
Jumping Automata over Infinite Words?

Shaull Almagor1[0000−0001−9021−1175] and Omer Yizhaq2

1 Technion, Israel shaull@technion.ac.il
2 Technion, Israel omeryi@campus.technion.ac.il

Abstract. Jumping automata are finite automata that read their input
in a non-consecutive manner, disregarding the order of the letters in the
word. We introduce and study jumping automata over infinite words.
Unlike the setting of finite words, which has been well studied, for infinite
words it is not clear how words can be reordered. To this end, we consider
three semantics: automata that read the infinite word in some order so
that no letter is overlooked, automata that can permute the word in
windows of a given size k, and automata that can permute the word in
windows of an existentially-quantified bound. We study expressiveness,
closure properties and algorithmic properties of these models.

Keywords: Jumping Automata · Parikh Image · Infinite Words

1 Introduction

Traditional automata read their input sequentially. Indeed, this is the case for
most state-based computational models. In some settings, however, the order
of the input does not matter. For example, when the input represents avail-
able resources, and we only wish to reason about their quantity. From a more
language-theoretic perspective, this amounts to looking at the commutative clo-
sure of the languages, a.k.a. their Parikh image. To capture this notion in a
computation model, Jumping Automata were introduced in [20]. A jumping au-
tomaton may read its input in a non-sequential manner, jumping from letter to
letter, as long as every letter is read exactly once. Several works have studied the
algorithmic properties and expressive power of these automata [10,11,24,9,18].

One of the most exciting developments in automata and language theory has
been the extension to the setting of infinite words [4,19,16], which has led to
powerful tools in formal methods. The infinite-word setting is far more com-
plicated than that of finite words, involving several acceptance conditions and
intricate expressiveness relationships. Most notably perhaps, nondeterministic
Büchi automata cannot be determinized, but can be determinized to Rabin au-
tomata [17,19,22].

In this work, we introduce jumping automata over infinite words. The first
challenge is to find meaningful definitions for this model. Indeed, the intuition

? This research was supported by the ISRAEL SCIENCE FOUNDATION (grant No.
989/22)

ar
X

iv
:2

30
4.

01
27

8v
1

 [
cs

.F
L

]
 3

 A
pr

 2
02

3

2 S. Almagor and O. Yizhaq

of having the reading head “jump” to points in the word is ill-suited for infinite
words, since one can construct an infinite run even without reading every letter
(possibly even skipping infinitely many letters) (see Remark 2).

To this end, we propose three semantics for modes of jumping over infinite
words for an automaton A.

– In the jumping semantics, a word w is accepted if A accepts a permutation
of it, i.e., a word w′ that has the same number of occurrences of each letter
as w for letters occurring finitely often, and the same set of letters that occur
infinitely often.

– In the k-window jumping semantics, w is accepted if we can make A accept
it by permuting w within contiguous windows of some fixed size k.

– In the ∃-window jumping semantics, w is accepted if there exists some k such
that we can make A accept it by permuting w within contiguous windows
of size k.

Example 1. Consider a Büchi automaton for the language {(ab)ω} (see Fig. 3).
Its jumping language is {w : w has infinitely many a’s and b’s }. Its 3-window
jumping language, for example, consists of words whose a’s and b’s can be rear-
ranged to construct (ab)ω in windows of size 3, such as (aab · bba)ω. As for its
∃-window jumping language, it contains e.g., the word (aaaabbbb)ω, which is not
in the 3-window language, but does not contain aba2b2a3b3 · · · , which is in the
jumping language.

The definitions above capture different intuitive meanings for jumping: the first
definition only looks at the Parikh image of the word, and corresponds to e.g., a
setting where a word describes resources, with some resources being unbounded.
The second (more restrictive) definition captures a setting where the word cor-
responds to e.g., a sequence of tasks to be handled, and we are allowed some
bounded freedom in reordering them, and the third corresponds to a setting
where we may introduce any finite delay to a task, but the overall delays we
introduce must be bounded.

We study the expressiveness of these semantics, as well as closure properties
and decision problems. Specifically, we show that languages in the jumping se-
mantics are closed under union, intersection and complement. Surprisingly, we
also show that automata admit determinization in this semantics, in contrast
with standard Büchi automata. We further show that the complexity of decision
problems on these automata coincide with their finite-word jumping counter-
parts. Technically, these results are attained by augmenting semilinear sets to
accommodate ∞, and by showing that jumping languages can be described in a
canonical form with such sets.

In the k-window semantics, we show a correspondence with ω-regular lan-
guages, from which we deduce closure properties and solutions for decision prob-
lems. Finally, we show that the ∃-window semantics is strictly more expressive
than the jumping semantics.

Jumping Automata over Infinite Words 3

Paper organization In Section 2 we recap some basic notions and define our
jumping semantics. Section 3 is the bulk of the paper, where we study the jump-
ing semantics. In Section 3.1 we introduce our variant of semilinear sets, and
prove that it admits a canonical form and that it characterizes the jumping lan-
guages. Then, in Sections 3.2 and 3.3 we study closure properties and decision
problems for jumping languages. In Sections 4 and 5 we study the k-window
and ∃-window semantics, respectively. Finally, we conclude with future research
in Section 6. Throughout the paper, our focus is on clean constructions and
decidability. We thus defer complexity analyses to notes that follow each claim.

