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Abstract. Parikh-collinear morphisms have recently received a lot of at-
tention. They are defined by the property that the Parikh vectors of the
images of letters are collinear. We first show that any fixed point of such
a morphism is automatic. Consequently, we get under some mild techni-
cal assumption that the abelian complexity of a binary fixed point of a
Parikh-collinear morphism is also automatic, and we discuss a general-
ization to arbitrary alphabets. Then, we consider the abelian complexity
function of the fixed point of the Parikh-collinear morphism 0 7→ 010011,
1 7→ 1001. This 5-automatic sequence is shown to be aperiodic, answering
a question of Salo and Sportiello.
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1 Introduction

Let us briefly introduce the main concept of this paper. Details and precise defini-
tions are given in Section 2. Let A be a finite alphabet. A morphism f : A∗ → B∗

is Parikh-collinear if the Parikh vectors Ψ(f(a)), a ∈ A, are collinear (or pairwise
Z-linearly dependent).

Example 1. The morphism f : {0, 1}∗ → {0, 1}∗ with 0 7→ 010011, 1 7→ 1001 is
Parikh-collinear, as is the morphism g : {0, 1, 2}∗ → {0, 1, 2}∗ defined by 0 7→
012, 1 7→ 102201, 2 7→ ε. Any Parikh-constant morphism [26] (i.e., the Parikh
vectors of images of letters are equal) is Parikh-collinear.

Parikh-collinear morphisms have received some attention in recent years.
Cassaigne et al. characterized Parikh-collinear morphisms as those morphisms
that map all words to words with bounded abelian complexity [8]. These mor-
phisms also provide infinite words with interesting properties with respect to
the so-called k-binomial equivalence ∼k. Two words u, v ∈ A∗ are k-binomially
equivalent if

(
u
x

)
=

(
v
x

)
, for all x ∈ A∗ with |x| ≤ k. Recall that a binomial

coefficient
(
u
x

)
counts the number of times x occurs as a subword of u. The k-

binomial complexity function of an infinite word x introduced in [26] is defined
as b

(k)
x : N → N, n 7→ #(Ln(x)/∼k), i.e., length-n factors in x are counted up
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to k-binomial equivalence. (Here b
(1)
x is the usual abelian complexity function

[14].) For a survey on abelian properties of words, see [15]. In a recent work1, we
showed that a morphism is Parikh-collinear iff it maps all words with bounded
k-binomial complexity to words with bounded (k + 1)-binomial complexity (for
all k) [27]. Thus any fixed point of a Parikh-collinear morphism has a bounded
k-binomial complexity for all k (and thus a bounded abelian complexity).

In our computer experiments and research presentations, the first few values
of these bounded complexities on various examples suggested that the abelian
complexity of a fixed point of a Parikh-collinear morphism might be ultimately
periodic. This question was asked independently by Ville Salo when the third au-
thor visited Turku University and by Andrea Sportiello when the second author
gave a presentation at “Journées Combinatoires de Bordeaux” 2023.

Our contributions. Even though Parikh-collinear morphisms are generally
non-uniform, we show in Section 3 that their fixed points are k-automatic for
k =

∑
b∈A |f(b)|b. The result itself, in fact, can be considered folklore. The

(constructive) proof given here was inspired by [7,9] but, as pointed out by the
referees, it can be seen as a consequence of [1, Thm. 2.2 or 4.2], the former of
which is itself a reformulation of a result of Dekking [12] (we note however, that
the statements speak of non-erasing morphisms). It is well known that there
exist infinite sequences that are the fixed points of non-uniform morphisms, but
not k-automatic for any k, and that every k-automatic sequence is the image of
a fixed point of a non-uniform morphism [3]. A recent preprint [18] completely
characterizes those uniformly recurrent (i.e., every factor occurs infinitely often
and with bounded gaps) morphic words that are automatic.

Making use of Büchi’s theorem and first-order logic, we prove in Section 4 that
under some mild assumptions the abelian complexity of a binary fixed point of a
Parikh-collinear morphism is automatic. This result supports the expectation of
the abelian complexity of a k-automatic sequence to exhibit regular behavior in
base-k (cf. Rigo’s conjecture [22], named after the first author of this paper). We
however recall that abelian properties in general cannot be handled with such a
formalism (for instance, Schaeffer showed that the set of occurrences of abelian
squares in the paperfolding word is not k-automatic for any k [28]).

Coming back to Salo and Sportiello’s question; a positive answer to it would
suggest that our second main result is trivial in the sense that any ultimately
periodic sequence is automatic over any base. In Section 5, we propose an answer
to their question by considering the abelian complexity of the fixed point w =
0100111001 · · · of the morphism f : {0, 1}∗ → {0, 1}∗ given in Example 1: we
show that its abelian complexity is aperiodic. We provide two proofs of this
result: we make use of, on the one hand, classical combinatorial arguments, and
on the other, the software Walnut [21,30] to illustrate, in this case, that the study
of abelian complexities is amenable to the first-order logic formalism in practice.

