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1 Introduction

Expansions of nonnegative real numbers x with respect to a real base β > 1 are
sequences of integer digits (an)n≥0 such that x =

∑∞
n=0

an

βn+1 . A distinguished
expansion of a given x ∈ [0, 1], denoted dβ(x) = (dn)n≥0 and called the β-
expansion of x, is computed by the greedy algorithm: set r0 = x and for all n ≥ 0,
let dn = ⌊βrn⌋ and rn+1 = βrn − dn. These numeration systems, introduced by
Rényi [30], are extensively studied under various points of view and we can only
cite a few of the many possible references [3,15,27,29,33].

In parallel, other numeration systems are also widely studied, this time to
represent nonnegative integers. We choose an increasing integer sequence U =
(Un)n≥0 such that U0 = 1 and the quotients between consecutive terms Un+1

Un

are bounded. A nonnegative integer x is then represented by a finite sequence of
integer digits a0 · · · aℓ−1 such that x =

∑ℓ−1
n=0 anUℓ−1−n. Again, we distinguish

the expansion that is obtained thanks to the greedy algorithm: let ℓ ≥ 0 be
maximal such that x < Uℓ and set r0 = x; then for n ∈ {0, . . . , ℓ − 1}, set
dn = ⌊ rn

Uℓ−1−n
⌋ and rn+1 = rn−dnUℓ−1−n. The so-obtained expansion d0 · · · dℓ−1

is called the U -expansion of x. Similarly, the literature about U -expansions of
nonnegative integers is vast, see [4,5,12,13,18,21,26] for the most topic-related
ones.
⋆ FNRS grant J.0034.22.



2 É. Charlier

There exists an intimate link between β-expansions and U -expansions. Its
study goes back to the work [4] of Bertrand-Mathis. The case where the base
sequence U has a dominant root β > 1 is quite well understood [21]. More pre-
cisely, we say that U has the dominant root β > 1 whenever limn→∞

Un+1

Un
= β.

In particular, for sufficiently large n, the U -expansions of Un−1 share long com-
mon prefixes with specific expansions of 1 with respect to the real base β. In the
case where the base sequence U has no dominant root, a similar phenomenon
occurs with respect to expansions of 1 in a numeration system given by an al-
ternate base (β0, . . . , βp−1) associated with U for some well defined p ≥ 1: for
each i ∈ {0, . . . , p − 1}, we have βi = limn→∞

Unp−i

Unp−i−1
. This discovery was the

original motivation for the study of alternate base expansions of real numbers. It
turns out that a lot of classical results concerning β-expansions of real numbers
extend to this new framework, and sometimes, to the even more general frame-
work of Cantor real bases. The purpose of this survey is to give an overview of
the results obtained so far in these generalized numeration systems. The study
of linear numeration systems without a dominant root will be treated separately,
in a subsequent paper.

2 Cantor real bases and alternate bases

Cantor expansions of real numbers were originally introduced by Cantor in
1869 [7]. A real number x ∈ [0, 1) is represented via a base sequence (bn)n≥0

of integers greater than or equal to 2 as follows:

x =

∞∑
n=0

an∏n
k=0 bk

where for each n ≥ 0, the digit an belongs to {0, . . . , bn − 1}. Many studies are
devoted to Cantor series; see [16,20,22,31] to cite just a few.

In [8], we introduced series expansions of real numbers that are based on
a sequence β = (βn)n≥0 of real numbers greater than 1. We call such a base
sequence β a Cantor real base, and we talk about β-expansions. In doing so,
we generalize both Cantor series and real base expansions. The same framework
was introduced simultaneously in [6]. Moreover, other kinds of expansions with
multiple real bases were also recently studied, see [23,25,28].

2.1 Cantor real bases

Let β = (βn)n≥0 be a sequence of real numbers greater than 1 such that∏∞
n=0 βn = ∞. We call such a sequence β a Cantor real base. We define the

β-value (partial) map valβ : (R≥0)
N → R≥0 by

valβ(a) =

∞∑
n=0

an∏n
k=0 βk

(1)
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for any sequence a = (an)n≥0 over R≥0, provided that the series converges. If
valβ(a) = x then we say that a is an expansion of x in base β. By taking βn = β
for all n ≥ 0, we recover Rényi expansions [30].

We will need to represent real numbers not only in a fixed Cantor real base
β but also in all Cantor real bases obtained by shifting β. We define

β(n) = (βn, βn+1, . . .) for all n ≥ 0.

In particular β(0) = β. We will also need to consider shifted sequences. The shift
operator is given by

σ : AN → AN, (an)n≥0 7→ (an+1)n≥0

(where A is any given set).
As a first result, we mention a characterization of those sequences a ∈ (R≥0)

N

for which there exists a Cantor real base β such that valβ(a) = 1. Note that,
unlike what happens in the real base case [27], given a sequence a, the equation
valβ(a) = 1 admits more than one Cantor real base β as a solution in general.

Theorem 1 ([8]). Let a = (an)n≥0 be a sequence over R≥0. There exists a
Cantor real base β such that valβ(a) = 1 if and only if

∑∞
n=0 an > 1.

2.2 The greedy algorithm

A distinguished expansion of a given x ∈ [0, 1] is obtained thanks to the greedy
algorithm. We first set r0 = x. Then for all n ≥ 0, we compute dn = ⌊βnrn⌋ and
rn+1 = βnrn − dn. The obtained expansion is denoted by dβ(x) = (dn)n≥0 and
is called the β-expansion of x. Thus for all ℓ ≥ 0, one has

x =

ℓ∑
n=0

dn∏n
k=0 βk

+
rℓ∏ℓ

k=0 βk

where rℓ ∈ [0, 1). Note that since a Cantor real base satisfies
∏∞

n=0 βn = ∞,
the latter equality implies the convergence of the greedy algorithm. We let Aβ

denote the (possibly infinite) alphabet {0, . . . , supn≥0⌈βn⌉ − 1} and Dβ denote
the subset of AN

β of the β-expansions of the real numbers in the interval [0, 1),
that is, Dβ = {dβ(x) : x ∈ [0, 1)}.

We can also express the greedy digits dn and remainders rn thanks to the
βn-transformations. For β > 1, the β-transformation is the map

Tβ : [0, 1) → [0, 1), x 7→ βx− ⌊βx⌋.