Related work Jumping automata were introduced in [20]. We remark that [20]
contains some erroneous proofs (e.g., closure under intersection and complement,
also pointed out in [11]). The works in [10,11] establish several expressiveness
results on jumping automata, as well as some complexity results. In [24] many
additional closure properties are established. An extension of jumping automata
with a two-way tape was studied in [9].

Technically, since jumping automata correspond to the semilinear Parikh
image/commutative closure [21], tools on semilinear sets are closely related. The
works in [3,7,23] provide algorithmic results on semilinear sets, which we use
extensively, and in [18] properties of semilinear sets are related to the state
complexity of automata.

More broadly, automata and commutative closure also intersect in Parikh
Automata [13,6,5,12], which read their input and accept if a certain Parikh
image relating to the run belongs to a given semilinear set. In particular, [12]
studies an extension of these automata to infinite words. Another related model
is that of symmetric transducers – automata equipped with outputs, such that
permutations in the input correspond to permutations in the output. These were
studied in [2] in a jumping-flavour, and in [1] in a k-window flavour.

2 Preliminaries and Definitions

Automata A nondeterministic automaton is a 5-tuple A = 〈Σ,Q, δ,Q0, α〉
where Σ is a finite alphabet, Q is a finite set of states, δ : Q × Σ → 2Q is a
nondeterministic transition function, Q0 ⊆ Q is a set of initial states, and α ⊆ Q
is a set of accepting states. When |Q0| = 1 and |δ(q, σ)| = 1 for every q ∈ Q and
σ ∈ Σ, we say that A is deterministic.

We consider automata both over finite and over infinite words. We denote by
Σ∗ the set of finite words over Σ, and by Σω the set of infinite words. For a word
w = σ1, σ2, . . . (either finite or infinite), let |w| ∈ N∪{∞} be its length. A run of
A on w is a sequence ρ = q0, q1, . . . such that q0 ∈ Q0 and for every 0 ≤ i < |w| it
holds that qi+1 ∈ δ(qi, wi+1) (naturally, a run is finite if w is finite, and infinite if
w is infinite). For finite words, the run ρ is accepting if q|w| ∈ α. For infinite words
we use the Büchi acceptance condition, whereby the run ρ is accepting if it visits
α infinitely often. Formally, define Inf(ρ) = {q ∈ Q | ∀i ∈ N ∃j > i, ρj = q},

4 S. Almagor and O. Yizhaq

then ρ is accepting if Inf(ρ) ∩ α 6= ∅. A word w is accepted by A if there exists
an accepting run of A on w.

The language of an automaton A, denoted L(A) is the set of words it accepts.
We emphasize an automaton is over finite words by writing Lfin(A).

Remark 1. There are other acceptance conditions for automata over infinite
words, e.g., parity, Rabin, Streett, co-Büchi and Muller. As we show in Propo-
sition 3, for our purposes it is enough to consider Büchi.

Parikh Images and Permutations Fix an alphabet Σ. We start by defining
Parikh images and permutations for finite words. Consider a finite word x ∈ Σ∗.
For each letter σ ∈ Σ we denote by #σ[x] the number of occurrences of σ in x.
The Parikh image of x is then the vector Ψ(x) = (#σ[x])σ∈Σ ∈ NΣ . We say that
a word y is a permutation of x if Ψ(y) = Ψ(x), in which case we write x ∼ y
(clearly ∼ is an equivalence relation). We extend the Parikh image to sets of
words by Ψ(L) = {Ψ(w) | w ∈ L}.

We now extend the definitions to infinite words. Let N = {0, 1, . . .} be the
non-negative integers, and write N∞ = N ∪ {∞}. Consider an infinite word
w ∈ Σω. We extend the definition of Parikh image to infinite words in the
natural way: Ψ(w) = (#σ[w])σ∈Σ where #σ[w] is the number of occurrences of
σ in w if it is finite, and is ∞ otherwise. Thus, Ψ(w) ∈ NΣ∞. Moreover, since w
is infinite, at least one coordinate of Ψ(w) is ∞, since we often restrict ourselves
to the Parikh images of infinite words, we denote by MΣ = NΣ∞ \ NΣ the set of
vectors that have at least one ∞ coordinate. Note that v ∈MΣ if and only if v
is the Parikh image of some infinite word over Σ.

For words w,w′ ∈ Σω, we abuse notation slightly and write w ∼ w′ if Ψ(w) =
Ψ(w′), as well as refer to w′ as a permutation of w. We now refine the notion of
permutation by restricting permutations to finite “windows”: let k ∈ N, we say
that w is a k-window permutation of w′, and we write w ∼k� w′ (the symbol �
represents “window”) if w = x1 · x2 · · · and w′ = y1 · y2 · · · where for all i ≥ 1
we have |xi| = |yi| = k and xi ∼ yi. That is, w′ can be obtained from w by
permuting contiguous disjoint windows of size k in w. Note that if w ∼k� w′

then in particular w ∼ w′, but the former is much more restrictive.

Semilinear Sets Let N = {0, 1, . . .} be the natural numbers. For dimension
d ≥ 1, we denote vectors in Nd in bold (e.g., p ∈ Nd). Consider a vector b ∈ Nd
and P ⊆ Nd, the linear set generated by the base b and periods P is

Lin(b, P) = {b+
∑
p∈P

λpp | b ∈ Nd and λp ∈ N for all p ∈ P}

A semilinear set is then
⋃
i∈I Lin(bi, Pi) for a finite set I and pairs (bi, Pi).

Semilinear sets are closely related to the Parikh image of regular languages
(in that the Parikh image of a regular language is semilinear) [21]. We will cite
specific results relating to this connection as we use them.