Finally, we explain in Section 6 how the mild assumptions considered here
may be alleviated and the result generalized to arbitrary alphabets.

1 A long version is available at https://doi.org/10.48550/arXiv.2201.04603.

https://doi.org/10.48550/arXiv.2201.04603 
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2 Preliminaries

We recall some basics needed for the paper. More can be found in [2,24,25]. We
let A∗ (resp., AN) denote the set of finite (resp., infinite) words over A equipped
with concatenation. Infinite words are written in bold unless otherwise stated.
We let ε denote the empty word. The length of the word w is denoted by |w| and
the number of occurrences of a letter a in w is denoted by |w|a. The Parikh vector
of a word w ∈ A∗ is defined as the vector Ψ(w) = (|w|a)a∈A ∈ NA. An infinite
word is ultimately periodic if it can be written as uvvv · · · where u, v ∈ A∗ and
v ̸= ε. If it is not the case, it is said to be aperiodic. For an infinite word x and
an integer n ≥ 0, we let L(x) and Ln(x) respectively denote the set of factors of
x and that of length-n factors of x.

A morphism is a map f : A∗ → B∗, where A,B are alphabets, such that
f(xy) = f(x)f(y) for all x, y ∈ A∗. The morphism f is prolongable on the
letter a ∈ A if f(a) = ax for some x ∈ A∗ and limn→∞ |fn(x)| = ∞. We let
fω(a) := limn→∞ fn(a) denote the fixed point of f starting with a; an infinite
word x is called pure morphic if x = fω(a) for some such f and a. An infinite
word is morphic if it can be written as g(fω(a)), where g and f are morphisms
such that f is prolongable on a. For a given morphism f : A∗ → A∗, a letter
a ∈ A is called mortal if fn(a) = ε for some n ≥ 1. If a is not mortal, we call
it immortal. For an integer k ≥ 1, a morphism f : A∗ → B∗ is k-uniform if
|f(a)| = k for all letters a ∈ A. A 1-uniform morphism is called a coding.

For a morphism f : A∗ → A∗ let Mf ∈ NA×A denote the associated matrix
defined by (Mf )a,b = |f(b)|a for a, b ∈ A. Then we have Ψ(f(w)) = MfΨ(w) for
all words w ∈ A∗. A morphism f is primitive if the corresponding matrix Mf is
primitive, that is, there exists a power of Mf having only positive entries.

Two words u, v ∈ A∗ are abelian equivalent if they are obtained as permuta-
tions of each other, and we write u ∼1 v. The latter relation is called the abelian
equivalence already introduced by Erdős [14]. The abelian complexity function
of an infinite word x is defined as ax : N → N, n 7→ #(Ln(x)/∼1).

Introduced by Cobham [11], automatic words have several equivalent defi-
nitions. See [2] for a comprehensive presentation. Let k ≥ 2 be an integer. An
infinite word x is k-automatic if it is the image, under a coding, of a fixed point
of a k-uniform morphism; they form a subclass of morphic words. They can also
be characterized by means of first-order logic. Consider the structure ⟨N,+, Vk⟩,
where Vk(0) := 1 and, for all n ≥ 1, Vk(n) is the largest power of k dividing n.
A set X ⊆ Nd is k-definable if it can be defined by a first-order formula with d
free variables within ⟨N,+, Vk⟩. As a consequence of a theorem of Büchi [5], an
infinite word x is k-automatic iff for every letter a, the set of positions where a
occurs in x is k-definable. Again, we refer the reader to [2,4,10,25].

3 Automaticity of Parikh-collinear Fixed Points

We focus on Parikh-collinear morphisms f that are prolongable on some letter.
For any mortal letter m ∈ A of f we have that f(m) = ε. Indeed, if f(b) ̸= ε
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for a letter b ∈ A and f is prolongable on a, then f(b) contains an occurrence of
a by Parikh-collinearity. Therefore b cannot be mortal. We shall always assume
that the underlying alphabet is minimal. More precisely, we assume that each
letter of A appears in f(a) for any immortal letter a. Again, Parikh-collinearity
implies that the minimal alphabet is well-defined. For an immortal letter a ∈ A,
for each b ∈ A there exists rb ∈ Q such that Ψ(f(b)) = rbΨ(f(a)).

Lemma 2. Let f : A∗ → A∗ be Parikh-collinear and a ∈ A be immortal. Then
Ψ(f(a)) is an eigenvector of Mf associated with the eigenvalue

∑
b∈A |f(b)|b.

