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Characteristic sequences of the sets of sums of
squares as columns of cellular automata⋆

Pierre-Adrien Tahay1

FNSPE, Czech Technical University in Prague, Czech Republic
pierre.adrien.tahay@cvut.cz

Abstract. A classical result due to Lagrange states that any natural
number can be written as a sum of four squares. Characterizations of
integers that are a sum of two and three squares were established by
Fermat, Euler, Legendre and Gauss. In this paper we denote by s1, s2
and s3 the characteristic functions of the integers which are respectively
sums of one, two and three squares. We recall the already known results
about the nonautomaticity of s1 and about the 2-automaticity of s3
and we prove the nonautomaticity of s2. In the second part, we recall
a construction of s1 as a column of a cellular automaton and we give a
construction for s3 as an immediate application of a result of Rowland
and Yassawi about the construction of p-automatic sequences when p is
a prime number [17]. Finally we show that s2 is also constructible as a
column of a cellular automaton and we provide an explicit construction.

Keywords: sum of squares · cellular automata · automatic sequences ·
nonautomatic sequences.

1 Introduction

For all integers k ≥ 1 we define:

sk(n) =

{
1 if n is a sum of k squares,
0 otherwise.

The function s1 is simply the characteristic sequence of the squares and by
definition s1(n) = 1 if and only if there exists m ∈ Z such that n = m2.

We refer to [9] to have a complete survey of the representations of integers
as sums of squares.

In 1632, Girard conjectured that an odd prime number is the sum of two
squares if and only if it is of the form 4k + 1. Fermat proved this result in 1654
and the complete characterisation for all integers was obtained by Euler in the
following century and gives this expression for s2:

s2(n) =

{
1 if all prime divisors q ≡ 3 (mod 4) of n occur in n to an even power
0 otherwise.

⋆ The research received funding from the Ministry of Education, Youth and Sports of
the Czech Republic through the CAAS Project .
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The binary sequence (s2(n))n≥0 = 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, . . . is
equal to 1 at integers of the sequence A001481 in the OEIS [18] and 0 otherwise.

The fact that every natural number can be written as a sum of four squares
was already conjectured by Bachet. The first proof of this result is due to La-
grange in 1770 and so, we have trivially for all k ≥ 4 sk(n) = 1 for all n ≥ 0.

The most difficult case is the three squares theorem. It was established by
Legendre in 1798 and Gauss in 1801. Their results give this expression for s3:

s3(n) =

{
0 if n = 4a(8m+ 7) with nonnegative integers a and m
1 otherwise.

The binary sequence (s3(n))n≥0 = 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, . . . is
equal to 0 at integers of the sequence A004215 in the OEIS [18] and 1 otherwise.

By Langrange’s four-square theorem, only the functions s1, s2 and s3 are of
interest to be studied. The results about the nonautomaticity of s1 are already
well-known [15,16] and a first construction in a column of a cellular automaton
has been obtained by Mazoyer and Terrier in 1999 [14] and a second by Delacourt,
Poupet, Sablik and Theyssier in 2011 [6] which the author has generalized with
Marcovici and Stoll in 2018 to any polynomial P ∈ Q(X) with P (N) ⊂ N [13].
The automaticity of s3 is due to Cobham [4] and we use this fact to build a
cellular automaton with a method developed by Rowland and Yassawi [17]. Our
main results concern the study of s2.

2 Preliminaries

In this section we fix some notations and we recall some basic results of the
theory of finite automata and automatic sequences on the one hand and cellular
automata on the other hand.

2.1 Words and morphisms

An alphabet A is a finite set of symbols called letters. The set A∗ refers to the
set of finite words over A which is the free monoid having neutral element the
empty word ε. The length of a word w = a0a1 · · · an−1, with ai ∈ A is the integer
|w| = n. For an integer k ≥ 2, we denote by Σk the alphabet {0, 1, . . . , k − 1}.
For all n ∈ N we denote by (n)k the standard base-k representation of n. For
two alphabets A and B, a morphism is a map h : A∗ −→ B∗ such that for
all words x, y ∈ Σ∗ we have h(xy) = h(x)h(y). If A = B we can iterate the
morphism h. For all a ∈ A we define h0(a) = a and hi(a) = h(hi−1(a)). For
a morphism h : A −→ A, if there is an integer k such that |h(a)| = k for all
a ∈ A, we said that h is k-uniform. A 1-uniform morphism is called a coding. We
can naturally extend the notion of morphism to infinite words. We said that a
k-uniform morphism h : A −→ A is prolongable if there exists a letter a ∈ A and
a word w ∈ A∗\{ε} such that h(a) = aw. In this case, the sequence (hn(a))n≥0

converges to the infinite word hω(a) = awh(w)h2(w) · · · . Moreover, hω(a) is the
unique fixed point of h which starts with a.

