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Abstract. We define a condition on the resolution of bispecials in a
language. A language satisfies this order condition if and only if it is the
natural coding of a generalized interval exchange transformation, while
the order condition plus some additional ones characterize the codings
of various more classical interval exchange transformations. Also, a fi-
nite word clusters for the Burrows-Wheeler transform if and only if the
language generated by its powers satisfies an order condition.

1 Languages satisfying an order condition

1.1 Usual definitions

Let A be a finite set called the alphabet, its elements being letters. A word w of
length n = |w| is a1a2 · · · an, with ai ∈ A. The concatenation of two words w
and w′ is denoted by ww′.

By a language L over A we mean a factorial extendable language: a collection
of sets (Ln)n≥0 where the only element of L0 is the empty word, and where each
Ln for n ≥ 1 consists of words of length n, such that for each v ∈ Ln there
exist a, b ∈ A with av, vb ∈ Ln+1, and each v ∈ Ln+1 can be written in the form
v = au = u′b with a, b ∈ A and u, u′ ∈ Ln.

The complexity function p : N→ N is defined by p(n) = #Ln.
A word v = v1...vr is a factor of a word w = w1...ws or an infinite sequence

w = w1w2... if for some i ≥ 1 v1 = wi, ...vr = wi+r−1.

The reverse of the word v = v1...vr is the word vr...v1.
A word w is primitive if it is not equal to vn for any word v and integer

n > 1.
Let W be a family of words or (one- or two-sided) infinite sequences. When-

ever the set L of all the factors of the words or sequences in W is a language
(namely, is factorial and extendable), we say that L is the language generated by
W and denote it by L(W ).



A language L is recurrent if for each v ∈ L there exists a nonempty w such
that vw is in L and ends with v.

A language L is uniformly recurrent if for each v ∈ L there exists n such that
v is a factor of each word w ∈ Ln.

A language L is aperiodic if for each nonempty word w in L, there exists n
such that wn is not in L.

For a word w in L, we call arrival set of w, denoted by A(w), the set of all
letters x such that xw is in L, and call departure set of w, denoted by D(w), the
set of all letters x such that wx is in L.

A word w in L is called right special, resp. left special if #D(w) > 1, resp.
#A(w) > 1. If w ∈ L is both right special and left special, then w is called
bispecial. If #L1 > 1, the empty word ε is bispecial, with A(ε) = D(ε) = L1.

A bispecial word w in L is a weak bispecial if #{awb ∈ L, a ∈ A(w), b ∈
D(w)} < #A(w) + #D(w)− 1.

A bispecial word w in L is a strong bispecial if #{awb ∈ L, a ∈ A(w), b ∈
D(w)} > #A(w) + #D(w)− 1.

To resolve a bispecial word w is to find all words in L of the form awb for
letters a and b.

The symbolic dynamical system associated to a language L is the two-sided
shift S acting on the subset XL of AZ consisting of all bi-infinite sequences x
such that xr · · ·xr+s−1 ∈ Ls for each r and s, defined by (Sx)n = xn+1 for all
n ∈ Z.

Thus in the present paper we use two-sided sequences x ∈ XL, but also their
(infinite) suffixes (xn, n ≥ k) and (infinite) prefixes (xn, n ≤ k).

1.2 Order conditions: first properties

The order condition can be traced to [15], but its first explicit mention appears
in [11] in the particular case of one order and its reverse.

Definition 1. A language L on an alphabet A satisfies a local order condition
if, for each bispecial word w, there exist two total orders on A, denoted by <A,w
and <D,w, such that whenever awc and bwd are in L with letters a 6= b and
c 6= d, then a <A,w b if and only if c <D,w d.

A language L on an alphabet A satisfies an order condition if it satisfies
a local order condition where the orders <A,w and <D,w are the same for all
bispecial words.

The first notion in the following definition seems to be new, and its links
with the order conditions will be studied below.

Definition 2. In a language L, a locally strong bispecial word is a bispecial
word w such that there exist nonempty subsets A′ ⊂ A(w), D′ ⊂ D(w) such
that #{awb ∈ L, a ∈ A′, b ∈ D′} > #A′ +#D′ − 1.



If a language L on an alphabet A satisfies a local order condition, a bispecial
word w has a connection if there are letters a <A,w a′, consecutive in the order
<A,w, letters b <D,w b′, consecutive in the order <D,w, such that awb and a′wb′
are in L, and neither awb′ nor a′wb is in L.

We recall a well-known result which can be deduced from [9] or [10].