Proof. For any word w ∈ A∗, we have

MfΨ(w) =
∑
b∈A

|w|bMfΨ(b) =
∑
b∈A

|w|bΨ(f(b)) =
∑
b∈A

(|w|brb) · Ψ(f(a)).

With the choice w = f(a), we find that Ψ(f(a)) is an eigenvector of Mf associ-
ated with the eigenvalue

∑
b∈A |f(a)|brb =

∑
b∈A |f(b)|b.

When speaking of the eigenvalue of a Parikh-collinear morphism f , we mean
the eigenvalue

∑
b∈A |f(b)|b of Mf . As Mf has rank 1, the only other eigenvalue

is 0 (with multiplicity #A− 1).

Remark 3. If f is prolongable on a letter a, then the eigenvalue k of f is at least
2. Indeed, f(a) must contain at least two occurrences of immortal letters (the
first letter a and another one, say b). If b = a then k ≥ |f(a)|a ≥ 2, otherwise
|f(a)|a, |f(b)|b ≥ 1 by Parikh-collinearity and again k ≥ 2.

In what follows, for an infinite word x, a letter a ∈ A is called left deter-
ministic (resp., right deterministic) if it is always preceded (resp., followed) by a
unique letter b ∈ A in x. In particular, the first letter of x is not left deterministic.

Lemma 4. Let x ∈ AN be a fixed point of the morphism f : A∗ → A∗. Assume
further that, for distinct letters a1, . . . , aℓ, such that a1 · · · aℓ ∈ L(x), ai is
right deterministic for i < ℓ, and aj is left deterministic for j ≥ 2. Factorize
f(a1 · · · aℓ) = u1 · · ·uℓ, with ui ∈ A∗. Then g(x) = x, where g is the morphism
defined by ai 7→ ui for all i ∈ {1, . . . , ℓ}, and c 7→ f(c) for all other c ∈ A.

Proof. Writing w = a1 · · · aℓ, we may factorize x = x0wx1 · · ·wxn · · · , where
xi ∈ (A \ {a1, . . . , aℓ})∗ (and if w appears only a finite number n of times, then
xn ∈ (A \ {a1, . . . , aℓ})N). But we now have g(w) = f(w) and g(xi) = f(xi) for
all i by construction, whence g(x) = f(x) = x.

Notice that if g above is prolongable on the first letter a of x, then x = gω(a).
The reader may wish to consult Example 6 for illustrations of the construc-

tions provided the proof the following theorem.

Theorem 5. Let f : A∗ → A∗ be a Parikh-collinear morphism prolongable on a
letter a ∈ A. Then fω(a) is k-automatic for the eigenvalue k of f .
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Proof. Let us write x := fω(a). Recall from Lemma 2 that Ψ(f(b)) = rbΨ(f(a))
is either the zero vector or an eigenvector of the adjacency matrix Mf associated
with the eigenvalue k. It therefore follows that |f2(b)| = k · |f(b)| for each b ∈ A.

As an intermediate step, we construct a pure morphic word y which can be
mapped, by a coding, to x. To this end, for each immortal letter b ∈ A define the
letters b̂1, . . . , b̂|f(b)| and let B = {b̂i : b ∈ A is immortal, i = 1, . . . , |f(b)|}. Let
τ : B∗ → A∗ be the coding defined by τ (̂bi) = c if the ith letter of f(b) equals
c. Set, for each c ∈ A, the word wc := ĉ1 · · · ĉ|f(c)| if c is immortal, otherwise
set wc = ε. It is now evident that τ(wc) = f(c). Define then the morphism
φ : B∗ → B∗ as follows: for each immortal b ∈ A and i ∈ {1, . . . , |f(b)|}, we set
φ(̂bi) = wτ (̂bi)

. Notice now that τ(φ(̂bi)) = τ(wτ (̂bi)
) = f(τ (̂bi)), and so τ ◦ φ =

f ◦τ as morphisms B∗ → A∗. Moreover τ ◦φn = f ◦τ ◦φn−1 = . . . = fn◦τ . Since
a is immortal we get τ(φn(â1)) = fn(a) for all n ≥ 0, yielding τ(φω(â1)) = x.
We set y = φω(â1).