Jumping Automata over Infinite Words 5

Jumping Automata Consider an automaton A = 〈Σ,Q, δ,Q0, α〉. Over finite
words, we view A as a jumping automaton by letting it read its input in a non-
sequential way, i.e. “jump” between letters as long as all letters are read exactly
once. Formally, A accepts a word w as a jumping automaton if it accepts some
permutation of w. Thus, we define the jumping language of A to be

Jfin(A) = {w ∈ Σ∗ | ∃w′ ∼ w such that w′ ∈ Lfin(A)}

We now turn to define jumping automata over infinite words. As discussed
in Section 1, we consider three jumping semantics for A, as follows:

Definition 1. Consider an automaton A = 〈Σ,Q, δ,Q0, α〉.

– Its Jumping language is:
J(A) = {w ∈ Σω | ∃w′ ∼ w such that w′ ∈ L(A)}.

– For k ∈ N, its k-window Jumping language is:
Jk�(A) = {w ∈ Σω | ∃w′ ∼k� w such that w′ ∈ L(A)}.

– Its ∃-window Jumping language is:
J∃�(A) = {w ∈ Σω | ∃k ∈ N ∧ ∃w′ ∼k� w such that w′ ∈ L(A)}.

Remark 2. For jumping automata over finite words, the model is sometimes
defined by allowing the transition function of the automaton to “jump” to any
letter in the input and consume it [20]. For infinite words, this definition does not
capture the (arguably) correct notion of jumping automata, since an automaton
could skip letters without ever returning to them, e.g., for input (ab)ω read only
aω by jumping over all the b’s. Under our definition, the latter is not allowed,
since aω 6∼ (ab)ω. Clearly, however, one can still obtain our “Jumping” definition
by considering permutations of words, rather than a jumping reading head.

3 Jumping Languages

In this section we study the properties of J(A) for an automaton A. We start
by characterizing J(A) using an extension of semilinear sets.

3.1 Jumping Languages and Masked Semilinear Sets

Recall that MΣ = NΣ∞ \ NΣ and consider a vector v ∈ MΣ . We separate the
∞ coordinates of v from the finite ones by, intuitively, writing v as a sum of a
vector in NΣ and a vector from {0,∞}Σ \ {0}. Formally, let = {0,∞}Σ \ {0}
be the set of masks, namely vectors with entries 0 and ∞ that are not all 0, we
refer to each m ∈ as a mask. We denote by m|0 = {σ ∈ Σ | m(σ) = 0} and
m|∞ = {σ ∈ Σ | m(σ) =∞} the 0 and ∞ coordinates of m, respectively.

For x ∈ NΣ and m ∈ let x⊕m ∈MΣ be the vector such that for all σ ∈ Σ
(x+m)σ = xσ if σ ∈ m|0 and (x+m)σ =∞ if σ ∈ m|∞. Note that every v ∈MΣ

can be written as x+m where x is obtained from v be replacing ∞ with 0 (or
indeed with any number), and having m match the ∞ coordinates of v.

6 S. Almagor and O. Yizhaq

We now augment semilinear sets with masks. A masked semilinear set is a
union of the form S =

⋃
m∈ Sm + m where Sm is a semilinear set for every m.

We also interpret S as a subset of MΣ by interpreting addition as adding m to
each vector in the set Sm. Note that the union above is disjoint, since adding
distinct masks always results in distinct vectors.

Consider a mask m ∈ . Two vectors u,v ∈ NΣ are called m-equivalent if
u+m = v+m (i.e., if they agree on m|0). We say that a semilinear set R ⊆ NΣ
is m-oblivious if for every m-equivalent vectors u,v we have u ∈ R ⇐⇒ v ∈ R.
Intuitively, an m-oblivious set does not “look” at m|∞.

We say that the masked semilinear set S above is oblivious if every Sm

is m-oblivious. Note that the property of being oblivious refers to a specific
representation of S with semilinear sets Sm for every mask m. In a way, it is
natural for a masked semilinear set to be oblivious, since semantically, adding
m to a vector in Sm already ignores the ∞ coordinates of m, so Sm should not
“care” about them. Moreover, if a set Sm is m-oblivious, then in each of its linear
components we can, intuitively, partition its period vectors to two types: those
that have 0 in all the masked coordinates, and the remaining vectors that allow
attaining any value in the masked coordinates. We refer to this as a canonical
m-oblivious representation, as follows.

Definition 2. A semilinear set R ⊆ NΣ is in canonical m-oblivious form for
a mask m if R =

⋃k
i=1 Lin(bi, Pi) such that for every 1 ≤ i ≤ k we have Pi =

Qi ∪ Em with the following conditions:

– bi(σ) = 0 for every σ ∈ m|∞.
– p(σ) = 0 for every p ∈ Qi and σ ∈ m|∞.
– Em = {eσ | σ ∈ m|∞} with eσ(τ) = 1 if σ = τ and 0 otherwise.

We now show that every masked semilinear set can be translated to an equiv-
alent one in canonical oblivious form (see example in Fig. 1).

Lin

1

0
9
4

 ,

1

2
5
7

 ,

1
0
1
3

+

 0
0
∞
∞

 Lin

1

0
0
0

 ,

1

2
0
0

 ,

1
0
0
0

 ,

0
0
1
0

 ,

0
0
0
1

+

 0
0
∞
∞

Fig. 1. On the left, a masked semilinear set (actually linear), and on the right an
equivalent oblivious canonical form. The bold numbers on the left get masked away, so
are replaced by 0.