https://oeis.org/A001481
https://oeis.org/A004215
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2.2 Finite automata and automatic sequences

We refer to the book of Allouche and Shallit [1, Sections 5, 6] for a complete
survey of the theory of finite automata and automatic sequences.

Definition 1. A deterministic finite automaton with output (DFAO) is a 6-
tuple (Q, Σk, δ, q0,A, ω) where Q is a finite set of states, q0 ∈ Q is the initial
state, ω : Q −→ A is the output function, and δ : Q×Σk −→ Q is the transition
function. We say that a sequence (un)n≥0 of elements in A is k-automatic if
there exists a DFAO (Q, Σk, δ, q0,A, ω) such that un = ω(δ(q0, (n)k)) for all
n ≥ 0.

Example 1. One of the most famous automatic sequences is the Prouhet–Thue–
Morse or Thue–Morse sequence. There are several equivalent ways to define it.
For example, if we denote by (tn)n≥0 this sequence, it can be defined by:

tn =

{
0, if the number of 1’s in (n)2 is even;

1, otherwise.

With this definition it is clear that (tn)n≥0 is a 2-automatic sequence generated
by the following finite automaton:

q0/0start q1/1

0

1

1

0

To prove that a sequence is automatic, the most natural way is to explicitly
construct a finite automaton that generates it, as for the Thue–Morse sequence in
the previous example. However, in practice there are many criteria for proving
the automaticity of a sequence without building the automaton. One of the
interests is that they make it possible to show, on the contrary, that a sequence
is nonautomatic using the contraposition of one of these criteria. In a recent
paper, Allouche, Shallit and Yassawi give a large number of methods to prove
that a sequence is nonautomatic [2]. See also the paper of Coons [5] where the
author establishes the nonautomaticity of several number theoretic functions
with various criteria.

2.3 Cellular automata

Cellular automata are another model for calculation. They were first introduced
in the 1940s by von Neumann to study a self-reproduction phenomenon. In 1966,
Burks took up and completed von Neumann’s work posthumously [20]. Cellular
automata were definitely popularised by the famous Conway’s Game of Life in
1970.
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These objects have a very different nature from deterministic finite automata,
but rather surprisingly, Rowland and Yassawi established in 2015 a very strong
link between both [17]. Before recalling their result, let us begin with some
definitions.

Definition 2. Let A be a finite set (typically an alphabet) endowed with the
discrete topology and let σ : (Ad)Z −→ AZ be the shift map. A cellular automaton
with memory d is a continuous map Φ : (Ad)Z −→ AZ with respect to the product
topology such that σ ◦ Φ = Φ ◦ σ. The case d = 1 is the classical definition of a
cellular automaton.

By the Curtis–Hedlund–Lyndon theorem [10] the previous definition is equiv-
alent to the following

Definition 3. A map Φ : (Ad)Z −→ AZ is a cellular automaton if and only if
there is a local rule ϕ : (Ad)l+r+1 −→ A for some l ≥ 0 (left radius of ϕ) and
some r ≥ 0 (right radius of ϕ), such that for all R ∈ (AZ)d and for all m ∈ Z,

(Φ(R))(m) = ϕ(R(m− l), R(m− l + 1), . . . , R(m+ r)).

Now, we define the spacetime diagram of a cellular automaton.

Definition 4. If Φ : (Ad)Z −→ AZ is a cellular automaton with memory d,
a spacetime diagram for Φ with initial conditions R0, . . . , Rd−1 is the sequence
(Rn)n≥0 defined recursively by Rn = Φ(Rn−d, . . . , Rn−1) for n ≥ d.