Next we define a k-uniform morphism g : B∗ → B∗ for which gω(â1) = y
(recall that k ≥ 2 by Remark 3). This implies that x is k-automatic, as then
x = τ(gω(â1)). Fix an immortal letter b ∈ A (we will proceed iteratively for
each of them). The letters b̂i, with i ∈ {1, . . . , |f(b)|}, satisfy the assumptions of
Lemma 4 in y. Notice that τ(φ(wb)) = τ(φ2(̂b1)) = f2(τ (̂b1)) = f2(b), whence
|φ(wb)| = k · |f(b)|. Factorize φ(wb) = u1 · · ·u|wb|, each of the words ui hav-
ing length k. By Lemma 4, we have y = gb(y), where gb : B

∗ → B∗ is defined
by gb(̂bi) = ui and gb(a) = φ(a) for a ∈ B \ {b̂i : i = 1, . . . , |f(b)|} (note that
|gb(̂bi)| = k for each i ∈ {1, . . . , |f(b)|}). We may repeat this operation on gb (se-
quentially) for all the other immortal letters c ∈ A, and the resulting morphism
g is k-uniform for which g(y) = y. Clearly g is prolongable on â1, which suffices
for the claim.

Example 6. Let f be defined by 0 7→ 012; 1 7→ 112002; 2 7→ ε, and let x = fω(0).
Here k = 3. We thus have B = {0̂i, 1̂j : i = 1, 2, 3, j = 1, . . . , 6}, and τ is defined
by 0̂1, 1̂4, 1̂5 7→ 0; 0̂2, 1̂1, 1̂2 7→ 1; 0̂3, 1̂3, 1̂6 7→ 2. We then define φ by

0̂1, 1̂4, 1̂5 7→ w0 = 0̂10̂20̂3; 0̂2, 1̂1, 1̂2 7→ w1 = 1̂11̂21̂31̂41̂51̂6; 0̂3, 1̂3, 1̂6 7→ ε.

Factorizing φ(w0) and φ(w1), respectively, as

φ(w0) = 0̂10̂20̂3 · 1̂11̂21̂3 · 1̂41̂51̂6
φ(w1) = 1̂11̂21̂3 · 1̂41̂51̂6 · 1̂11̂21̂3 · 1̂41̂51̂6 · 0̂10̂20̂3 · 0̂10̂20̂3,

we define g by 0̂1, 1̂5, 1̂6 7→ 0̂10̂20̂3; 0̂2, 1̂1, 1̂3 7→ 1̂11̂21̂3; and 0̂3, 1̂2, 1̂4 7→ 1̂41̂51̂6,
which gives τ(gω(0̂1)) = x.

One notes that there are redundant letters (i.e., they have equal images
under both τ and g ◦ τ); we find a simpler morphism h by identifying them:
0 7→ 012; 1 7→ 134; 2 7→ 506; 3 7→ 506; 4 7→ 134; 5 7→ 506; 6 7→ 012, with which
τ ′(hω(0)) = x, where τ ′ is defined by 0, 5 7→ 0; 1, 3 7→ 1; 2, 4, 6 7→ 2.
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4 Automaticity of the Abelian Complexity

In this section, we consider a Parikh-collinear morphism f : A → A∗ prolongable
on a letter a ∈ A and its fixed point x = fω(a). We set k =

∑
b∈A |f(b)|b to be

the eigenvalue of f . For all n ≥ 0, we let prefn(x) be the length-n prefix of x.
The corresponding cutting set is defined by

CSf,a := {|f(prefn(x))| : n ≥ 0}. (1)

This set simply provides the indices where blocks f(b), with b ∈ A, start in a
factorization of x of the form f(x0)f(x1)f(x2) · · · .

To help the reader, we now start a running example throughout the section.

Running Example 7. Consider f : 0 7→ 010011, 1 7→ 1001 and w = fω(0).
The first five elements in CSf,0 are 0,6, 10, 16, and 22.

Given any integer i, we look for two consecutive integers: the next and pre-
vious elements found in C around i.

Lemma 8. Let C = {0 = c0 < c1 < c2 < · · · } be an infinite k-definable subset
of N. The functions ne : N → N mapping i to the least element in C greater than
or equal to i and pr : N → N mapping i to the greatest element in C less than i,
are k-definable. (We set pr(0) = 0.)

Proof. Since C is k-definable by some formula φC , i.e., φC(j) holds iff j ∈ C.
The functions of the statement are then defined by

ne(i) = j ≡ φC(j) ∧ (i ≤ j) ∧ (∀k)(φC(k) ∧ i ≤ k) → (j ≤ k),

pr(i) = j ≡ φC(j) ∧ (j < i) ∧ (∀k)(φC(k) ∧ k < i) → (k ≤ j).

It is easy to see that the abelian complexity of a binary word x, fixed point
of a (non-erasing) Parikh-collinear morphism, is given by

ax(n) =
1

r + r′

(
max

x∈Ln(x)
(r′|x|1 − r|x|0)− min

x∈Ln(x)
(r′|x|1 − r|x|0)

)
+ 1, (2)

where |f(a)|1 = r
q |f(a)| and |f(a)|0 = r′

q |f(a)| for both a ∈ {0, 1}. Notice that
we have r + r′ = q and r′|f(a)|1 = r|f(a)|0.