Lemma 1. Consider a masked semilinear set S =
⋃

m∈ Sm + m. Then there
exists an oblivious masked semilinear set T =

⋃
m∈ Tm +m that represents the

same subset of MΣ, and every Tm is in canonical m-oblivious form.

Proof. Intuitively, we obtain the oblivious representation by adding to each Sm

vectors where the ∞-coordinates of m can take any value.

Jumping Automata over Infinite Words 7

Formally, for every mask m ∈ define

Tm = {v ∈ NΣ | ∃u ∈ Sm such that u+m = v +m}

That is, Tm is obtained from Sm by including every vector that is m-equivalent
to some vector in Sm.

By construction, we have that Tm is m-oblivious. Moreover, it is easy to see
that Sm +m = Tm +m. Indeed, Sm ⊆ Tm, thus giving one containment, and for
every x ∈ Tm + m, write x = v + m for some v ∈ Tm, then there exists some
u ∈ Sm with v +m = u+m ∈ Sm +m.

It remains to show that Tm is semilinear and represent it in canonical form.
To this end, for every vector p ∈ NΣ , define p|m by p|m(σ) = p(σ) if σ ∈ m|0
and p|m(σ) = 0 if σ ∈ m|∞. That is, we replace all the ∞ coordinates of m in p
by 0. We lift this to sets of vectors: for a set P , let P |m = {p|m | p ∈ P}.

Now, write Sm =
⋃
i∈I Lin(bi, Pi), we claim the following:

Tm =
⋃
i∈I

Lin(bi|m, Pi|m ∪ Em)

That is, Tm is obtained by zeroing the ∞ coordinates of m in Sm, and then
arbitrarily adding numbers in these coordinates, using eσ ∈ Em (as per Defini-
tion 2).

Let v ∈ Tm, then there exists u ∈ Sm such that v + m = u + m. That is,
u(σ) = v(σ) for all σ ∈ m|0. Since u ∈ Sm, we can write u = bi+λ1p1+. . .+λkpk
for some i ∈ I, p1, . . . , pk ∈ Pi and λ1, . . . , λk ∈ N. It then follows that

v = bi|m + λ1p1|m + . . .+ λkpk|m +
∑

σ∈m|∞

v(σ)eσ

and the latter form is in Lin(bi|m, Pi|m ∪ Em).
Conversely, let v ∈ Lin(bi|m, Pi|m ∪ Em), and write

v = bi|m + λ1p1|m + . . .+ λkpk|m +
∑

σ∈m|∞

βσeσ

Define u = bi + λ1p1 + . . .+ λkpk, then u ∈ Sm and u+ m = v + m (since the
only coordinates where v differs from u are those in m|∞), so v ∈ Tm, and we
are done.

We conclude by defining T =
⋃

m∈ Tm + m, which is an oblivious masked
semilinear set in canonical form, as required. ut

Complexity Analysis 1 (of Lemma 1). The description of T involves introducing
at most |Σ| vectors to the periods of each semilinear set, and changing some
entries to 0 in the existing vectors. Thus, the description of T is of polynomial
size in that of S.

Our main result in this section is that the Parikh images of jumping languages
coincide with masked semilinear sets. We prove this in the following lemmas.

8 S. Almagor and O. Yizhaq

Lemma 2. Let A be an automaton, then Ψ(J(A)) is a masked semilinear set.
Moreover, we can effectively compute a representation of it from that of A.

Proof. Consider A = 〈Σ,Q, δ,Q0, α〉. By Definition 1 we have that Ψ(J(A)) =
Ψ(L(A)). Indeed, both sets contain exactly the Parikh images of words in L(A).
Recall (or see Appendix A.1) that every ω-regular language can be (effectively)
written as a union of the form L(A) =

⋃m
i=1 Si ·Tωi where Si, Ti ⊆ Σ∗ are regular

languages over finite words.
Intuitively, we will show that Ψ(Tωi) can be separated to letters that are

seen finitely often, and those that are seen infinitely often, where the latter will
induce the mask. To this end, for every ∅ 6= Γ ⊆ Σ∗ define mΓ ∈ by setting
mΓ (σ) = ∞ if σ ∈ Γ and mΓ (σ) = 0 if σ /∈ Γ . Now, for every regular language
Ti in the union above define

I(Ti) = {mΓ | ∀σ ∈ Γ ∃w ∈ Ti ∩ Γ ∗ s.t. Ψ(w)(σ) > 0}

That is, I(Ti) is the set of masks mΓ such that every letter in Γ occurs in some
word in Ti that contains only letters from Γ . Intuitively, mΓ ∈ I(Ti) can be
attained by an infinite concatenation of words from Ti by covering all letters in
Γ whilst not using letters outside of Γ .

We now claim that for every 1 ≤ i ≤ m it holds that Ψ(Si · Tωi) = Ψ(Si ·
T ∗i) + I(Ti). To reduce clutter, we drop the subscript i for this proof. Consider
v ∈ Ψ(S · Tω), then there exists a word w = x1x2 · · · such that Ψ(w) = v with
x1 ∈ S and xj ∈ T for all j > 1. Let Γ be the set of letters that occur infinitely
often in w, and let N0 ≥ 2 be such that for all n ≥ N0 we have xn ∈ Γ ∗. Observe
that mΓ ∈ I(T) since for every σ ∈ Γ there exists some word xj ∈ Ti ∩ Γ ∗
(for j ≥ N0) such that σ occurs in xj . Thus, Ψ(xN0

xN0+1 · · ·) = mΓ . Moreover,
x1 · · ·xN0−1 ∈ S · T ∗, so v = Ψ(w) = Ψ(x1 · · ·xN0−1) +mΓ ∈ Ψ(S · T ∗) + I(T).