Then for all x ∈ [0, 1) and n ≥ 0, we have

dn = ⌊βn
(
Tβn−1

◦ · · · ◦ Tβ0
(x)
)
⌋ and rn = Tβn−1

◦ · · · ◦ Tβ0
(x).

We call an alternate base a periodic Cantor real base: there exists p ≥ 1
such that for all n ≥ 0, we have βn = βn+p. In this case we simply write
β = (β0, . . . , βp−1) and the integer p is called the length of the alternate base β.
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Example 1. – Any sequence β = (βn)n≥0 of real numbers greater than 1 that
takes only finitely many values is a Cantor real base since in this case, the
condition

∏∞
n=0 βn = ∞ is trivially satisfied.

– For n ≥ 0, let αn = 1+ 1
2n+1 and βn = 2+ 1

2n+1 . The sequence α = (αn)n≥0

is not a Cantor real base since
∏∞

n=0 αn < ∞. If we perform the greedy
algorithm on x = 1 for the sequence α, we obtain the sequence of digits 10ω
(where the ω notation means an infinite repetition), which is clearly not an
expansion of 1 with respect to α. However, the sequence β = (βn)n≥0 is
indeed a Cantor real base since

∏∞
n=0 βn = ∞.

– If there exists n ≥ 0 such that βn is an integer (without any restriction on
the other βm), then dβ(n)(1) = βn0

ω.
– Let α = 1+

√
13

2 and β = 5+
√
13

6 .
• For the alternate base β = (α, β), we get that dβ(0)(1) = 2010ω and
dβ(1)(1) = 110ω.

• Consider β = (βn)n≥0 the Cantor real base defined by

βn =

{
α, if rep2(n) has an even number of 1’s;
β, otherwise

where rep2(n) is the binary expansion of n. We get the Thue-Morse
sequence β = (α, β, β, α, β, α, α, β, . . .) over the alphabet {α, β}. We
compute dβ(0)(1) = 20010110ω, dβ(1)(1) = 1010110ω and dβ(2)(1) =
110ω. Note that since the base is aperiodic, these computations give us
no information on dβ(n)(1) for n ≥ 3.

– Let φ = 1+
√
5

2 be the Golden Ratio and let β = (3, φ, φ). We have dβ(0)(1) =
30ω, dβ(1)(1) = 110ω and dβ(2)(1) = 1(110)ω.

– For the alternate base β = (
√
6, 3, 2+

√
6

3 ), we have that dβ(0)(1) = 2(10)ω,
dβ(1)(1) = 30ω and dβ(2)(1) = 110020ω. This shows that the β-expansion of
1 can have a period less than the length of the base.

The classical properties of the β-expansion theory are still valid for Cantor
real bases. Until the end of this section, unless otherwise stated, we consider a
fixed Cantor real base β = (βn)n≥0.

Proposition 1. For all x ∈ [0, 1) and all integers n ≥ 0, we have

σn ◦ dβ(x) = dβ(n) ◦ Tβn−1
◦ · · · ◦ Tβ0

(x).

Proposition 2. For all sequences a over N and all x ∈ [0, 1], we have a = dβ(x)
if and only if valβ(a) = x and

∞∑
n=ℓ+1

an∏n
k=0 βk

<
1∏ℓ

k=0 βk
for all ℓ ≥ 0.

Proposition 3. Let a be any expansion of a real number x in [0, 1] in base β.
Then the following four assertions are equivalent.
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1. The sequence a is the β-expansion of x.
2. For all n ≥ 1, we have valβ(n)(σn(a)) < 1.
3. The sequence σ(a) belongs to Dβ(1) .
4. For all n ≥ 1, the sequence σn(a) belongs to Dβ(n) .

Proposition 4. A sequence a over N belongs to the set Dβ if and only if
valβ(n)(σn(a)) < 1 for all n ≥ 0.

Proposition 5. The β-expansion of a real number x ∈ [0, 1] is lexicographically
maximal among all expansions of x in base β.

Proposition 6. The function dβ : [0, 1] → NN is increasing: for all x, y ∈ [0, 1],
we have x < y ⇐⇒ dβ(x) <lex dβ(y).

Corollary 1. If a is a sequence over N such that valβ(a) ≤ 1, then a ≤lex

dβ(1). In particular, the sequence dβ(1) is lexicographically maximal among all
expansions of all real numbers in [0, 1] in base β.

Rényi expansions satisfies the property that considering two real bases α and
β, one has α < β if and only if dα(1) < dβ(1) [27]. The following proposition is
a generalization of a weaker version of this property.

Proposition 7. Let α = (αn)n≥0 and β = (βn)n≥0 be Cantor real bases such
that

∏n
k=0 αk ≤

∏n
k=0 βk for all n ≥ 0. Then dα(x) ≤lex dβ(x) for all x ∈ [0, 1].

However, it is not true that dα(1) <lex dβ(1) implies that
∏n

i=0 αi ≤
∏n

i=0 βi
for all n ≥ 0, as the following example shows. The same example shows that the
lexicographic order on the Cantor real bases is not sufficient either. Here, the
term lexicographic order refers to the following order: α < β whenever there
exists ℓ ≥ 0 such that αn = βn for n < ℓ and αℓ < βℓ.

Example 2. Let α = (2 +
√
3, 2) and β = (2 +

√
2, 5). Then dα(1) = 31ω and

dβ(1) starts with the prefix 32, hence dα(1) <lex dβ(1).

2.3 Quasi-greedy expansions and admissible sequences

An expansion is said to be finite if is ultimately zero, and infinite otherwise.
The length of a finite expansion is the length of the longest prefix ending in a
non-zero digit. In the finite case, we usually omit to write the tail of zeros.

When the β-expansion of 1 is finite, we modify it in order to obtain an infinite
expansion of 1 that is lexicographically maximal among all infinite expansions
of 1. The obtained expansion is denoted by d∗β(1) and is called the quasi-greedy
β-expansion of 1. It is defined recursively as follows:

d∗β(1) =

{
dβ(1), if dβ(1) is infinite;
d0 · · · dn−2(dn−1 − 1)d∗

β(n)(1), if dβ(1) = d0 · · · dn−1 with dn−1 > 0.