Observe that, since f is Parikh-collinear, each full block f(b) occurring in a
factor x has no contribution to the value of r′|x|1 − r|x|0 in the above formula.
This observation is at the core of our reasoning. A similar strategy can be found
in [16] where for factors of the Thue–Morse word, one can disregard full images.

Let x be a length-n factor of x. Then there exist two letters b, b′ ∈ A, a proper
suffix s of f(b), a factor u, and a proper prefix p of f(b′) such that x = sf(u)p.
Due to the previous observation what matters to compute the abelian classes is
therefore the total contribution of both p and s. Note that there are only finitely
many such proper prefixes and suffixes, which is enough to be encoded into a
formula. In addition, empty prefixes or suffixes have no contribution.
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Running Example 9. The word 11|1001|010011|010 = 11f(10)010 is a factor
of length 15 of w occurring at position 4. For this morphism f , we have r = r′ = 1
and q = 2 with the notation of Eq. (2). We have pr(4) = 0 and ne(4) = 6. The
prefix 11 has a contribution of 2 to r′|x|1−r|x|0 and the suffix 010 a contribution
of −1. In Table 1, the contribution (symbolized by c) of each suffix (symbolized
by s) and each prefix (symbolized by p) of f(0) and f(1) is given.

s c s c p c p c

1 1 1 1 01001 −1 100 −1
11 2 01 0 0100 −2 10 0

011 1 001 −1 010 −1 1 1
0011 0 01 0

10011 1 0 −1

Table 1. Contributions (c) to r′| · |1 − r| · |0 of the suffixes (s) and prefixes (p) of f(0)
and f(1) respectively.

For the sake of presentation, we give the next result for binary words under
a mild assumption on CSf,a. In Section 6 we discuss how to generalize it.

Theorem 10. Let x = fω(0) ∈ {0, 1}N be a binary fixed point of a Parikh-
collinear morphism. If CSf,a is k-automatic then ax(n) is k-automatic.

Proof. We can assume that |f(0)| ̸= |f(1)|. Because otherwise f is Parikh-
constant and Guo et al. [17, Thm. 3] showed that the Parikh-constant image
of a k-automatic sequence has k-automatic abelian complexity.

Let x = sf(u)p be the factor of length n occurring in position i where, as
usual, s is a proper suffix of f(b), u is a factor, and p is a proper prefix of f(b′)
for some letters b, b′. Let r, r′ be the constants as in Eq. (2).

If s is non-empty, i.e., if i ̸= ne(i), the letter b is uniquely determined by
ne(i) − pr(i). This difference is equal to |f(b)| and by assumption, distinct let-
ters have images with distinct length. The length of s is given by ne(i) − i.
Consequently, i,ne(i),pr(i) determine if s = ε or, a unique suffix s with a spe-
cific contribution to r′|x|1 − r|x|0.

Similarly, the length of p is zero if i + n − 1 = ne(i + n − 1), i.e., i + n − 1
belongs to CSf,a. If p is non-empty, the letter b′ is uniquely determined by ne(i+
n−1)−pr(i+n−1). Otherwise, the length of p is given by i+n−1−pr(i+n−1).
Consequently, i+n−1,ne(i+n−1),pr(i+n−1) determine if p = ε or, a unique
prefix p with a specific contribution to r′|x|1−r|x|0. Since there are finitely many
prefixes and suffixes, we may define a function contr : (i, n) 7→ r′|x|1−r|x|0 where
x is the length-n factor occurring at position i in x. It is a finite disjunction of
terms of the form
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(ne(i)− pr(i) = z1 ∧ ne(i)− i = z2 ∧ ne(i+ n− 1)− pr(i+ n− 1) = z3

∧ i+ n− 1− pr(i+ n− 1) = z4) → contr(i, n) = λ,

where λ depends on the 4-tuple (z1, z2, z3, z4). The complete formula should also
take into account the test for empty p or s. We illustrate this on our running
example below.

The conclusion follows: the maximum in Eq. (2) is defined as a function of n
by maxx∈Ln(x)(r

′|x|1 − r|x|0) = M ≡ (∃i)(contr(i, n) = M)∧ (∀j)(contr(i, n) ≤
M). One proceeds similarly with the minimum and we thus see that ax(n) is
k-definable. Simply recall that multiplication by a constant is definable in Pres-
burger arithmetic and by Büchi’s theorem, the claim follows.