Consequently, for a cellular automaton with memory d, each row is deter-
mined by the previous d rows.

Definition 5. Let q be a power of a prime number. We denote by Fq the finite
field with q elements. In the special case where A = Fq we say that a cellular
automaton Φ : (Fd

q)
Z −→ FZ

q with memory d is linear if Φ is a Fq-linear map.

By the Curtis–Hedlund–Lyndon theorem, a cellular automaton Φ with mem-
ory d is linear if and only if there exist coefficients fj,i ∈ Fq for −l ≤ j ≤ r and

0 ≤ i ≤ d − 1 such that (Φ(R0, . . . , Rd−1))(m) =

d−1∑
i=0

r∑
j=−l

fj,iRi(m + j) for all

R0, . . . , Rd−1 ∈ FZ
q and m ∈ Z.

We can now recall the result of Rowland and Yassawi.

Theorem 1 (Rowland and Yassawi [17]). Let p a prime number and q a
power of p. A sequence of elements in Fq is p-automatic if and only if it is a
column of a spacetime diagram of a linear cellular automaton with memory over
Fq whose initial conditions are eventually periodic in both directions.

Remark 1. The fact that every column of a linear cellular automaton on Fq

is p-automatic was already known since 1993 by Dumas and Litow [12]. Row-
land and Yassawi established the converse by giving a complete characterization
of p-automatic sequences. Moreover their proof is constructive and they give
a method to have an explicit cellular automaton which generates a given p-
automatic sequence. The main ingredient is Christol’s theorem.
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Theorem 2 (Christol [3]). Let q a power of a prime number. A sequence
(un)n≥0 of elements in Fq is q-automatic if and only if its generating series

F (t) =
∑
n≥0

unt
n is algebraic over Fq(t).

The principle of the method of Rowland and Yassawi is to find a polynomial
P ∈ Fq(t, x) such that P (t, F (t)) = 0 whose existence is guaranteed by Chris-
tol’s theorem and define the rule of the linear cellular automaton we compute
the giving p-automatic sequence from the coefficients of P . Several examples of
explicit constructions of classical automatic sequences in columns of cellular au-
tomata are given directly in the article of Rowland and Yassawi or in the thesis
manuscript of the author [17,19].

One of the first results about the construction of sequences as a column of
cellular automata was obtained by Fischer in 1965, who built the characteristic
sequence of prime numbers, using a cellular automaton with more than 30,000
states [8]. In 1997, Korec improved this result with another cellular automaton
with only 11 states [11]. The geometric construction of increasing functions and
closure properties has been established by Mazoyer and Terrier in 1999, which
they call Fischer constructible [14]. Their constructions use signals which are
a way to transmit information by connecting two cells in a cellular automa-
ton. Marcovici, Stoll and Tahay use these kinds of contructions with signals to
provide other constructions for characteristic sequences of polynomials and a
construction for the Fibonacci word which is an emblematic nonautomatic se-
quence and which is also a Sturmian word. Recently, Dolce and Tahay extended
the construction for the Fibonacci word to all Sturmian words with a quadratic
slope also using signals [7]. We refer to [7,14] for a formal definition of signals in
cellular automata and examples of contructions.

3 Study of the automaticity of s1, s2 and s3

3.1 Nonautomaticity of the characteristic sequence of the squares

We recall the following well-known result

Proposition 1 ([15,16]). The sequence (s1(n))n≥0 is nonautomatic.

Ritchie proved in 1963 the fact that (s1(n))n≥0 is not a 2-automatic se-
quence [16]. Minsky and Papert gave an elegant criterion that can be applied to
prove that (s1(n))n≥0 is not k-automatic for any k ≥ 2.

Proposition 2 (Minsky and Papert [15]). Let f : N → N be an increasing
function and we define the set πf (x) = #{n : f(n) ≤ x}. If the two conditions:

1. lim
x→∞

πf (x)

x
= 0 2. lim

n→∞

f(n+ 1)

f(n)
= 1
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are satisfied, then the sequence u = 1f(N) is nonautomatic.

Proposition 1 can be directly deduced from Minsky and Papert’s criterion
with f : N → N, x → x2.

Remark 2. We can find an alternative proof of Proposition 1 using language
theory, see Example 5.5.1 and Example 8.6.2 in [1].