Conversely, let v ∈ Ψ(S ·T ∗)+I(T), then there exist y ∈ S ·T ∗ and mΓ ∈ I(T)
for some Γ ⊆ Σ such that v = Ψ(y)+mΓ . Since mΓ ∈ I(T), there exists a set of
words {z1, . . . , zr} ⊆ T∩Γ ∗ such that every σ ∈ Γ occurs in some word in this set.
We thus have Ψ((z1 · · · zr)ω) = mΓ and (z1 · · · zr)ω ∈ Tω, so y·(z1 · · · zr)ω ∈ S·Tω
and we have v = Ψ(y) + mΓ = Ψ(y · (z1 · · · zr)ω) ∈ Ψ(S · Tω), concluding our
claim.

It follows that Ψ(J(A)) =
⋃k
i=1 Ψ(Si · T ∗i) + I(Ti). We can now rearrange

the sum by masks instead of by index i: for every mask m ∈ write Sm =⋃
i:m∈I(Ti)

Ψ(Si · T ∗i) (note that Sm could be empty). Since Si · T ∗i is a regular
language, then by Parikh’s theorem [21] its Parikh image is semilinear, so Sm is
semilinear. Thus, Ψ(J(A)) =

⋃
m∈ Sm +m is a masked semilinear set. ut

Complexity Analysis 2 (of Lemma 2). Writing L(A) as a union involves only a
polynomial blowup (see Appendix A.1). Then, we split the resulting expression
to a union over 2|Σ| masks. Within the union, we convert a nondeterministic
automaton for Si · T ∗i to a semilinear set. By [23, Theorem 4.1] (also [15]), the
resulting semilinear set has description size polynomial in the number of states
n of A and singly-exponential in |Σ|. Moreover, the translation can be computed
in time 2O(|Σ|2 log(n|Σ|)).

Jumping Automata over Infinite Words 9

For the converse direction, we present a stronger result, namely that we can
construct a deterministic automaton to capture a masked semilinear set.

Lemma 3. Consider a masked semilinear set S, then there exists a determin-
istic automaton A such that Ψ(J(A)) = S.

Proof. By Lemma 1, we can assume S =
⋃

m∈ Sm +m and that every Sm is in
canonical m-oblivious form. Let m ∈ and write Sm =

⋃k
i=1 Lin(bi, Pi ∪Em) as

per Definition 2. Consider a linear set L = Lin(b, P ∪ Em) in the union above,
and we omit the subscript i for brevity. We start by constructing a deterministic
automaton D such that Ψ(Jfin(D)) = L. To this end, let wb ∈ Σ∗ be a word such
that Ψ(wb) = b and similarly for every p ∈ P let wp ∈ Σ∗ such that Ψ(wp) = p.
Note that Ψ(σ) = eσ for every σ ∈ m|∞.

Let D′ be a deterministic automaton for the regular expression wb · (wp1 +
. . .+wpn)

∗ where P = {p1, . . . ,pn}. Next, let wE = σ1 · · ·σk be a word obtained
by concatenating all the letters in m|∞ in some order. We obtain D from D′ by
connecting every accepting state of D′, upon reading σ1, to a cycle that allows
reading wωE . The accepting states of D are those on the wE cycle. Crucially, the
transition from D′ upon reading σ1 retains determinism, since P is in canonical
form, and therefore p(σ1) = 0 for every p ∈ P . That is, the letter σ1 is not
seen in any transition of D′, allowing us to use it in the construction of D. The
construction is demonstrated in Fig. 2.

a

a
b

a

b

c
d

c

Fig. 2. The automaton D for the linear set from Fig. 1 (over Σ = {a, b, c, d}), with the
representative words wb = a and {bab, a, c, d} for the period. The blue (dashed) parts
are the addition of wE and change of accepting states to obtain D from D′.

By construction, we have that L(D) = wb · (wp1 + . . . + wpn)
∗ · wωE . Since

Ψ(wωE) = m, we now have

Ψ(J(D)) = Ψ(L(D)) = Ψ(wb · (wp1 + . . .+wpn)
∗ ·wωE) = Lin(b, P) +m = L+m

where the last equality is because adding m to a vector in L masks any addition
of vectors in Em by ∞.

Next, we observe that for two deterministic automata D1,D2, we can con-
struct a deterministic automaton D3 such that J(D3) = J(D1) ∪ J(D2). Indeed,
the standard product construction (where the accepting states are pairs of states
where either D1 or D2 accept) preserves determinism. Thus, we can take prod-
ucts to first capture Sm =

⋃k
i=1 Lin(bi, Pi ∪ Em) and then S =

⋃
m∈ Sm + m,

as desired. ut

10 S. Almagor and O. Yizhaq

Complexity Analysis 3 (of Lemma 3). We can naively construct an automaton
for the regular expression wb · (wp1 + . . . + wpn)

∗ of size ‖Lin(b, P)‖ = ‖b‖ +∑n
i=1 ‖pi‖, where e.g., ‖b‖ is the sum of entries in b (i.e., unary representation).