Lemma 1. A language L which has no strong bispecial word has a finite number
of weak bispecial words, and the left (resp. right) special words are the prefixes
(resp. suffixes) af a finite number of infinite suffixes (resp. prefixes) of sequences
of XL.

Proof
See the proof of Lemmas 2 and 5 in [12].

We turn now to combinatorial consequences of order conditions.

Lemma 2. A language L which satisfies a local order condition contains no
locally strong bispecial word, and thus no strong bispecial word.

Proof
See the proof of Lemma 1 in [12].

For languages where each word has at most two right (resp. left) extensions,
the absence of strong bispecial words, the absence of locally strong bispecial
words, and a local order condition are all equivalent. In the general case, it
is easy to find bispecials which are locally strong but not strong (suppose for
example that the possible xwy are awa, awb, bwa, bwb, cwc), and a local order
condition is stricter than the absence of locally strong bispecials.

Example 1. Suppose L is a language whose words of length 2 are ac, ad, ba, bc,
cb, cc, da. Then the empty word is not a locally strong bispecial, yet L does not
satisfy any local order condition. We can then choose L3 to be made with acc,
ada, bac, bad, bcb, bcc, cba, cbc, ccb, dac, where each word has at most two left
(resp. right) extensions, and continue by resolving the bispecials so that they are
all neutral. We get a language without locally strong bispecials but not satisfying
any local order condition.

A related notion is dendricity ([4] under the name of tree sets). This can be
interpreted as the following.

Definition 3. A language is dendric if it has neither locally strong bispecial
words nor weak bispecial words.

Thus, by Lemmas 1 and 2, a language satisfying a local order condition
is ultimately dendric. But, because of Example 1 and the possibility of weak
bispecials, there is no inclusion relation between dendric languages and languages
satifying an order condition, local or not.



Lemma 3. A language satisfying a local order condition has complexity p(n) =
kn+ l for all n large enough and with 0 ≤ k ≤ #A− 1. Moreover, k = #A− 1
if and only if L has no connection, and in that case l = 1.

Proof
See the proof of Lemma 3 and Corollary 4 in [12].

1.3 Recurrence

We look at consequences of an order condition, or weaker properties, on the
trajectories in XL.

Definition 4. Let x be a bi-infinite sequence in AZ, or a suffix of such a se-
quence. x is right recurrent if any factor of x is a factor of each suffix of x.

Let x be a bi-infinite sequence in AZ, or a prefix of such a squence. x is left
recurrent if any factor of x is a factor of each prefix of x.

A bi-infinite sequence x in AZ is recurrent if it is both left and right recurrent.

Lemma 4. Suppose L has no strong bispecial word.
If a suffix of a sequence in XL is right recurrent, it generates a uniformly

recurrent language.
If a prefix of a sequence in XL is left recurrent, it generates a uniformly

recurrent language.
If a sequence in XL is left or right recurrent, it is recurrent and generates a

uniformly recurrent language.

Proof
See the proof of Lemma 9 in [12].

Proposition 1. Suppose L has no strong bispecial word. Then there are at most
a finite number of orbits {Snx, n ∈ Z}, x ∈ XL, with x not recurrent.

Proof
See the proof of Proposition 17 in [12].

Proposition 2. Let L be a recurrent language satisfying a local order condition.
Then L is a finite union of uniformly recurrent languages.

Proof
See the proof of Proposition 12 in [12].

Lemma 5. Given a language L, we denote by L′ the sublanguage of L gener-
ated by all recurrent sequences in XL. Then L′ is a recurrent language over an
alphabet A′ ⊂ A. Moreover, if L satisfies an order condition, so does L′.

Proof
See the proof of Lemma 18 in [12].



2 Interval exchange transformations

2.1 Definitions

Generalized interval exchange transformations are defined in [1] and [26] and do
generalize the well-known classical, or standard, interval exchange transforma-
tions of [29] [22].

All intervals are open on the right, closed on the left.

Definition 5. A generalized interval exchange transformation is a map T de-
fined on [0, 1) partitioned by intervals Ie, e ∈ A, continuous and (strictly) in-
creasing on each Ie, and such that the TIe, e ∈ A, are intervals partitioning
[0, 1).

The Ie, indexed in A, are called the defining intervals of T .
If the restriction of T to each Ie is an affine map, T is an affine interval

exchange transformation.
If the restriction of T to each Ie is an affine map of slope 1, T is a standard

interval exchange transformation.
The endpoints of the Ie, resp. TIe, excluding 0 and 1, will be denoted by γi,

resp. βj , for i, resp. j, taking #A− 1 values.