Remark 3. Let A = {a, b, c}. Let f : A∗ −→ A∗ and π : A −→ {0, 1} be the
morphism and the coding defined respectively by:

f :

a 7→ abcc

b 7→ bcc

c 7→ c

and π :

{
a, b 7→ 1

c 7→ 0

It is clear that π(fω(a)) generates (s1(n))n≥0. So, (s1(n))n≥0 is a morphic se-
quence which is nonautomatic.

3.2 Automaticity of (s3(n))n≥0

We give the result on the automaticity of (s3(n))n≥0 already known by Cob-
ham [4] before the one on (s2(n))n≥0 which we establish in the next section.

Proposition 3 ([4]). The sequence (s3(n))n≥0 is 2-automatic.

Proof. Using the observation that a number is not representable in the form
4a(8m + 7) if and only if its binary representation does not terminate with
three successive 1’s followed by an even number of 0’s, Cobham gives an explicit
construction of a finite automaton with 6 states, that generates the sequence
(s3)n≥0 (see Fig. 1 where we use the convention to start with the most significant
digit of the binary expansion to read the automaton).

Cobham deduces from the finite automaton generating (s3(n))n≥0 in Fig. 1
the following 2-uniform morphism g and the coding σ that generates the char-
acteristic sequence of the set of sums of three squares.

Let A = {a, b, c, d, e, f}. Let g : A∗ −→ A∗ and σ : A −→ {0, 1} be the
morphism and the coding defined by:

g :



a 7→ ab

b 7→ ac

c 7→ ad

d 7→ ed

e 7→ fb

f 7→ eb

and σ :

{
a, b, c, e 7→ 1

d, f 7→ 0

Then σ(gω(a)) generates (s3(n))n≥0.
We give now an alternative proof using Christol’s theorem which will be used

to build (s3(n))n≥0 in a column of a cellular automaton in section 4.3.
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q0/1start q1/1 q2/1 q3/0

q4/1

q5/0

0

1

0

1 1

0

0

1

0

1

0

1

Fig. 1. A finite automaton generating the sequence (s3(n))n≥0

Proposition 4. Let F (t) =
∑
n≥0

s3(n)t
n be the generating series of (s3(n))n≥0

defined on F2(t). Let P ∈ F2(t, x) be the polynomial P (t, x) = t+ t2 + t3 + t5 +
t6 + (1 + t8)x+ (1 + t8)x4. Then P (t, F (t)) = 0.

Proof. With Legendre and Gauss characterization for (s3(n))n≥0 we have clearly
for all n ≥ 0, s3(4n) = s3(n), s3(8n + 7) = 0 and s3(8n + 1) = s3(8n + 2) =
s3(8n+ 3) = s3(8n+ 5) = s3(8n+ 6) = 1. Then, we have

F (t) =
∑
n≥0

s3(n)t
n

=
∑
n≥0

s3(4n)t
4n

+
∑
n≥0

s3(8n+ 1)t8n+1 +
∑
n≥0

s3(8n+ 2)t8n+2 +
∑
n≥0

s3(8n+ 3)t8n+3

+
∑
n≥0

s3(8n+ 5)t8n+5 +
∑
n≥0

s3(8n+ 6)t8n+6 +
∑
n≥0

s3(8n+ 7)t8n+7

=
∑
n≥0

s3(n)t
4n +

∑
n≥0

t8n+1 +
∑
n≥0

t8n+2 +
∑
n≥0

t8n+3 +
∑
n≥0

t8n+5 +
∑
n≥0

t8n+6

= (F (t))
4
+ (t+ t2 + t3 + t5 + t6)

1

1 + t8

which shows the result.
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Then, the generating series of (s3(n))n≥0 is algebraic over F2(t), which proves
its 2-automaticity by Christol’s theorem.

3.3 Nonautomaticity of the set of sums of two squares

The nonautomaticity of (s1(n))n≥0 and the 2-automaticity of (s3(n))n≥0 are well
known results with different ways to prove them. A natural question now is to
study the automaticity or the nonautomaticity of (s2(n))n≥0. Let us begin by
recalling this definition.