Then, determinization can yield a DFA of size singly exponential. Then, we take
unions by the product construction, where the number of copies corresponds to
the number of linear sets in S, and then to 2|Σ|− 1 many masks. This results in
a DFA of size singly exponential in the size of S and doubly-exponential in |Σ|
(assuming S is represented in unary). Finally, adding the cycle for the mask adds
at most 2O(|Σ|) states (both to a deterministic or nondeterministic automaton).

Combining Lemmas 2 and 3 we have the following.

Theorem 4. A set S is a masked semilinear set if and only if there exists an
automaton A such that S = Ψ(J(A)).

3.2 Jumping Languages – Closure Properties

Using the characterizations obtained in Section 3.1, we can now obtain several
closure properties of jumping languages. First, we remark that jumping lan-
guages are clearly closed under union, by taking the union of the automata
and nondeterministically choosing which one to start at. We proceed to tackle
intersection and complementation.

Note that the standard intersection construction of Büchi automata does not
capture the intersection of jumping languages, as demonstrated in Fig. 3.

A:
q0 q1

a

b

B:
s0 s1

a

b

Fig. 3. The automata A and B satisfy L(A) = {(ab)ω} and L(B) = {(ba)ω}. Thus,
J(A) = J(B) = {w ∈ Σω | w has infinitely many a’s and b’s}. However, if we start by
taking the standard intersection of A and B, we would end up with the empty language.

Proposition 1. Let A and B be automata, then we can effectively construct an
automaton C such that J(C) = J(A) ∩ J(B).

Proof. Consider a word w ∈ Σω, and observe that w ∈ J(A) ∩ J(B) if and
only if Ψ(w) ∈ Ψ(J(A)) ∩ Ψ(J(B)). Thus, it suffices to prove that there exists
automaton C such that Ψ(J(C)) = Ψ(J(A)) ∩ Ψ(J(B)). By Theorem 4 we can
write Ψ(J(A)) =

⋃
m∈ Sm +m and Ψ(J(B)) =

⋃
m∈ Tm +m. Furthermore, by

Lemma 1 we can assume that these are oblivious masked semilinear sets.
We claim that Ψ(J(A))∩Ψ(J(B)) =

⋃
m∈ Sm∩Tm+m. That is, we can take

intersection by intersecting each pair of semilinear sets, while keeping the masks.
Intuitively, this holds because every word uniquely determines the mask it can
use to join the union, so intersecting the unions amounts (using obliviousness)

Jumping Automata over Infinite Words 11

to intersecting the set of finite-valued vectors corresponding to the finite parts
of the Parikh images of words in the language.

Indeed, let x ∈
⋃

m∈ Sm∩Tm+m, then there exists m ∈ and v ∈ Sm∩Tm
such that x = v + m. In particular, v + m ∈ Ψ(J(A)) and v + m ∈ Ψ(J(B)), so
x = v +m ∈ Ψ(J(A)) ∩ Ψ(J(B)).

Conversely, let x ∈ Ψ(J(A))∩Ψ(J(B)). Recall that x uniquely defines a mask
m, so there exist u ∈ Sm, v ∈ Tm such that x = u+m = v +m. It follows that
u and v are m-equivalent. Since Sm and Tm are m-oblivious, we also have that
v ∈ Sm and u ∈ Tm. In particular, v ∈ Sm∩Tm so x = v+m ∈

⋃
m∈ Sm∩Tm+m.

Finally, semilinear sets are closed under intersection [3,7]. Thus, Sm ∩ Tm is
semilinear for every m, so

⋃
m∈ Sm ∩ Tm + m is a semilinear masked set and

from Lemma 3 there exists an automaton C such that J(C) = J(A) ∩ (J(B). ut

Complexity Analysis 5 (of Proposition 1). The description size of the intersec-
tion of semilinear sets is polynomial in the description size of the entries of the
vectors and the size of the union, and singly exponential in |Σ| [3,7]. Since the
blowup in Lemmas 1 and 2 is polynomial, then the only significant blowup is
Lemma 3, due to the construction of an automaton whose size is exponential in
|Σ|. However, it is not hard to see that the two exponential blowups in |Σ| are
orthogonal, and can be merged to a singly-exponential blowup.

Proposition 2. Consider an automaton A. There exists an automaton B such
that J(B) = Σω \ J(A).

Proof. Observe that w ∈ Σω \J(A) if and only if Ψ(w) ∈MΣ \Ψ(J(A)). Indeed,
w ∈ Σω \ J(A) means that every permutation of w is not accepted by A, i.e.,
the Parikh image of w is not a Parikh image of any word accepted by A. Thus,
it suffices to construct B such that Ψ(J(B)) = MΣ \ Ψ(J(A)).

By Theorem 4, we can write Ψ(J(A)) =
⋃

m∈ Sm+m. Moreover, by Lemma 1
we can assume that this is an oblivious masked semilinear set. We claim that
MΣ \ Ψ(J(A)) =

⋃
m∈ (NΣ \ Sm) + m. That is, we can complement the union

by complementing each semilinear set, while keeping the masks.
To show this, consider a word w ∈ Σω and write Ψ(w) = xw + mw where

xw ∈ NΣ , as per Section 3.1.
For the first direction, assume xw + mw ∈ MΣ \ Ψ(J(A)), then xw + mw /∈⋃

m∈ Sm + m. In particular, xw /∈ Smw (otherwise we would have xw + mw ∈
Smw

+mw, which is part of the union). It follows that xw+mw ∈ (NΣ\Smw
)+mw,

so Ψ(w) ∈
⋃

m∈ (NΣ \ Sm) +m.
Conversely, assume Ψ(w) = xw + mw ∈

⋃
m∈ (NΣ \ Sm) + m, then observe

that xw+mw ∈ (NΣ\Smw
)+mw. Indeed, no other part of the union has the mask

mw. Assume by way of contradiction that xw+mw ∈ Ψ(J(A)) =
⋃

m∈ Sm+m,
then by the same reasoning, xw +mw ∈ Smw

+mw. Thus, there are two vectors
y /∈ Smw and z ∈ Smw such that y+m = xw +m = z+m. This contradicts the
assumption that Smw is oblivious (note that if Smw is not oblivious, this is not
a contradiction).