Definition 6. T is minimal if every orbit is dense in [0, 1).
T satisfies the i.d.o.c. condition if there is at least one point γi (of Definition

5), and there is no i, j, k ≥ 0, such that T kβi = γj .
A wandering interval is an interval J for which TnJ is disjoint from J for all

n > 0.

Note that our i.d.o.c. condition is a modified version of the one introduced by
Keane [22]; our condition depends on the defining intervals, and is not intrinsic
to T as the original Keane’s condition.

Definition 7. For a generalized interval exchange transformation T , its natu-
ral coding is the language L(T ) generated by all the trajectories, namely the
sequences (xn, n ∈ Z) ∈ AZ where xn = e if Tnx falls into Ie, e ∈ A.

Thus we can look at the symbolic system associated to L(T ). Note that the
set XL(T ) is the closure in AZ of the set of trajectories, for the product topology
defined by the discrete topology on A.

Example 2. A Sturmian language [27] is the natural coding of the standard in-
terval exchange transformation T sending [0, 1 − α) to [α, 1) and [1 − α, 1) to
[0, α) for α irrational; T is conjugate to a rotation of angle α on the 1-torus.

We shall also consider slightly more general codings, by merging into inter-
vals Ĩe some adjacent intervals Ie whose images by T are also adjacent. This is
equivalent to taking the natural coding of another interval exchange transfor-
mation T̃ , but when T is affine, if we define T̃ by the intervals Ĩe it will not
necessarily be affine by our definition, as the slope is not constant on its defining
intervals, see Example 4 below. Thus we define



Definition 8. A language L is a grouped coding of an affine interval exchange
transformation T if there exist intervals Ĩe, e ∈ Ã such that

– each Ĩe is an interval, and a disjoint union of defining intervals of T ,
– T is a continuous monotone map on each Ĩe,
– L is the coding of T by the Ĩe, that is the language generated by the trajec-

tories (xn, n ∈ Z) ∈ ÃZ where xn = e if Tnx falls into Ĩe, e ∈ Ã.

2.2 Interval exchanges satisfy order conditions

Definition 9. A generalized interval exchange transformation defines two or-
ders on A:

– e <D f whenever the interval Ie is strictly to the left of the interval If ,
– e <A f whenever the interval TIe is strictly to the left of the interval TIf .

These orders correspond to the two permutations used by Kerckhoff [23]
to define standard interval exchange transformations: the unit interval is parti-
tioned into semi-open intervals which are numbered from 1 to k, ordered accord-
ing to a permutation π0 and then rearranged according to another permutation
π1; in more classical definitions, there is only one permutation π, which corre-
sponds to π1 while π0 = Id; note that in some papers the orderings are by π−10

and π−11 .

Proposition 3. Let T be a generalized interval exchange transformation. Then
its natural coding L(T ) satisfies an order condition.

Proof
See the proof of Proposition 8 in [12].

T−rγj T−rγj+1 T−rγj+2 T−rγj+3

[wb1] [wb2] [wb3] [wb4] [wb5]

βi βi+1 βi+2 βi+3

T [a1w] T [a2w] T [a3w] T [a4w] T [a5w]

Fig. 1. A bispecial interval



Remark 1. The notion of interval exchange has been extended to interval ex-
changes with flips [28] in the standard case, allowing the slope of T on some
defining intervals to be −1. It can be further extended to generalized interval
exchanges with flips, allowing T to be decreasing on some defining intervals.
The natural codings of such transformations satisfy a flipped order condition,
which is a local order condition where the order <D,w is always the same order
<D, while <A,w is allowed to be either an order <A or its reverse, according
to the number of letters in w corresponding to flipped intervals. Indeed, all the
results in Section 2.3 hold for (generalized) interval exchanges with flips, mutatis
mutandis.

Remark 2. The language of an interval translation mapping [5] does not neces-
sarily satisfy a local order condition: it is possible that TIa intersects TIb for
a 6= b, and, if TIa ∩ TIb intersects both Ic and Id, c 6= d, then the empty word
is a locally strong bispecial. For this family, not much is known; it is an open
question, asked by Boshernitzan, whether all interval translation mappings have
linear complexity. It is generalized to piecewise isometries [18] for which even
less is known.

2.3 The converse

Theorem 1. A language L on at least two letters is the language of a standard
interval exchange transformation satisfying the i.d.o.c. condition if and only if
it satisfies an order condition, is aperiodic and uniformly recurrent, and has no
connection.

