level

https://github.com/earnedkibbles58/CPSMonitoringNFM2023/tree/master


12 M. Cleaveland et al.

drops below the lower threshold LT and stops requesting to be filled after its
water level reaches the upper threshold UT . If several tanks request to be filled,
the controller fills the one with the lowest water level (or, if equal, it flips a coin).

At runtime, we are interested in the probability that a tank will neither be
empty or overflowing, represented by the bounded-time safety property:

ψwt := �≤10 ∨i=1..J (wli > 0 ∧ wli < TS)

Model Construction We construct the MAS model for J = 2 water tanks,
in = 13.5, outi[t] = 4.3, TS = 100, LT = 10, UT = 90, and water level intervals
of size 1 by following the description in Section 5.1. To model the combination of
perception and state estimation, we estimated the state distributions with 100
trials of 50 time steps. Figure 1 shows a histogram of the state estimation errors.

Fig. 1: Histogram of state estimation errors for the water tanks.

Model Checking The initial state of MAS comprises the water level of each
tank, the low-level control command of each tank, and the filling command of the
central controller. There are 101 discrete water levels in each tank and 5 possible
configurations of the 3 control commands, for a total of 51005 different initial
states of MAS. We model-checked ψwt in these initial states on a server with
80 Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz CPUs by running 50 parallel
PRISM instances at a time. The full verification process took approximately 24
hours, which is acceptable for the design-time phase.

7.2 Results

To test our approach, we ran 500 trials of the water tanks starting from water
levels between 40 and 60. Each trial lasted for 50 time steps (recall that the model
checking checked 10 time steps into the future) and 74 trials resulted in a water
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tank either over- or underflowing. We evaluated three different monitors in our
approach. One used the point estimates from the Bayesian filter (“point estimate
monitor”), another used the estimated distribution from the state estimator
(“state distribution monitor”), and the last used the true state of the system
(“true state monitor”, for comparison only).

Qualitative performance Figure 2 shows the safety estimates of the monitors
for one safe and one unsafe trial. The monitors keep high safety estimates for the
entirety of the safe trial. In the unsafe trial, the failure occurred at time step 42
due to a tank overflowing. The safety estimates are high at first but then begin
to drop around time step 30, predicting the failure with a 10-step time horizon.

(a) Safe trial (b) Unsafe trial

Fig. 2: Monitor safety estimates for two water tank trials.

Calibration Next, to examine the overall calibration of our safety estimates, we
bin the safety estimates into 10 bins of width 0.1 ([0−0.1, 0.1−0.2, . . . , 0.9−1])
and compute the empirical safety chance within each bin. The results are shown
in Figure 3, with the caveat that we only plot bins with at least 50 samples to
ensure statistical significance. The point estimate monitor and true state monitor
are conservative for all of their bins. On the other hand, the state distribution
monitor has the best overall calibration. We also computed the ECE and Brier
scores for the monitors, which are shown in Table 1. To assess the conservatism of
the monitors, we introduce a novel metric called expected conservative calibration
error (ECCE). It is similar to ECE, except that it only sums the bins where the
average monitor confidence is greater than the empirical safety probability (i.e.,
the cases where the monitor is overconfident in safety). The ECCE values for the
monitors are also shown in Table 1. Note that ECE ≥ ECCE, because ECCE
only aggregates a subset of the bins that ECE does. Our results show that the
monitors are well-calibrated and conservative, and that the state distribution
monitor manages to capture the uncertainty particularly well.
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(a) Point estimate monitor (b) State distribution mon-
itor

(c) True state monitor

Fig. 3: Calibration plots for the three monitors. The x-axis shows the binned
safety estimates reported by the monitor and the y-axis shows the empirical
safety probability. The diagonal dashed line denotes perfect calibration. Bars
higher than the dashed line represent under-confidence (i.e., conservatism) and
bars lower than the dashed line represent over-confidence.

Accuracy Finally, we are interested in the ability of the monitors to distin-
guish safe and unsafe scenarios. To do this, we computed a receiver operating
characteristic (ROC) curve for the three monitors, shown in Figure 4, and areas
under curve (AUC) in Table 1. As expected, the state distribution monitor and
true state monitor outperform the point estimate monitor. One surprising aspect
is that the state distribution monitor performs about as well as the true state
monitor. We hypothesize that this is because the state distribution contains in-
formation about how well the state estimator will perform in the near future.
Investigating this potential phenomenon is another area of future work.

Fig. 4: ROC curves for the three monitors.
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Table 1: Calibration and classification metrics for the monitors.
Monitor Type ECE ECCE Brier Score AUC

State estimate 0.0157 0.00818 0.0292 0.828

State distribution 0.00252 0.000899 0.0275 0.867

True state 0.0129 0.00459 0.0273 0.870

Validation of assumptions First, we empirically validate whether MAS is
conservative with respect to MOS. Directly verifying this claim is infeasible,
since it requires computing PMOS(s,u)(ψ) for an infinite number of states s ∈ S.
However, we can examine the performance of the true state monitor as a proxy
for the conservatism of MAS: the true state monitor obtains the probabilities
from MAS using the true state, avoiding any sensing and state estimation noise.
The slightly underconfident true state monitor bins in Figure 3 and the very low
ECCE in Table 1 both provide strong evidence that MAS is indeed conservative.

Second, we examine the calibration assumption of the state estimator. We
computed its ECE across all water levels, resulting in the negligible value of
0.00656. We conclude that this state estimator gives calibrated results in practice.

8 Conclusion

This paper introduced a method for synthesizing conservative and well-calibrated
predictive runtime monitors for stochastic dynamical systems. Our method ab-
stracts the system as a PA and uses PMC to verify the safety of the states of the
PA. At runtime, these safety values are used to estimate the true safety of the
system. We proved that our safety estimates are conservative provided the PA
abstraction is conservative and the system’s state estimator is well-calibrated.
We demonstrated our approach on a case study with water tanks. Future work
includes applying our method to existing approaches that learn discrete ab-
stractions directly from data, exploring how to construct conservative percep-
tion/state estimation abstractions, using our prior work in [11] to reduce the
number of model checking calls, and investigating the effects of the estimated
state distribution’s variance on the future system safety.
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