We conclude that MΣ \Ψ(J(A)) =
⋃

m∈ (NΣ \Sm)+m, and since semilinear
sets are closed under complementation [3,7], the latter is also a masked semilinear

12 S. Almagor and O. Yizhaq

set. By applying Theorem 4 in the converse direction, we conclude that there
exists an automaton B such that Ψ(J(B)) = MΣ \ Ψ(J(A)), and as mentioned
above, for such B we have J(B) = Σω \ J(A). ut

Complexity Analysis 6 (of Proposition 2). The description size of the comple-
ment of a semilinear set is singly exponential, in both the degree and the descrip-
tion of the entries [3,7]. We proceed similarly to Complexity Analysis 5, ending
up with a singly-exponential blowup (not just in |Σ|).

Recall that Büchi automata are generally not determinizable. That is, there
exists an automaton A such that L(A) is not recognizable by a deterministic
Büchi automaton [17]. In stark contrast, an immediate corollary of Lemmas 2
and 3 is that jumping languages do admit determinization (also see Complexity
Analysis 3).

Proposition 3. For every automaton A there exists a deterministic automaton
D such that J(A) = J(D).

In particular, this means that additional acceptance conditions (e.g., Rabin,
Streett, Muller and parity) cannot add expressiveness to the model.

Remark 3. Discussing determinization of jumping languages is slightly mislead-
ing: the definition of acceptance in a jumping language asks that there exists
some permutation that is accepted by the automaton. This existential quanti-
fier can be thought of as “semantic” nondeterminism. Thus, in a way, jumping
languages are inherently nondeterministic, regardless of the underlying syntactic
structure.

Finally, as is the case for jumping languages over finite words [20,10,11], jump-
ing languages and ω-regular languages are incomparable. Indeed, the automata
in Fig. 3 are examples of Büchi automata whose languages are not permutation-
invariant, and are hence not jumping languages, and in Fig. 4 we demonstrate
that the converse also does not hold.

q0 q1q2

a

bcc

Fig. 4. An automaton A for which J(A) = {u · cω | u ∈ {a, b, c}∗ ∧ #a[u] = #b[u]},
which is not ω-regular by simple pumping arguments.

3.3 Jumping Languages - Algorithmic Properties

We turn our attention to algorithmic properties of jumping languages. We first
notice that given an automaton A we have that J(A) 6= ∅ if and only if L(A) 6= ∅.
Thus, non-emptiness of J(A) is NL-Complete, as it is for Büchi automata [8,16].
Next, we consider the standard decision problems:

Jumping Automata over Infinite Words 13

– Containment: given automata A,B, is J(A) ⊆ J(B)?
– Equivalence: given automata A,B, is J(A) = J(B)?
– Universality: given an automaton A, is J(A) = Σω?

We show that all of these problems reduce to their analogues in finite-word
jumping automata.

Theorem 7. Containment, Equivalence and Universality for jumping languages
are coNP-complete (for fixed size alphabet).

Proof. We start with containment. by Theorem 4 and Lemma 1, given automata
A,B we obtain canonical oblivious masked semilinear representation: Ψ(J(A)) =⋃

m∈ Sm +m and Ψ(J(B)) =
⋃

m∈ Tm +m. Then, we have J(A) ⊆ J(B) if and
only if Ψ(J(A)) ⊆ Ψ(J(B)), which in turn happens if and only if for every mask
m it holds that Sm +m ⊆ Tm +m. We claim that the latter holds if and only if
Sm ⊆ Tm.

Indeed, clearly if Sm ⊆ Tm then Sm + m ⊆ Tm + m. Conversely, assume
Sm+m ⊆ Tm+m and let u ∈ Sm, so u+m ∈ Tm+m. Then, there exists v ∈ Tm
such that u+m = v +m, but since Tm is m-oblivious, this means that u ∈ Tm.

Thus, deciding whether J(A) ⊆ J(B) amounts to deciding whether Sm ⊆
Tm for every m. Since the latter is decidable, we get decidability of contain-
ment. Moreover, we can obtain in polynomial time nondeterministic automata
Cm1 , Cm2 corresponding to Sm and Tm (see Complexity Analyses 1 and 3), so
it is enough to decide if Jfin(Cm1) ⊆ Jfin(Cm2) for all m. The latter problem is
coNP-complete [15,14] (for fixed-size alphabet), and since we can start by nonde-
terministically guessing m, we retain this complexity. Moreover, coNP hardness
trivially follows (by e.g., reducing a given language L to L ·#ω for a new symbol
#).

Similar arguments hold for equivalence and universality, concluding the proof.
ut

4 Fixed-Window Jumping Languages

Recall from Definition 1 that given an automaton A and k ∈ N, the language
Jk�(A) consists of the words that have a k-window permutation that is accepted
by A.