Definition 6. A sequence (a(n))n≥1 is called multiplicative if, for all integers
m,n ≥ 1 coprime we have a(mn) = a(m)a(n).

Proposition 5. The sequence (s2(n))n≥1 is multiplicative.

Proof. With the identity (a2 + b2)(c2 + d2) = (ac + bd)2 + (ad − bc)2 we have
clearly for all m,n ≥ 0, s2(mn) ≥ s2(m)s2(n).

Now, let m,n ≥ 1 coprime.
If s2(mn) = 0 we have trivially s2(mn) ≤ s2(m)s2(n). If s2(mn) = 1, by the
two squares theorem this means that every prime divisor q ≡ 3 (mod 4) of mn
occurs in mn to an even power. Because m and n are coprime, it is necessarily
also the case for all prime divisors q ≡ 3 (mod 4) respectively in m and in n and
then s2(m) = s2(n) = 1, which completes the proof.

We give now a criterion of nonautomaticity for multiplicative sequences.

Theorem 3 ([2,21]). Let v > 1 be an integer and f a multiplicative function.
Assume that for some integer h ≥ 1 there exist infinitely many primes q1 such
that f(qh1 ) ≡ 0 (mod v). Furthermore assume that there exist relatively prime in-
tegers b and c such that for all primes q2 ≡ c (mod b) we have f(q2) ̸≡ 0 (mod v).
Then the sequence (f(n))n≥1 (mod v) is not k-automatic for any k ≥ 2.

Proposition 6. The sequence (s2(n))n≥1 is not k-automatic for any k ≥ 2.

Proof. Because (s2(n))n≥1 is a binary sequence it equals (s2(n))n≥1 (mod 2).
Moreover (s2(n))n≥1 is multiplicative by Proposition 5, and by the Girard-
Fermat’s theorem, an odd prime number p is a sum of two squares if and only
if p ≡ 1 (mod 4). So, we can apply the previous theorem to (s2(n))n≥1 with
v = 2, h = 1, c = 1, b = 4, the infinity of prime numbers q1 ≡ 3 (mod 4) and for
q2 we can take the prime numbers such that q2 ≡ 1 (mod 4).

4 Construction by cellular automata of s1, s2 and s3

In all our constructions, time axis is oriented upward.
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4.1 Cellular automaton of the characteristic sequence of the square

Here, we recall the construction of Delacourt, Poupet, Sablik and Theyssier [6]
to obtain the characteristic sequence of squares by the hitting of one single signal
in column 0. Vertical signals are called walls and represented by a straight line.
Signals of other slopes are represented by arrows (see Fig. 2). The two first lines
are initial conditions. We start by sending a signal of slope 1 to the northeast-
direction (blue arrow). Every time it meets the wall (represented by a vertical
green straight line), the wall gets shifted by one cell to the right and the blue
signal of slope 1 changes its direction to a blue signal of slope −1. When the blue
signal of slope −1 meets the 0-column, then a 1 is marked, and a new signal of
slope 1 is sent.

4.2 Cellular automaton of the set of sums of two squares

Theorem 4. The sequence (s2(n))n≥0 can be obtained as a column of a cellular
automaton.

Proof. We will use a geometric construction similar to the one for (s1(n))n≥0.
First, we use the fact that for all n ≥ 0 “s1(n) = 1 ⇒ s2(n) = 1” which corre-
sponds to the fact that if an integer is a square n = m2, then it is a sum of two
squares, n = m2 + 02. So, we start by taking up the cellular automaton which
builds the characteristic of squares.
Using exactly the same construction but with each cell shifted one line above,
we obtain all the integers that are sums of two squares of the form n2 + 12.
We represent the signals of slope 1 and slope −1 by red arrows in Fig. 3. In
comparison to Fig. 2, the green wall propagates vertically one more cell before
being shifted to the right when it meets a red signal.
To finish the construction, we need to mark the columns whose horizontal coor-
dinate is a perfect square. We use the general method developed by Marcovici,
Stoll and Tahay to build the polynomial sequences (see [13, Proposition 2]). We
define a new signal of slope 1 in the diagonal of the spacetime diagram (grey
arrows on Fig. 3). If F denotes the cellular automaton of Fig. 2, we build the
cellular automaton σ ◦ F . The blue arrows of slope −1 in Fig. 2 become blue
walls in the columns which correspond to the perfect squares in Fig. 3. When
these blue walls meet the grey diagonal signals, they continue to spread through
the columns.