Running Example 11. With i = 4 and n = 15, we find pr(i) = 0, ne(i) = 6, so
z1 = 6 = |f(0)|, and i+n−1 = 18, pr(18) = 15, ne(18) = 21, so z3 = 6 = |f(0)|.
Since z2 = ne(i)− i = 2, we know that we have the suffix of f(0) of length 2 with
contribution 2 (recall Table 1). Similarly, since z4 = i+n−1−pr(i+n−1) = 3,
we known that we have the prefix of f(0) of length 3 with contribution −1. So
the 4-tuple (6, 2, 6, 3) is associated with the total contribution 3−(−1)

2 − 1 = 1.

We now show on our running example that CSf,0 is k-definable.

Running Example 12. The factor 0100 occurs in w only in position corre-
sponding to prefixes of blocks f(0). Since w is k-automatic for k = 5, there are
two k-definable unary relations φ0(i) and φ1(i) which are true iff 0 and 1 respec-
tively occur in w at position i. So the index i is the starting position of a block
f(0) iff Ψ0(i) ≡ φ0(i)∧φ1(i+ 1)∧φ0(i+ 2)∧φ0(i+ 3) holds. In a similar way,
every block f(1) is preceded in w by a letter 1, so the factor 1100 occurs in posi-
tion i−1 iff an occurrence of f(1) starts in position i. Therefore the index i is the
starting position of a block f(1) iff Ψ1(i) ≡ φ1(i−1)∧φ1(i)∧φ0(i+1)∧φ0(i+2)
holds. From this, we deduce that CSf,0 is k-definable by {i : Ψ0(i) ∨ Ψ1(i)} and
we can therefore apply the above theorem.

5 The Fixed Point of 0 7→ 010011, 1 7→ 1001

We consider the pure morphic word w = fω(0), where f : 0 7→ 010011, 1 7→ 1001
(see Running Example 7). We give two different proofs of the following result.

Proposition 13. The abelian complexity function aw of w is aperiodic.

5.1 Proving Aperiodicity the Old-fashioned Way

It is straightforward to see that w is aperiodic and uniformly recurrent. Further-
more, the frequency of 0 exists and equals 1/2 as this is the case for the images
of both letters. Hence, for each n ≥ 0, there exist length-n factors u, v for which
|u|0 > n/2 and |v|0 < n/2 (see, for example, [23, Lem. 4.3]). The next lemma
shows that aw is bounded by 4.
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Lemma 14. We have aw(2n + 1) ≤ 4 and aw(2n) = 3 for all n ≥ 0. More
precisely, for a factor x ∈ L(w), we have ⌊|x|/2⌋ − 1 ≤ |x|0 ≤ ⌈|x|/2⌉+ 1.

Proof. The claim can be verified for factors of length at most 4 straightforwardly.
For a factor x of length n ≥ 5 we may write x = sf(u)p, where s is a proper suffix
and p is a proper prefix of the image of a letter. Notice that |f(u)|0 = |f(u)|/2,
hence |x|0 = (|x| − |ps|)/2 + |ps|0. Notice here that |ps| and |x| have the same
parity, as |f(u)| has even length. By inspecting all combinations of p and s (with
total length odd and even separately), we find the more precise claim.

To see that aw(2n) = 3, all three values n and n ± 1, for the number of 0s,
are attained, as was asserted in the beginning of this section.

The proof of the following lemma is a tedious exercise using properties es-
tablished above. We omit the proof due to space constraints.

Lemma 15. The abelian complexity function of w satisfies the following.

1. We have aw(5n) = aw(n) for all n ≥ 0.
2. For each j ∈ {1, 2, 3, 4} and for all n ≥ 1, we have aw(5n+ j) ≥ 3.

Proof sketch. 1. The claim essentially follows from two correspondences: We
have minu∈Ln(w){|u|0} < ⌊n/2⌋ iff maxx∈L5n(w){|x|0} > ⌈5n/2⌉. Similarly,
maxu∈Ln(w){|u|0} > ⌈n/2⌉ iff minx∈Ln(w){|x|0} < ⌊5n/2⌋. For the proof one
takes a factor x = sf(u)p, and computes bounds on |u|. Inspecting all possibili-
ties (utilizing Lemma 14) gives the claimed properties.

2. When 5n+j is even, Lemma 14 shows that aw(5n+j) = 3. For each of the
cases j ∈ {1, 2, 3, 4} and for each n for which 5n+j is odd, we exhibit a factor x of
length 5n+j for which |x|0 /∈ 5n+j±1

2 . For example, let u ∈ L(w) be of odd length
n− 1 such that 1u0 ∈ L(w) and |u|0 = ⌊n−1

2 ⌋. Such a factor always exists: there
exist two factors v, v′ and an index i such that |v|0 = n−2

2 , |v′|0 = n
2 , v begins at

position i in w, and v′ begins at position i+1 in w. The only possibility is that v
begins with 1 and v′ ends with 0; u may be then taken to be the overlap of v and
v′. We have |f(u)| = 4·|u|+2·|u|0 = 5n−6 since n is even. Take x = 001f(u)0100.
Then |x| = 5n+ 1 and |x|0 = |f(u)|

2 + 5 = 5n−6
2 + 5 = ⌈ 5n+1

2 ⌉+ 1.