Example 3. – When β = (β, β, . . .), we recover the usual definition of the
quasi-greedy β-expansion.
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– Let β = (β0, . . . , βp−1) be an alternate base such that each βi is an integer.
Then for all i ∈ {0, . . . , p− 1}, we have dβ(i)(1) = βi0

ω and

d∗
β(i)(1) = ((βi − 1) · · · (βp−1 − 1)(β0 − 1) . . . (βi−1 − 1))ω.

– Let β = ( 1+
√
13

2 , 5+
√
13

6 ). Since dβ(0)(1) = 201 and dβ(1)(1) = 11, we obtain
d∗
β(1)(1) = (10)ω and d∗

β(0)(1) = 200d∗
β(1)(1) = 200(10)ω = 20(01)ω.

– For β = (3, φ, φ), we directly have that d∗
β(2)(1) = dβ(2)(1) = 1(110)ω. In

order to compute d∗
β(0)(1) and d∗

β(1)(1), we need to go through the definition
several times since dβ(0)(1) = 3 and dβ(1)(1) = 11 are finite. We compute
d∗
β(0)(1) = 2d∗

β(1)(1) = 210d∗
β(0)(1) = (210)ω and d∗

β(1)(1) = 10d∗
β(0)(1) =

10(210)ω = (102)ω.
– Consider β = (3, β, β, β, β, . . .) where β =

√
6(2 +

√
6). We get dβ(0)(1) = 3

and dβ(1)(1) = dβ(1) is infinite not ultimately periodic [2]. Therefore, the
quasi-greedy expansion d∗

β(0)(1) = 2d∗
β(1)(1) is not ultimately periodic.

The following propositions list the main properties of the quasi-greedy β-
expansion of 1.

Proposition 8. The quasi-greedy β-expansion of 1 is an expansion of 1 in base
β, i.e., we have valβ(d

∗
β(1)) = 1.

Proposition 9. If a is a sequence over N such that valβ(a) < 1, then a <lex

d∗β(1). Furthermore, d∗β(1) is lexicographically maximal among all infinite expan-
sions of all real numbers in [0, 1] in base β.

Proposition 10. The quasi-greedy β-expansion of 1 can also be obtained as the
following limit: d∗β(1) = limx→1− dβ(x).

In [29], Parry characterized those sequences over N that belong to Dβ . Such
sequences are sometimes called β-admissible sequences. Analogously, sequences
in Dβ are said to be the β-admissible sequences. The following theorem gener-
alizes Parry’s theorem to Cantor real bases.

Theorem 2 ([8]). A sequence a over N belongs to Dβ if and only if σn(a) <lex

d∗
β(n)(1) for all n ≥ 0.

Example 4. Let β = (3, φ, φ). We obtain from Theorem 2 that a = 210(110)ω

is the β-expansion of some x ∈ [0, 1) since d∗
β(0)(1) = (210)ω, d∗

β(1)(1) = (102)ω

and d∗
β(2)(1) = 1(110)ω. This x is given by valβ(a) =

19+9
√
5

3(7+3
√
5)

.

We then obtain a characterization of the β-expansions of a real number x in
the interval [0, 1] among all its expansions in base β.

Theorem 3 ([8]). An expansion a of some real number x ∈ [0, 1] in base β is
its β-expansion if and only if σn(a) <lex d

∗
β(n)(1) for all n ≥ 1.
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Example 5. Consider β = ( 16+5
√
10

9 , 9). Then dβ(0)(1) = d∗
β(0)(1) = 34(27)ω,

dβ(1)(1) = 9 and d∗
β(1)(1) = 834(27)ω. For all n ≥ 1, we have σ2n(34(27)ω) <lex

d∗
β(0)(1) and σ2n−1(34(27)ω) <lex d

∗
β(1)(1) as prescribed by Theorem 3.

In comparison with the real base expansion theory, considering a Cantor real
base β and a sequence a over N, Theorem 3 does not provide us with a purely
combinatorial condition to check whether a is the β-expansion of 1. More details
will be given in Section 3.2, where we will see that even though an improvement of
this result in the context of alternate bases can be proved, a purely combinatorial
condition cannot exist.

3 Combinatorial properties of alternate base expansions

Recall that an alternate base is a periodic Cantor real base. The aim of this
section is to discuss some results that are specific to these particular Cantor real
bases.

In Theorem 1, we gave a characterization of those sequences a ∈ (R≥0)
N

for which there exists a Cantor real base β such that valβ(a) = 1. Here, we
are interested in the stronger condition of the existence of an alternate base β
satisfying valβ(a) = 1.

Theorem 4 ([8]). Let a be a sequence over R≥0 such that an ∈ O(nd) for some
d ∈ N and let p ∈ N≥1. There exists an alternate base β of length p such that
valβ(a) = 1 if and only if

∑∞
n=0 an > 1. If moreover p ≥ 2, then there exist

uncountably many such alternate bases.

From now on, we let β = (β0, . . . , βp−1) be a fixed alternate base.

3.1 Greedy alternate expansions

The greedy and the quasi-greedy β-expansions of 1 enjoy specific properties
whenever β is an alternate base.

Proposition 11. The β-expansion of 1 is not purely periodic.

In the framework of β-expansions, a real base β is called a Parry number
whenever the quasi-greedy β-expansion of 1 is ultimately periodic. In the con-
text of alternate bases, in order to have an ultimately periodic quasi-greedy
β-expansion of 1, one might think at first that the product δ =

∏p−1
i=0 βi should

be a Parry number since by grouping terms p by p in the sum

a0
β0

+
a1
β0β1

+
a2

β0β1β2
+ · · ·

we get an expansion of the kind

c0
δ

+
c1
δ2

+
c2
δ3

+ · · · .
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But in the previous expression, the numerators are no longer integers. The fol-
lowing example shows that this intuition is not correct, even whenever all quasi-
greedy β(i)-expansions of 1 are ultimately periodic for i ∈ {0, . . . , p− 1}.