Proof
See the proof of Theorem 15 in [12].

Theorem 2. A language L is the language of a generalized, or equivalently of
a standard, minimal interval exchange transformation if and only if it satisfies
an order condition, is aperiodic and uniformly recurrent.

Proof
See the proof of Theorem 14 in [12].

Theorem 1 is proved in [16], and Theorem 2 uses the same method. Some
results similar both to Theorem 2 and Theorem 3 below are proved in [21], using
a description of the evolution of Rauzy graphs which is somewhat cumbersome
to state, but where an order condition seems to be hidden.

Theorem 3. For a language L on an alphabet A, the following are equivalent:

– (i) L satisfies an order condition and is recurrent;
– (ii) L is the language of a standard interval exchange transformation;
– (iii) L is the language of a generalized interval exchange transformation

without wandering intervals.



Proof
See the proof of Theorem 13 in [12].

We want now to get rid of extra conditions besides the order condition;
as the following chain of counter-examples shows, this obliges us to weaken the
classical notion of standard interval exchange, thus the successive generalizations
are indeed relevant.

Example 3 (Fake Sturmian). Let L be generated by the bi-infinite sequence
. . . 111222 . . .. Note that it is of complexity n + 1 but not uniformly recurrent,
and in the founding paper [27] it is not included in Sturmian languges, hence we
call it a fake Sturmian language.

It satisfies the order condition with 1 <D 2, 1 <A 2, but (unsurprisingly as
it is not recurrent) is not the language of a standard interval exchange transfor-
mation as that could only be the identity on two disjoint open intervals I1 and
I2, and the only possible words are 1n and 2m. However, L is the natural coding
of an affine interval exchange transformation: L2 is the language of length 2 of
any affine 2-interval exchange transformation, with the same orders, such that
TI1 is strictly longer than I1, and, as L is determined by L2 because there is no
bispecial word except the empty one, L is indeed the natural coding of any of
these affine interval exchange transformations.

Example 4 (Skew Sturmian). Let L be the language generated by the bi-infinite
sequence . . . 1112111 . . ., which is a skew Sturmian language as defined in [27].

It satisfies the order condition with 1 <D 2, 2 <A 1, but is not the natural
coding of any affine interval exchange transformation T : indeed, the sequence
. . . 1111 . . . in XL would define a fixed point x for T , in the interior of I1, and, if
0 < y < x is the right endpoint of TI2, T would have to send [0, x) to [y, x) and
[x, 1 − y) to [x, 1), thus having a slope < 1 on a part of I1 and a slope > 1 on
another part. However, if L̃ is the language generated by the bi-infinite sequence
. . . 3332111 . . ., as in Example 3 L̃ is the natural coding of any affine interval
exchange transformation T sending I1 = [0, x) to [y, x), I3 = [x, 1− y) to [x, 1),
I2 = [1−y, 1) to [0, y), with 0 < y < x < 1−y. If we now code T by the intervals
Ĩ1 = I1 ∪ I3 and Ĩ2 = I2, we see that L is a grouped coding of an affine interval
exchange transformation as in Definition 8.

Example 5 (Episkew). Let L′ be the Sturmian language which is the natural
coding of the unflipped standard interval exchange transformation T ′ sending
I1 = [0, 1 − α) to [α, 1) and I2 = [1 − α, 1) to [0, α) for an irrational α < 1/2.
Let yn = i whenever Tnα is in Ii, n ≥ 0, and y′n = i whenever Tn(1 − 2α) is
in Ii, n ≤ 0; when α = 3−

√
5

2 , y is the so-called Fibonacci sequence on 1 and 2,
and y′ is y written backwards. Let L be the language generated by the infinite
sequence ...y′−2y′−1y′03y0y1y2... Extending to languages the definition in [3], we
can call it an episkew language. It satisfies the order condition with 1 <D 3 <D 2,
2 <A 3 <A 1 (note that no other order is possible, because of the way the empty
bispecial is resolved).



L is the natural coding of a generalized interval exchange transformation,
by Theorem 4 below, but it is not the natural or grouped coding of any affine
interval exchange transformation: this will be a straightforward consequence of
either one of two independent results we show below, Theorems 6 and 7.

And finally

Theorem 4. A language L is a natural coding of a generalized interval exchange
transformation if and only if L satisfies an order condition.

Proof
See the proof of Theorem 19 in [12].