Proof of Proposition 13. We show that aw(n) = 2 iff n = 5m for some m ≥ 0.
The value 2 is unattainable for all even n by Lemma 14. Let n be odd and write
n = 5m ·k with gcd(k, 5) = 1; then aw(5m ·k) = aw(k) by repeated application of
Lemma 15(1). Write k = 5ℓ+ j for some 1 ≤ j ≤ 4 and ℓ ≥ 0. If ℓ = 0 and j = 1
(so n = 5m) we find aw(n) = 2, and if j ≥ 2 we find aw(n) = 3 by inspection.
For ℓ ≥ 1 Lemma 15(2) shows ax(n) ≥ 3.

5.2 Proof of Proposition 13 via Walnut in a Shell

Originally designed by Mousavi [21], Walnut is a free and publicly available
software that allows to prove theorems and properties for the particular family of
automatic words through the lens of first-order logic; see Shallit’s recent book [30]
for a comprehensive presentation. We shall use Walnut to prove Proposition 13.
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The procedure associated to Theorem 5 (complemented with identifying re-
dundant letters and renaming) gives the 5-uniform morphism g : 0 7→ 01023,
1 7→ 14501, 2 7→ 10102, 3 7→ 31450, 4 7→ 45010, and 5 7→ 10231, and the coding
τ : 0, 2, 5 7→ 0; 1, 3, 4 7→ 1, for which w = τ(gω(0)), and which can be used to
define w in Walnut conveniently by:
morphism g "0->01023 1->14501 2->10102 3->31450 4->45010 5->10231";
morphism tau "0->0 1->1 2->0 3->1 4->1 5->0";
promote G g;
image W tau G;

Following the procedure described in Section 4, we construct a DFAO gener-
ating aw. We first recall basic syntax for Walnut. The letters A and E are abbre-
viations for ∀ (“for all”) and ∃ (“there exists”) respectively. The letters ?msd_5
indicates that an expression is to be evaluated using base-5 representations. The
symbol @ specifies the value of an automatic sequence. The symbols &, |, ~, and
=> are logical “and” , “or”, negation and implication respectively.

As in Eq. (1), we define the cutting set (details to understand the formula
can be found in Running Example 12):
def CS "?msd_5 (W[i]=@0 & W[i+1]=@1 & W[i+2]=@0 & W[i+3]=@0)

| (i>0 & W[i-1]=@1 & W[i]=@1 & W[i+1]=@0 & W[i+2]=@0)";
As in Lemma 8, we define the maps ne and pr:

def ne "?msd_5 k >= i & $CS(k) & (A j (j >= i & $CS(j)) => j>=k)";
def pr "?msd_5 k < i & $CS(k) & (A j (j < i & $CS(j)) => j<=k)";

Next we describe the contribution of factors of w starting at position i for all
i ≥ 0. Using the notation from Section 4, for the length-n factor x of w starting
at position i, we write x = sf(u)p where b, b′ ∈ {0, 1}, s is a proper suffix of f(b),
u is a word, and p is a proper prefix of f(b′). We know that x only contributes
to the abelian complexity aw via s and p. Based on Table 1, the following two
binary predicates correspond to integer pairs (c, i) such that the contribution
from the suffix s of f(b) (resp., prefix p of f(b′)) starting at position i (resp.,
ending at position i − 1) equals c − 2. We notably shift true value by 2 as the
variable domain in Walnut is N.
def suffContr "?msd_5 (c=1 & ($ne(i,i+3) & $pr(i,i-1)))

| (c=2 & ($ne(i,i) | $ne(i,i+4)) | ($ne(i,i+2) & $pr(i,i-2)))
| (c=3 & ($ne(i,i+1) | ($ne(i,i+3) & $pr(i,i-3)) | $ne(i,i+5)))
| (c=4 & ($ne(i,i+2) & $pr(i,i-4)))";

def prefContr "?msd_5 (c=0 & ($pr(i,i-4) & $ne(i,i+2)))
| (c=1 & ($pr(i,i-3) | ($pr(i,i-1) & $ne(i,i+5)) | $pr(i,i-5)))
| (c=2 & ($ne(i,i) | $pr(i,i-2))) | (c=3 & ($pr(i,i-1) & $ne(i,i+3)))";

The ternary predicate contr(c, i, n) is satisfied when the prefix contribution
at position i and the suffix contribution at position i+ n total up to c− 4.
def contr "?msd_5 Ed,e $suffContr(d,i) & $prefContr(e,i+n) & (e+d=c)";
Here recall that d− 2 (resp., e− 2) is the contribution of p at position i (resp., s
ending at position i+ n− 1). (In the end we will call on this predicate only for
n > 4, so one does not need to worry what happens when, e.g., n = 0.)