Example 6. Consider again the Parry alternate base β = (3, φ, φ). As previously
seen, all the corresponding quasi-greedy expansions of 1 are ultimately periodic.
However, let us show that the product δ = 3φ2 is not a Parry number, and more-
over, none of its powers δn = (3φ2)n is. It is a well-known property of the Golden
Ratio that φn = fnφ+ fn−1 for all n ≥ 1, where (fn)n≥0 = (0, 1, 1, 2, 3, 5, 8, . . .)
is the Fibonacci sequence starting with the initial conditions 0, 1. Therefore,
denoting φ = 1−

√
5

2 , for all n ≥ 1, the minimal polynomial of (3φ2)n can be
computed as

(X − 3n(f2nφ+ f2n−1))(X − 3n(f2nφ+ f2n−1))

= X2 − 3n(f2n + 2f2n−1)X + 32n(−f22n + f2nf2n−1 + f22n−1)

= X2 − 3n(f2n+1 + f2n−1)X + 32n,

since it can be easily verified by induction that we have −f2n + fnfn−1 + f2n−1 =
(−1)n for all n ≥ 1. We can also check that fn+1 + fn−1 ≤ 3

n
2 for all n ≥ 1. But

the quadratic Parry numbers are known to be roots of polynomials of the form
X2 − aX − b with a ≥ b ≥ 1 or of the form X2 − aX + b with a− 2 ≥ b ≥ 1 [2].
Therefore, we get that (3φ2)n is not a Parry number for all n ≥ 1.

Proposition 12. The quasi-greedy expansion d∗β(1) is ultimately periodic if and
only if either an ultimately periodic expansion is reached or only finite expansions
are involved within the first p recursive calls to the definition of d∗β(1).

Ultimately periodic β-expansions will be investigated further in Sections 3.3,
4.1, 4.3 and 4.4.

3.2 Admissible sequences in alternate bases

The condition given in Theorem 3 does not allow us to check whether a given
expansion of 1 is the β-expansion of 1 without effectively computing the quasi-
greedy β-expansion of 1, and hence the β-expansion of 1 itself. The following
result provides us with such a condition in the case of alternate bases, provided
that we are given the quasi-greedy β(i)-expansions of 1 for i ∈ {1, . . . , p − 1}.
Note that the shifted sequences starting in positions that are multiple of p are
compared with the sequence a itself and not with d∗β(1) as in Theorem 3.

Proposition 13. An expansion a of 1 in the alternate base β is the β-expansion
of 1 if and only if σpm(a) <lex a for all m ≥ 1 and σpm+i(a) <lex d

∗
β(i)(1) for

all m ≥ 0 and i ∈ {1, . . . , p− 1}.

We have seen in Theorem 4 that considering a sequence a over N, there may
exist more than one alternate base β of a given length such that valβ(a) = 1.
Moreover, among all of these alternate bases, it may be that some are such
that a is greedy and others are such that a is not. Thus, a purely combinatorial
condition for checking whether an expansion is greedy cannot exist.
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Example 7. Consider a = 2(10)ω. Then valα(a) = valβ(a) = 1 for both α =
(1 + φ, 2) and β = ( 3110 ,

420
341 ). It can be checked that dα(1) = a and dβ(1) ̸= a.

Furthermore, a sequence a can be greedy for more than one alternate base.

Example 8. The sequence 110ω is the expansion of 1 with respect to the three
alternate bases φ, ( 5+

√
13

6 , 1+
√
13

2 ) and (1.7, 1
0.7 ).

3.3 The alternate β-shift

Let us recall some definitions from symbolic dynamics. For a finite alphabet A,
a subset of AN is called a subshift of AN if it is shift-invariant and closed with
respect to the product topology. For a subset S of AN, we let Fac(S) denote the
set of all finite factors of all elements in S. A subshift S of AN is said to be sofic
if the language Fac(S) ⊂ A∗ is accepted by a finite automaton.

In this section, we generalize the notion of β-shift to the context of alternate
bases, and study its properties. First, we let Sβ denote the topological closure
of Dβ with respect to the product topology.

Proposition 14. A sequence a over N belongs to Sβ if and only if σn(a) ≤lex

d∗
β(n)(1) for all n ≥ 0.

Proposition 15. Let a, b ∈ Sβ.

1. If a <lex b then valβ(a) ≤ valβ(b).
2. If valβ(a) < valβ(b) then a <lex b.

Proposition 16. For all n ≥ 0, if w ∈ Sβ(n) then σ(w) ∈ Sβ(n+1) .

Since the set Sβ is not shift-invariant, we rather consider the set

Σβ =

p−1⋃
i=0

Sβ(i) .

Proposition 17. The sets Σβ is closed and shift-invariant.

The subset Σβ is thus a subshift of AN
β, which we call the β-shift.

Proposition 18. We have Fac(Dβ) = Fac(Sβ) = Fac(Σβ).

We define Parry alternate bases as the alternate bases β such that all d∗
β(i)(1)

are ultimately periodic for i ∈ {0, . . . , p − 1}. We will see that, analogously to
what happens for real base expansions, Parry alternate bases are exactly those
alternate bases giving rise to a sofic β-shift, which justifies the terminology.

For a Parry alternate base β, we define a deterministic finite automaton Aβ =
(Q, I, F,Aβ, δ). Without loss of generality, we can consider that the involved
periods are all multiples of the length p of the base. Thus, let us write

d∗
β(i)(1) = ti,0 · · · ti,mi−1(ti,mi · · · ti,mi+nip−1)

ω.
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Then the set of states is Q = {0, . . . , p− 1}× {0, . . . ,mi +nip− 1}. The set I of
initial states and the set F of final states are defined as I = {0, . . . , p− 1}× {0}
and F = Q. The (partial) transition function δ : Q×Aβ → Q of the automaton
Aβ is defined as follows. For each state (i, k) ∈ Q, we have

δ((i, k), ti,k) =

{
(i, k + 1), if k < mi + nip− 1;

(i,mi), otherwise

and δ((i, k), s) = ((i + k + 1) mod p, 0) for all s ∈ {0, . . . , ti,k − 1}. By using
Theorem 2 and Proposition 18, we get the following result.

Proposition 19. The automaton Aβ accepts the language Fac(Σβ).

This implies that the β-shift associated with a Parry alternate base is sofic.
As it turns out, the converse is also true, so that we obtain the following result
extending a result of Bertrand-Mathis for real bases [3]. Proving this result
turned out to be much more difficult than the original result for p = 1.

Theorem 5 ([8]). The alternate β-shift is sofic if and only if β is a Parry
alternate base.