2.4 Examples and questions

We do not have a complete characterization of the codings of affine interval
exchanges. The best we can do is

Theorem 5. If L is a natural coding of an affine interval exchange transforma-
tion for which the absolute value of the slope is exp θe on the defining interval
Ie, then L satisfies an order condition and for each non recurrent sequence z in
XL,

∑
n≥0 exp

(∑n
j=0 θzj

)
< +∞, and

∑
n>0 exp

(
−
∑−1
j=−n θzj

)
< +∞.

If L satisfies an order condition and there exist real numbers θe, e ∈ A, such
that for each non recurrent sequence z in L,

∑
n≥0 exp

(∑n
j=0 θzj

)
< +∞, and∑

n>0 exp
(
−
∑−1
j=−n θzj

)
< +∞, then L is a group coding of an affine interval

exchange transformation.

Proof
See the proof of Theorem 20 in [12].

The generalizations of standard interval exchanges have seen a recent surge
in activity (see [25] [26] [19] and others) primarily centered on the conjugacy
problem between these different classes of maps; in this context, standard and
generalized interval exchange transformations are the extreme cases while affine
interval exchange transformations constitute a fundamental middle step. The
following questions and conjectures can be considered as related to this problem.

Conjecture 1. The conditions in Theorem 5 are necessary and sufficient for L to
be a natural coding of an affine interval exchange transformation.

Question 1. Does there exist an aperiodic language which is a grouped coding
of an affine interval exchange transformation, but not a natural coding of any
affine interval exchange transformation?

Conjecture 1 and Question 1 suggest what we dare not call a conjecture.



Question 2. Is it true that L is a group coding of an affine interval exchange
transformation if and only if L satisfies an order condition and there exist real
numbers θe, e ∈ A, such that the two following conditions hold?

– For each non recurrent sequence z in L which is not ultimately periodic to
the left,∑
n≥0 exp

(∑n
j=0 θzj

)
< +∞.

– For each non recurrent sequence z in L which is not ultimately periodic to
the right,∑
n>0 exp

(
−
∑−1
j=−n θzj

)
< +∞.

There are many examples of codings of affine interval exchange transfor-
mations which are not natural codings of standard ones; they can be built by
using the methods of [8] [6] [25] and others. But codings of generalized interval
exchange transformations which are not codings of affine ones seem to be com-
pletely new, and we know two combinatorial ways of building them, expressed
in the two following theorems.

Theorem 6. Let L be non recurrent, and a natural coding of a generalized in-
terval exchange transformation T . Suppose the language L′ of Lemma 5 is ape-
riodic, uniformly recurrent, and its arrival and departure orders are conjugate
by a circular permutation. Then T cannot be of class P, class P [20] meaning
that, except on a countable set of points, its derivative DT exists and DT = h
where h is a function with bounded variation, and |h| is bounded from below by
a strictly positive number.

Proof
See the proof of Theorem 23 in [12].

Theorem 7. Let L′ be a natural coding of a non purely periodic standard in-
terval exchange transformation. Let wn = aw′nb, a ∈ A, b ∈ A, be an infinite
sequence of bispecial words in L′ . Let u be the left-sided infinite sequence ending
with wn for all n, and v the right-sided infinite sequence beginning with wn for all
n. Let ω be a symbol which is not a letter of L′, and L be the language generated
by the union of all words in L′ and the bi-infinite word uωv.

Then L is a natural coding of a generalized interval exchange transformation,
but not a grouped coding of any affine interval exchange transformation.

Proof
See the proof of Theorem 24 in [12].

3 Order conditions and the Burrows-Wheeler transform

Let A = {a1 < a2 < · · · < ar} be an ordered alphabet. For a permutation π on
A, we define the order <π by x <π y if π−1x < π−1y.



Definition 10. The (cyclic) conjugates of w = w1 · · ·wn are the words
wi · · ·wnw1 · · ·wi−1, 1 ≤ i ≤ n. If w is primitive, w has precisely n cyclic con-
jugates. Let wi,1 · · ·wi,n denote the i-th conjugate of w where the n conjugates
of w are ordered by ascending lexicographical order. Then the Burrows-Wheeler
transform [7] of w, denoted by B(w), is the word w1,nw2,n · · ·wn,n. It depends
on the given order < on A.
We say w is clustering for the order < and the permutation π [16] if B(w) =
(πa1)

nπa1 · · · (πar)nπar , where π is a permutation on A and na is the number of
occurrences of a in w (we allow some of the na to be 0, thus, given the order
and w, there may be several possible π). We say w is perfectly clustering if it is
clustering for the symmetric permutation πai = ar+1−i, 1 ≤ i ≤ r ([30] though
it is not named).