Now, it just remains to define signals of slope
1

2
from each perfect square m2 in

the colums 0 at the same time as the blue signals of slope 1 (black arrows to
the northeast direction in Fig. 3). When one of these signals meets a blue wall
in a column that is a perfect square n2, it changes its direction and we define a

signal of slope −
1

2
which meets column 0 at the line m2 + n2.
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4.3 Linear cellular automaton of the 2-automatic sequence (s3)n≥0

In this last case, we can use the result of Rowland and Yassawi [17] by using the
polynomial obtained in Proposition 4.

Let F (t) =
∑
n≥0

s3(n)t
n and P (t, x) = t+t2+t3+t5+t6+(1+t8)x+(1+t8)x4

the polynomial such that P (t, F (t)) = 0. We encode the spacetime diagram of

a cellular automaton by the series
∑
n≥0

∑
m∈Z

an,mtnxm, where an,m represents the

cell on row n ∈ N and column m ∈ Z.
In order to apply the method of Rowland and Yassawi, we use the transfor-

mation x −→ 1 + t+ tx to the polynomial P (t, x). We have

P (t, 1 + t+ tx) = t+ t2 + t3 + t5 + t6 + 1 + t+ tx+ t8 + t9 + t9x

+ 1 + t4 + t4x4 + t8 + t12 + t12x4

= tx+ t2 + t3 + t4(1 + x4) + t5 + t6 + t9(1 + x) + t12(1 + x4)

We can divide all the coefficients in the last row by t and we define Q(t, x) =
x + t + t2 + (1 + x4)t3 + t4 + t5 + (1 + x)t8 + (1 + x4)t11 and we have for

G(t) =
∑
n≥1

s3(n+ 1)tn, F (t) = 1 + t+ tG(t) and Q(t, G(t)) = 0.

We denote by Q(0,1) the derivative function of Q with respect to its second
argument. Now, we have G(0) = 0 and Q(0,1)(t, x) = 1 + t8 which satisfies
Q(0,1)(0, 0) ̸= 0.

By Rowland and Yassawi theorem, the power series
Q(0,1)(t, x)

Q(t, x)
=

∑
n≥0

Rn(x)t
n

encodes a spacetime diagram of a cellular automaton where for all n ∈ N and
all m ∈ Z the coefficient xm in Rn(x) represents the cell at row n and column
m and where the sequence (s3(n+ 1))n≥1 occurs in the column −2.

By using the relation Q(0,1)(t, x) = Q(t, x)
∑
n≥0

Rn(x)t
n and by collecting the

terms by common powers of t, we deduce that Rn(x) satisfies the recurrence :

Rn(x) =
1

x
Rn−1(x) +

1

x
Rn−2(x) +

(
1

x
+ x3

)
Rn−3(x) +

1

x
Rn−4(x) +

1

x
Rn−5(x)

+

(
1

x
+ 1

)
Rn−8(x) +

(
1

x
+ x3

)
Rn−11(x),

for all n ≥ 12. Let R−1(x) = s3(0)x
−2 = x−2 and R0(x) = s3(1)x

−2 = x−2.
Then, we define a cellular automaton with memory 14 (12 + 1 + 1), where the
sequence (s3(n))n≥0 occurs in the column −2 which is highlighted in red in the
spacetime diagram in Fig. 4.
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5 Open questions

1. Let sk,p be the characteristic sequence of sums of k pth powers. For every p,
does there exist K such that sk,p is automatic for k ≥ K and nonautomatic
for k < K? Are all these sequences representable by CA? If not, minimal p
and a value of k such that sk,p is not representable?

2. Is it possible to generate s3 by using a geometric construction with signals
similarly to that for s1 and s2?

3. Sequences s1 and s3 are both morphic sequences. Is it also the case for s2?
Because of the nonautomaticity of s2, of course in this case the morphism
would be nonuniform like for s1.

Acknowledgment: The author thanks the anonymous referees for the many
corrections and suggestions for open questions.

A Appendices
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Fig. 2. Construction of (s1(n))n≥0 by a cellular automaton
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