Example 9. The finite automaton of Figure 1 accepts the set of factors of ele-
ments in the β-shift for β = ( 1+

√
13

2 , 5+
√
13

6 ); also see Examples 1 and 3.

0, 0 0, 1 0, 2 0, 3

1, 0 1, 1

2

0, 1

0 0

1

0

1

0

0

Fig. 1. A deterministic automaton accepting Fac(Σβ) for β = ( 1+
√
13

2
, 5+

√
13

6
).

Interestingly, some new phenomena occur in the extended framework of al-
ternate bases when looking at subshifts of finite type. Recall that a subshift is
said to be of finite type if its minimal set of forbidden factors is finite. For p = 1,
it is well known that the β-shift is of finite type if and only if dβ(1) is finite [3].
However, this result does not generalize to p ≥ 2 since for the alternate base
β = ( 1+

√
13

2 , 5+
√
13

6 ), we get d∗
β(0)(1) = 20(01)ω and d∗

β(1)(1) = (10)ω, thus we
see that all words in 2(00)∗2 are factors avoided by Σβ. Therefore, even though
the β(i)-expansions of 1 are finite for i ∈ {1, 2} as we have seen in Example 1,
the associated β-shift is not of finite type.
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4 Algebraic properties of alternate base expansions

In this section, we report on the two works [10,11] were we studied the algebraic
properties of alternate bases β = (β0, . . . , βp−1).

The property of being a Parry alternate base was defined in the previous
section from a combinatorial point of view. Here we provide some algebraic nec-
essary/sufficient conditions to have a Parry alternate base. Then, in the (stricly)
stronger situation where the product δ =

∏p−1
i=0 βi is a Pisot number and all the

bases βi belong to the extended field Q(δ), we will be able to say much more. On
the one hand, we obtain generalizations of some results of Schmidt [33] giving
rise to an elementary proof of the original result. On the other hand, we ob-
tain an analogue of Frougny’s result [18] concerning normalization of real bases
expansions: under these assumptions, the normalization function is computable
by a finite Büchi automaton, and furthermore, we effectively construct such an
automaton. Results on normalization will be presented in Section 5.

4.1 A necessary condition for being a Parry alternate base

The following result gives a necessary condition on β = (β0, . . . , βp−1) to be a
Parry alternate base, that is, to have eventually periodic β(i)-expansions of 1 for
all i ∈ {0, . . . , p− 1}.

Theorem 6 ([11]). If β is a Parry alternate base, then δ is an algebraic integer
and βi ∈ Q(δ) for all i ∈ {0, . . . , p− 1}.

The condition that the bases must be expressible as rational functions of the
product δ is a phenomenon that does not show for Rényi numeration systems.
Indeed, this condition is trivially satisfied whenever p = 1. Therefore, we see
once again that new ideas and techniques are necessary in order to understand
the properties of alternate bases.

4.2 Alternate spectrum

An important tool in our study is the spectrum of numeration systems associated
with alternate bases. The spectrum of a real number δ > 1 and an alphabet
A ⊂ Z was introduced by Erdős et al [16] and further studied in [1,17]. For our
purposes, we use a generalized concept with δ ∈ C and A ⊂ C and study its
topological properties.

From now on, we consider a p-tuple D = (D0, . . . , Dp−1) where each Di is an
alphabet of integers containing 0. We use the convention thatDn = Dn mod p and
D(n) = (Dn, . . . , Dn+p−1) for all n ≥ 0. Grouping terms p by p, the left-hand
side of (1) can be written as

+∞∑
m=0

∑p−1
i=0 amp+iβi+1 · · ·βp−1

δm+1



12 É. Charlier

where δ =
∏p−1

i=0 βi. If we add the constraint that each letter an belongs to Dn,
then we obtain an expansion in base δ over the alphabet

D =

{
p−1∑
i=0

aiβi+1 · · ·βp−1 : ∀i ∈ {0, . . . , p− 1}, ai ∈ Di

}
.

We define the alternate spectrum to be the set

XD(δ) =

{
ℓ−1∑
n=0

cnδ
ℓ−1−n : ℓ ≥ 0, c0, c1, . . . , cℓ−1 ∈ D

}
.

For the sake of simplicity, for each i ∈ {0, . . . , p − 1}, we let Xi denote the
spectrum built from the shifted base β(i) and the shifted p-tuple of alphabets
D(i). In particular, we have X0 = XD(δ).

Lemma 1. For each i ∈ {0, . . . , p− 1}, we have Xi · βi +Di = Xi+1 where it is
understood that Xp = X0.

4.3 A sufficient condition for being a Parry alternate base

In this section, we present a sufficient condition for β to be a Parry alternate
base. We proceed in two steps, by studying the properties of the spectrum.

Proposition 20. If Di ⊇ {−⌊βi⌋, . . . , ⌊βi⌋} for all i ∈ {0, . . . , p − 1} and the
spectrum XD(δ) has no accumulation point in R, then β is a Parry alternate
base.

Proposition 21. If δ is a Pisot number and βi ∈ Q(δ) for all i ∈ {0, . . . , p− 1}
then the spectrum XD(δ) has no accumulation point in R.

As a consequence, we get the following theorem, which for the case p = 1 is a
well-known result of Schmidt [33]. In Section 4.4, we will present an alternative
method for proving this result.

Theorem 7 ([11]). If δ is a Pisot number and βi ∈ Q(δ) for all i ∈ {0, . . . , p−
1} then β is a Parry alternate base.

Let us make several remarks concerning this theorem. First, the condition of
δ being a Pisot number is neither sufficient nor necessary for β to be a Parry
alternate base. Indeed, it is not necessary even for p = 1 since there exist Parry
numbers which are not Pisot. To see that it is not sufficient for p ≥ 2, consider
the alternate base β = (

√
β,

√
β) where β is the smallest Pisot number. The

product δ is the Pisot number β. However, the β-expansion of 1 is equal to
d√β(1), which is known to be aperiodic.