Non-primitive words. As remarked in [16], the Burrows-Wheeler trans-
form can be extended to a non-primitive word w1 · · ·wn, by ordering its n (non
necessarily different) cyclic conjugates by non-strictly increasing lexicographical
order and taking the word made by their last letters. Then B(vm) is deduced
from B(v) by replacing each of its letters xi by xmi , and vm is clustering for π if
and only if v is clustering for π.

Theorem 8. For a given order < on the alphabet, a primitive word w is clus-
tering for the order < and the permutation π if and only if every bispecial word
v in the language Lw generated by wn, n ∈ N, satisfies the order condition where
the order <D is the order < and the order <A is <π.
All bispecial words in Lw are factors of length at most |w| − 2 of ww.

Proof
We begin by the last assertion. Suppose v is a bispecial of Lw. Then v must
occur at two different positions in some word wk. If |w| = n and |v| ≥ |w| − 1,
this implies in particular wi...wnw1...wi−2 = wj ...wnw1...wj−2 for 1 < j− i < n,
and we notice that each wi is in at least one member of the equality, thus we
get that w is a power of a word whose length is the GCD of n and j − i, which
contradicts the primitivity. Thus the length of v is at most |w| − 2, and v occurs
in ww.

We prove now that our order condition is equivalent to the following modified
order condition: whenever z = z1...zn and z′ = z′1...z

′
n are two different cyclic

conjugates of w, z < z′ (lexicographically) if and only if zk <π z′k for the largest
k ≤ n such that zk 6= z′k. Indeed, by definition z < z′ if and only if zj < z′j
for the smallest j ≥ 1 such that zj 6= z′j . If w satifies the order condition, we
apply it to the bispecial word zk+1...znz1...zj−1, with k and j as defined, and
get the modified order condition. Let v be a bispecial word in Lw; by the first
paragraph of this proof it can be written as z1...zk−1 for some 1 ≤ k ≤ n, with
the convention that k = 1 whenever v is empty, and at least two different cyclic
conjugates z of w, and its possible extensions are the corresponding znz1...zk,
thus, if the modified order condition is satisfied, v does satisfy the requirement
of the order condition.



The modified order condition implies clustering, as then if two cyclic conju-
gates of w satisfy z < z′, their last letters zn and z′n satisfy either zn = z′n or
zn <π z

′
n. Suppose w = w1 · · ·wn is clustering for π. Suppose two cyclic con-

jugates of w are such that zk 6= z′k, zj = z′j for k + 1 ≤ j ≤ n. Then z < z′

is (by definition of the lexicographical order) equivalent to zk+1...znz1..zk <
z′k+1...z

′
nz
′
1..z
′
k, and, as these two words have different last letters, because of the

clustering this is equivalent to zk <π z′k, thus the modified order condition is
satisfied. ut

Theorem 8 remains valid if w = vm is non-primitive (it can be slightly im-
proved as there are less bispecial words to be considered, it is enough to look
at factors of vv of length at most |v| − 2). An immediate consequence is the
following, which seems to be new.

Proposition 4. If w clusters for the order < and the permutation π, its reverse
clusters for the π-order, and the permutation π−1.

Proof
This follows in a straightforward way from Theorem 8. ut

The order condition can be applied to get the clustering properties of classical
families of words. Thus it can be used to reprove the result of [24]: a Sturmian
language contains infinitely many clustering words.

Theorem 9. The natural coding of a standard k-interval exchange in the hy-
perelliptic class (this consists in all the symmetric ones, i.e. those for which the
order <A is the reverse of <D, and all those which can be obtained from the sym-
metric ones by an induction process, see [14]) satisfying the i.d.o.c. condition,
or of any standard 3- or 4-interval exchange satisfying the i.d.o.c. condition,
contains infinitely many clustering words.

Proof
By Theorem 8 and Proposition 3 (or by Theorem 4 of [16]), if L is the language
of a standard interval exchange satisfying the i.d.o.c. condition, w clusters if ww
is in L. The fact that L contains infinitely many squares is proved in [14] for the
hyperelliptic class, [13] for the other cases mentioned above. ut

Note that Theorem 9 has not yet been generalized to wider classes of interval
exchanges. Also, in the forthcoming [17], we shall prove that an Arnoux-Rauzy
language [2] contains finitely many clustering words, while an episturmian lan-
guage [3] may contain finitely or infinitely many clustering words, with a full
characterization of each case.
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