The following predicates accept the pairs (c, n), where c−4 is the max. (resp.,
min.) contribution for the prefixes and suffixes p, s for length-n factors.
def MaxContr "?msd_5 (Ei $contr(c,i,n)) & (Ai,d $contr(d,i,n) => d<=c)";
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def MinContr "?msd_5 (Ei $contr(c,i,n)) & (Ai,d $contr(d,i,n) => d>=c)";
We may now define the abelian complexity function as a binary predicate

abComp(a, n). We have aw(n) = a iff 2 ·a = max(|u|1−|u|0)−min(|u|1−|u|0)+2.
Adding 4 to both min and max simultaneously does not change the sum, so we
may use MaxContr and MinContr in their places (interpreted as functions).
def abComp "?msd_5 (n=0 & a=1) | (n=1 & a=2) | ((n>=2 & n<=4) & a =3)

| (n>4 & (Ec,d $MaxContr(c,n) & $MinContr(d,n) & 2*a = c-d + 2))";
Next we generate aw as a 5-automatic word, so we define the following pred-

icates, for z = 1, 2, 3, 4, which recognize the base-5 representations of integers n
such that aw(n) = z:
def abCompz "?msd_5 $abComp(z,n)";

To express aw as an automatic sequence, we combine the predicates abCompz into
one; in Walnut, this is done with the command
combine abCompW abComp1=1 abComp2=2 abComp3=3 abComp4=4;
Walnut then returns the 9-state deterministic finite automaton with output read-
ing base-5 representations generating aw in Fig. 1.

Fig. 1. The minimal deterministic finite automaton with output reading base-5 repre-
sentations generating the abelian complexity aw.

We now have an automatic way of proving Proposition 13. One may perform
the following query about the aperiodicity of aw, for which Walnut replies TRUE:
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eval isAper "?msd_5 ~(Ei,p (p>0) & Aj ((j>=i)
=> (abCompW[j] = abCompW[j+p])))";

6 Final remarks

Our first main result Theorem 5 is constructive, given the morphism f and let-
ter a ∈ A for which x = fω(a). Our second main result Theorem 10 holds for
those binary x for which the set CSf,a is k-definable. We briefly sketch a plan
for relaxing the assumptions of Theorem 10 to obtain: Assuming f above is non-
erasing, ax is k-automatic (for the eigenvalue k of f), and a DFAO defining it
can be effectively constructed. The main idea is the following: we show that, for
the sequence (pn)n≥0 of length-n prefixes pn = prefn(x) and any letter b ∈ A,
the sequence (|pn|b)n≥0 is k-synchronized, namely, there is an automaton which
accepts the tuples (repk(n), repk(|pn|b)) accordingly padded (where repk(n) de-
note the base-k expansion of n). See again [30, §10] for an excellent introduction.
We may then invoke the result and methods of Shallit [29] to conclude.

As mentioned above, with k the eigenvalue of f , Theorem 5 shows that x is
effectively k-automatic. Since f is assumed non-erasing, it is primitive. Therefore,
by a result of Mossé [20,19], there exists a constant L such that, from any position
i of x, one can determine the indices pr(i) and ne(i) of CSf,a by inspecting the
factor x[i − L...i + L]. Moreover, given f and a, the constant L is effectively
computable by [13]. Therefore, CSf,a is effectively k-definable.

For a prefix pn of the form f(xn)tn where xn is a prefix of x such that
pr(n) = |f(xn)|, we have that |f(xn)|b = r

q |f(x)|, where r = |f(a)|b and q =

|f(a)|. Hence q|pn|b = r|f(xn)|+ q|tn|b. Define the function F (n) = |pn|b. Then

y = F (n) ≡ ∃m, z : (pr(n) = m) ∧ (q · (y − z) = r ·m) ∧ (|x[m...n]|b = z).

Recall that r and q are constants, and notice that |x[pr(n)...n]| attains finitely
many values, whence the last check (|x[m...n]|b = z) can be expressed by a first-
order logical formula with indexing into x. Hence the function F (n) is defined by
a first-order logical formula for which [30, Thm. 10.2.3] applies, and is therefore
synchronized.

We remark that Mossé’s recognizability result referred to in the above has
recently been extended to deal with erasing morphisms [6]. One could hope that
the results therein are useful to obtain the automaticity of the abelian complexity
of any infinite word generated by a Parikh-collinear morphism.
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