Furthermore, the bases β0, . . . , βp−1 need not be algebraic integers in order
to have a Parry alternate base since, for instance, for the Parry alternate base
β = ( 1+

√
13

2 , 5+
√
13

6 ), the second base 5+
√
13

6 is not an algebraic integer.
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4.4 Ultimately periodic alternate base expansions

Here we present two results from [10] generalizing results on ultimately peri-
odic Renyi expansions [33]. Recall that a Salem number is an algebraic integer
greater than 1 whose Galois conjugates lie inside the unit disk with at least one
of them on the unit circle. Thus, the set of algebraic integers greater than 1
whose Galois conjugates lie inside the unit disk is partioned into the Pisot
numbers and the Salem numbers. We study the set Per(β) = {x ∈ [0, 1) :
dβ(x) is ultimately periodic}.

Theorem 8 ([10]).

1. If Q∩ [0, 1) ⊆ ∩p−1
i=0Per(β

(i)) then β0, . . . , βp−1 ∈ Q(δ) and δ is either a Pisot
number or a Salem number.

2. If δ is a Pisot number and β0, . . . , βp−1 ∈ Q(δ) then Per(β) = Q(δ) ∩ [0, 1).

It is interesting to note that when adding the hypothesis p = 1 in our proof
from [10], we obtain a much shorter proof than Schmidt’s original one from [33].

Another particularly nice point is that we recover Theorem 7 as a corollary
of Theorem 8, whereas the proof technique developed in [10] is independent from
the first proof of Theorem 7 since it does not make use of the properties of the
spectrum.

Another consequence of Theorem 8 is the following well-known property of
Pisot numbers.

Corollary 2. If β is a Pisot number then β ∈ Q(βp) for all integer p ≥ 1.

The common proof of this result makes use of algebraic tools such as matrix
diagonalization or the Kronecker theorem stating that if the roots of a monic
polynomial with integers coefficients all lie inside the unit disc then they must
be either zero or roots of unity. No such argument is used in [10].

The second generalization of Schmidt’s results we obtain is the following.

Theorem 9 ([10]). If δ is an algebraic integer that is neither a Pisot number
nor a Salem number then Per(β) ∩Q is nowhere dense in [0, 1).

5 Normalization of alternate base expansions

The normalization function νβ,D : (∪p−1
i=0Di)

N → (∪p−1
i=0 {0, . . . , ⌈βi⌉ − 1})N is the

partial function mapping any expansion a ∈
∏∞

n=0Dn of a real number x ∈ [0, 1)
in base β to the β-expansion of x. We say that νβ,D is computable by a finite
automaton if there exists a finite Büchi automaton accepting the set{

(u, v) ∈
∞∏

n=0

(Dn ×Aβn) : valβ(u) = valβ(v) and ∃x ∈ [0, 1), v = dβ(x)

}
.

Büchi automata are defined as classical automata except for the acceptance
criterion which has to be adapted in order to deal with infinite words: an infinite
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word is accepted if it labels an initial path going infinitely many times through
a final state. A major difference between Büchi and classical automata (i.e.,
accepting finite words) is that a set of infinite words accepted by a finite Büchi
automaton is not necessarily accepted by a deterministic one.

5.1 Zero automaton

Let us now generalize the notion of zero automaton introduced by Frougny in
[18] to the context of alternate bases. The aim is to define a deterministic Büchi
automaton accepting the set

Z(β,D) =

{
(an)n≥0 ∈

+∞∏
n=0

Dn :

+∞∑
n=0

an∏n
k=0 βk

= 0

}
of all expansions of zero the n-th digit of which belongs to the alphabet Dn. This
will be one of the key ingredient in order to compute the normalization function
by using a finite (two-tape) Büchi automaton.

We define

M =

+∞∑
n=0

max(Dn)∏n
k=0 βk

and m =

+∞∑
n=0

min(Dn)∏n
k=0 βk

where max(Dn) and min(Dn) respectively denote the maximal and minimal digit
in the alphabet Dn. Then for each i ∈ {0, . . . , p− 1}, we let Mi and mi denote
the numbers M and m corresponding to the shifted base β(i) and the shifted
p-tuple of alphabets D(i) respectively. In particular, we have M0 = M and
m0 = m. We define the zero automaton Z(β,D) associated with the alternate
base β and the p-tuple of alphabets D as the deterministic Büchi automaton
Z(β,D) = (Qβ,D, (0, 0), Qβ,D,∪p−1

i=0Di, δ) where the set of states is

Qβ,D = ∪p−1
i=0 ({i} × (Xi ∩ [−Mi,−mi]))

and the (partial) transition function δ : Qβ,D × ∪p−1
i=0Di → Qβ,D is defined as

follows: for (i, s) ∈ Qβ,D and a ∈ Di, we have δ((i, s), a) = ((i+1) mod p, βis+a).
Observe that since we have assumed that all the alphabets Di contain the digit
0, the initial state (0, 0) is indeed an element of Qβ,D. Moreover, if s ∈ Xi and
a ∈ Di then βis+ a ∈ Xi+1 by Lemma 1.

Proposition 22. The zero automaton Z(β,D) accepts the set Z(β,D).

Example 10. Consider the alternate base β = ( 1+
√
13

2 , 5+
√
13

6 ) and the pair of al-
phabets D = ({−2,−1, 0, 1, 2}, {−1, 0, 1}). Then M0 = −m0 = valβ(0)((21)ω) ≃
1.67994 and M1 = −m1 = valβ(1)((12)ω) ≃ 1.86852. The zero automaton
Z(β,D) is depicted in Figure 2 where the states with first components 0 and
1 are colored in pink and purple respectively, and where the edges labeled by
−2,−1, 0, 1 and 2 are colored in dark blue, dark green, red, light green and light
blue respectively. For instance, the sequences 1(10)ω and (012121)ω have value
0 in base β (where 1 and 2 designate the digits −1 and −2 respectively).
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0

1−1

−β1 β1 β1−1−β1+1

2β1−2−2β1+2 β1−2−β1+2

0

1−1

β0−1−β0+1 β0−2−β0+2

β0−3 −β0+3

Fig. 2. The zero automaton Z(β,D) for the alternate base β = ( 1+
√
13

2
, 5+

√
13

6
) and

D = ({−2,−1, 0, 1, 2}, {−1, 0, 1}). The used colors are described within Example 10.

In general, the zero automaton is infinite, i.e., it has infinitely many states.
The following theorem, which generalizes a result from [19], describes when the
zero automaton is actually finite in relation with some property of the spectrum.

Theorem 10 ([11]). The following assertions are equivalent.

1. The set Z(β,D) is accepted by a finite Büchi automaton.
2. The spectrum XD(δ) has no accumulation point in R.
3. The zero automaton Z(β,D) is finite.

Theorem 10 and Proposition 21 combined give us the following result.

Corollary 3. If δ is a Pisot number and βi ∈ Q(δ) for all i ∈ {0, . . . , p − 1}
then the zero automaton Z(β,D) is finite.

5.2 Computing the normalization

We show that the normalization in alternate bases is computable by finite au-
tomaton under certain conditions, in which case we construct such an automaton.

Following the same lines as in the real base case, we start by constructing a
converter by using the zero automaton Z(β,D)) defined in Section 5.1. Consider
two p-tuples of alphabets D = (D0, . . . , Dp−1) and D′ = (D′

0, . . . , D
′
p−1). We

denote the p-tuple of alphabets (D0 − D′
0, . . . , Dp−1 − D′

p−1) by D − D′. The
converter from D to D′ is the Büchi automaton

C(β,D,D′) = (Qβ,D−D′ , (0, 0), Qβ,D−D′ ,∪p−1
i=0 (Di ×D′

i), E)

where E is the set of transitions defined as follows: for (i, s), (j, t) ∈ Qβ,D−D′

and for (a, b) ∈ ∪p−1
i=0 (Di ×D′

i), there is a transition

(i, s)
(a,b)−−−→ (j, t)
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if and only if (a, b) ∈ Di × D′
i and there is a transition (i, s)

a−b−−→ (j, t) in

Z(β,D −D′). Note that the converter is non-deterministic in general.

Proposition 23. The converter C(β,D,D′) accepts the set{
(u, v) ∈

∞∏
n=0

(Dn ×D′
n) : valβ(u) = valβ(v)

}
.

In the case where β is a Parry alternate base, we consider a modification
of the automaton Aβ built in Section 3.3 in order to get a Büchi automaton
accepting the set Dβ. Without loss of generality, we suppose that d∗

β(i)(1) has a
non-zero preperiod for all i ∈ {0, . . . , p− 1}, i.e., in the case of a purely periodic
expansion (t0 · · · tn−1)

ω, we rather consider the writing t0(t1 · · · tn−1t0)
ω. Then

we define the deterministic Büchi automaton Bβ = (Q, I ′, F ′, Aβ, δ) where the
states, the alphabet and the transitions are the same as those of the automaton
Aβ, but now the sets of initial and final states are given by I ′ = {(0, 0)} and
F ′ = {0, . . . , p− 1} × {0}.

Proposition 24. If β is a Parry alternate base then the Büchi automaton Bβ

accepts the set Dβ.

Example 11. Consider again the alternate base β = ( 1+
√
13

2 , 5+
√
13

6 ). As ex-
plained above, since d∗

β(1)(1) is purely periodic, we consider the writing 1(01)ω

instead of (10)ω. We obtain the Büchi automaton Bβ depicted in Figure 3.

0, 0 0, 1 0, 2 0, 3

1, 0 1, 1 1, 2

2

0, 1

0 0

1

0

1

0

0

1

0

Fig. 3. A deterministic Büchi automaton accepting the set Dβ for β = ( 1+
√
13

2
, 5+

√
13

6
).

By combining the automata Bβ and C(β,D,D′) where D′ is the p-tuple
(Aβ0

, . . . , Aβp−1
), we can prove the announced result on normalization.

Theorem 11 ([11]). If δ is a Pisot number and βi ∈ Q(δ) for all i ∈ {0, . . . , p−
1}, then the normalization function νβ,D is computable by a finite automaton.
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6 Ergodic properties of alternate base expansions

In [9], we generalized the β-transformation for a real base β to the setting of
alternate bases β = (β0, . . . , βp−1). As in the real base case, this new trans-
formation, denoted Tβ, can be iterated in order to generate the digits of the
β-expansions of real numbers. The aim of this section is to report on the results
describing the measure theoretical dynamical behavior of Tβ. The dynamical
properties of a lazy β-transformations Lβ are obtained by showing that the lazy
dynamical system is isomorphic to the greedy one. We won’t report on the lazy
algorithm here, and refer the interested reader to [9,14].

6.1 The alternate β-transformation

A (measure preserving) dynamical system (X,F , µ, T ) is said to be ergodic if all
B ∈ F such that T−1(B) = B satisfy µ(B) ∈ {0, 1}, and it is said to be exact if
∩∞
n=0{T−n(B) : B ∈ F} only contains sets of measure 0 or 1. Clearly, any exact

dynamical system is ergodic.
For two measures µ and ν on the same σ-algebra F , we say that µ is absolutely

continuous with respect to ν if for all B ∈ F , ν(B) = 0 implies µ(B) = 0, and we
say that µ and ν are equivalent if they are absolutely continuous with respect
to each other. In what follows, we will be concerned with the Borel σ-algebra
B([0, 1)).

A fundamental dynamical result of real base expansions is the following. This
summarizes results from [29,30,32].

Theorem 12. There exists a unique Tβ-invariant probability measure µβ on
B([0, 1)) that is absolutely continuous with respect to the Lebesgue measure λ
restricted to B([0, 1)). Furthermore, the measures µβ and λ are equivalent on
B([0, 1)) and the dynamical system ([0, 1),B([0, 1)), µβ , Tβ) is ergodic and has
entropy log(β).

We now define the β-transformation by

Tβ : {0, . . . , p−1}×[0, 1) → {0, . . . , p−1}×[0, 1), (i, x) 7→ ((i+1) mod p, Tβi
(x)).

The β-transformation generates the digits dn computed by the greedy algorithm
as follows. For all x ∈ [0, 1) and n ≥ 0, we have dn = ⌊βnπ2(Tn

β (0, x))⌋ where
π2 : N× R → R, (n, x) 7→ x.

6.2 Unique absolutely continuous Tβ-invariant measure

The following proposition provides us with the main tool for the construction of
a Tβ-invariant measure. It is proved by using a result of Lasota and Yorke [24].

Proposition 25. For all integers n ≥ 1 and all real numbers β0, . . . , βn−1 > 1,
there exists a unique (Tβn−1

◦· · ·◦Tβ0
)-invariant probability measure µ on B([0, 1))

that is absolutely continuous with respect to the Lebesgue measure λ restricted to
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B([0, 1)). Furthermore, the measure µ is equivalent to λ on B([0, 1)), its density
function is bounded and decreasing, and the dynamical system

([0, 1),B([0, 1)), µ, Tβn−1
◦ · · · ◦ Tβ0

)

is exact and has entropy log(β0 · · ·βn−1).

For each i ∈ {0, . . . , p−1}, we let µβ,i denote the unique (Tβi+p−1
◦ · · · ◦Tβi

)-
invariant absolutely continuous probability measure given by Proposition 25. Let
us define a probability measure µβ on the σ-algebra

Tp =

{
p−1⋃
i=0

({i} ×Bi) : ∀i ∈ {0, . . . , p− 1}, Bi ∈ B([0, 1))

}
over {0, . . . , p− 1} × [0, 1) as follows. For all B0, . . . , Bp−1 ∈ B([0, 1)), we set

µβ

(
p−1⋃
i=0

({i} ×Bi)

)
=

1

p

p−1∑
i=0

µβ,i(Bi).

Let us also define another measure λp over the σ-algebra Tp, which we call the
p-Lebesgue measure. For all B0, . . . , Bp−1 ∈ B([0, 1)), we set

λp

(
p−1⋃
i=0

({i} ×Bi)

)
=

1

p

p−1∑
i=0

λ(Bi). (2)

We now state the announced generalization of Theorem 12 to alternate bases.

Theorem 13 ([9]). The measure µβ is the unique Tβ-invariant probability mea-
sure on Tp that is absolutely continuous with respect to λp. Furthermore, µβ is
equivalent to λp on Tp and the dynamical system ({0, . . . , p−1}×[0, 1), Tp, µβ, Tβ)
is ergodic and has entropy 1

p log(β0 · · ·βp−1).

For p ≥ 2, the dynamical system ({0, . . . , p − 1} × [0, 1), Tp, µβ, Tβ) is not
exact even though the dynamical systems ([0, 1),B([0, 1)), µβ,i, Tβi+p−1 ◦· · ·◦Tβi)
are exact for all i ∈ {0, . . . , p− 1}. It suffices to note that the dynamical system
({0, . . . , p − 1} × [0, 1), Tp, µβ, T

p
β) is not ergodic for p ≥ 2. Indeed, we have

T−p
β ({0} × [0, 1)) = {0} × [0, 1) whereas µβ({0} × [0, 1)) = 1

p .

6.3 Density functions

We obtain a formula for the density function dµβ

dλp
by using the density functions

dµβ,i

dλ for i ∈ {0, . . . , p− 1}.

Proposition 26. The density function dµβ

dλp
of µβ with respect to λp is

p−1∑
i=0

(
dµβ,i

dλ
◦ π2

)
· χ{i}×[0,1).
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6.4 Frequencies

We now turn to the frequencies of the digits in the β-expansions of real numbers
in the interval [0, 1). Recall that the frequency of a digit d occurring in the
β-expansion (an)n≥0 of a real number x in [0, 1) is equal to

lim
n→∞

1

n
#{0 ≤ k < n : ak = d},

provided that this limit exists.

Proposition 27. For λ-almost all x ∈ [0, 1), the frequency of any digit d occur-
ring in the β-expansion of x exists and is equal to

1

p

p−1∑
i=0

µβ,i

([
d
βi
, d+1

βi

)
∩ [0, 1)

)
.

Note that, when p = 1, the previous result gives back the classical formula
µβ([

d
β ,

d+1
β ) ∩ [0, 1)) where µβ is the measure given in Theorem 12.

6.5 Isomorphism with the dynamical alternate β-shift

The aim of this section is to generalize the isomorphism between the β-transfor-
mation and the β-shift to the framework of alternate bases. We start by providing
some background of the real base case.

For an alphabet A, we let CA denote the σ-algebra generated by the cylinders

CA(a0, . . . , aℓ−1) = {(wn)n≥0 ∈ AN : w0 = a0, . . . , wℓ−1 = aℓ−1}

for all ℓ ≥ 0 and a0, . . . , aℓ−1 ∈ A. Consider the σ-algebra

Gβ =

{
p−1⋃
i=0

({i} × Ci) : ∀i ∈ {0, . . . , p− 1}, Ci ∈ CAβ
∩ Sβ(i)

}

on ∪p−1
i=0 ({i} × Sβ(i)). We define

σp :

p−1⋃
i=0

({i} × Sβ(i)) →
p−1⋃
i=0

({i} × Sβ(i)), (i, w) 7→ ((i+ 1) mod p, σ(w))

ψβ : {0, . . . , p− 1} × [0, 1) →
p−1⋃
i=0

({i} × Sβ(i)), (i, x) 7→ (i, dβ(i)(x)).

Note that the transformation σp is well defined by Proposition 16.

Proposition 28. The map ψβ defines an isomorphism between the dynami-
cal systems ({0, . . . , p − 1} × [0, 1), Tp, µβ, Tβ) and (∪p−1

i=0 ({i} × Sβ(i)),Gβ, µβ ◦
ψ−1
β , σp).
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However, although ψβ is a continuous map, it does not define a topological
isomorphism since it is not surjective.

In view of Proposition 28, the set ∪p−1
i=0 ({i} × Sβ(i)) can be thought of as

an alternate β-shift, that is, the generalization of the β-shift to alternate bases.
However, in Section 3.3, what we called the alternate β-shift is the topological
closure of the union ∪p−1

i=0 Sβ(i) . This definition was motivated by Theorem 5. So
we can say that there are two ways to extend the notion of β-shift to alternate
bases, depending on the way we look at it: either as a dynamical object or as a
combinatorial object.

Thanks to Proposition 28, we obtain an analogue of Theorem 13 for the
transformation σp.

Theorem 14 ([9]). The measure µβ ◦ ψ−1
β is the unique σp-invariant prob-

ability measure on Gβ that is absolutely continuous with respect to λp ◦ ψ−1
β .

Furthermore, µβ ◦ψ−1
β is equivalent to λp ◦ψ−1

β on Gβ and the dynamical system
(∪p−1

i=0 ({i}×Sβ(i)),Gβ, µβ ◦ψ−1
β , σp) is ergodic and has entropy 1

p log(β0 · · ·βp−1).
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