Since k is fixed, we can capture k-window permutations using finite memory.
Hence, as we now show, Jk�(A) is ω-regular.

Theorem 8. Consider an automaton A, then for every k ∈ N there exists a
Büchi automaton Bk such that Jk�(A) = L(Bk).

Proof (Sketch). Intuitively, we construct Bk so that it stores in a state the Parikh
image of k letters, then nondeterministically simulates A on all words with the
stored Parikh image, while noting when an accepting state may have been tra-
versed. We illustrate the construction for k = 2 in Fig. 5. The details are in
Appendix A.2. ut

14 S. Almagor and O. Yizhaq

Complexity Analysis 9 (of Theorem 8). If A has n states, then B has at most
k|Σ| × n+ n states. Moreover, computing B can be done effectively, by keeping
for every Parikh image the set of states that are reachable (resp. reachable via
an accepting state).

D:

q0q1 q2

q3

a

b b

b

a

b
B2:

q0

(
0
0

) q0

(
1
0

)

q0

(
0
1

)
q3

q3

(
0
1

)
a

b

b
b

a, b
a

b b

Fig. 5. An automaton D, and the construction B2 for J2�(D) as per Theorem 8.

A converse of Theorem 8 also holds, in the following sense: we say that a
language L ⊆ Σω is k� invariant if w ∈ L ⇐⇒ w′ ∈ L for every w ∼k� w′.
The following result follows by definition.

Proposition 4. Let A be an automaton such that L(A) is k�-invariant, then
L(A) = Jk�(A).

Theorem 8 and Proposition 4 yield that k-window jumping languages are
closed under the standard operations under which ω-regular languages are closed
(union, intersection, complementation), as these properties retain k� invariance.
Similarly, all algorithmic problems can be reduced to the same problems on Büchi
automata (by Complexity Analysis 9, assuming |Σ| is fixed).

Notice that the construction in Theorem 8 yields a nondeterministic Büchi
automaton. This is not surprising in light of Remark 3. It does raise the ques-
tion of whether we can find a deterministic Büchi automaton for Jk�(D) for a
deterministic automaton D. In Proposition 5, we prove that this is not the case.
That is, even deterministic k-window jumping has inherent nondeterminism.

Proposition 5. There is no nondeterministic Büchi automaton whose language
is Jk�(D) for k ≥ 2 and D as in Fig. 5.

Proof. Consider the deterministic automaton D in Fig. 5. We start by showing
that L(B2) = J2�(D) cannot be recognized by a deterministic Büchi automaton.
Below, we show this mutatis mutandis for every even k, and with slightly more
effort – for all k ≥ 2.

By way of contradiction, consider a deterministic automaton A such that
L(A) = J2�(D), then A accepts (ba)(bb)ω, and therefore its run passes through
an accepting state after some (ba)(bb)m1 . Then,A also accepts (ba)(bb)m1(ab)(bb)ω,
so again there ism2 such thatA reaches an accepting state after (ba)(bb)m1(ab)(bb)m2 ,
we consider the word (ba)(bb)m1(ab)(bb)m2(ab)(bb)ω and proceed in this fashion
to construct an accepting run on a word with infinitely many (ab), which is not
in J2�(D).

Jumping Automata over Infinite Words 15

We now turn to show the same for any k ≥ 2.
Assume by way of contradiction that there exists k ∈ N, k ≥ 2 such that

Jk�(D) = L(A) for a deterministic automaton A. k can be either odd or even.
We first assume that k is even and consider the word w = babω. w ∈ Jk�(D)

as there is w′ ∼k� w that is accepted by D, namely w′ = w. Since babω ∈ L(A),
the unique run of A on it is accepting, and letm1 be an index such that |babm1 | is
divisible by k and α was visited at least once while reading babm1 . Now, consider
the word w = babm1babω. w ∈ Jk�(D) as there is w′ ∼k� w that is accepted
by D, and that is w′ = abbm1babω. babm1babω ∈ L(A), then the unique run of
A on it is accepting, and let m2 be an index such that |babm1babm2 | is divisible
by k and α was visited at least twice while reading babm1babm2 . Consider the
word w = babm1babm2babω, it is also in Jk�(D) because w′ = abbm1abbm2babω

is accepted by D. Following this fashion, we can construct an infinite word w =
babm1babm2babm3 ... such that A’s run on it visits α infinitely many often despite
the fact that w /∈ Jk�(D).

We then assume that k ≥ 2 is odd and consider the word w = abω. We have
that w ∈ Jk�(D) as there is w′ ∼k� w that is accepted by D, namely w′ = babω.
Since abω ∈ L(A), the unique run of A on it is accepting, and let m1 be an index
|abm1 | is divisible by k and α was visited at least once while reading abm1 . Now,
consider the word w = abm1abω. Again w ∈ Jk�(D) as there is w′ ∼k� w that
is accepted by D, namely w′ = w (with the accepting run ρ = q0q1(q0q2)

k−2qω3).
Since abm1abω ∈ L(A), the unique run of A on it is accepting, and let m2 be an
index such that |abm1abm2 | is divisible by k and α was visited at least twice while
reading abm1abm2 . Similarly we can show that w = abm1abm2abω ∈ Jk�(D), and
we can proceed and construct an infinite word w = abm1abm2abm3 ... such that
A’s run on it visits α infinitely many often despite the fact that w /∈ Jk�(D). It
follows that there isn’t a deterministic automaton A such that Jk�(D) = L(A)
for any k > 1. ut

5 Existential-Window Jumping Languages

Recall from Definition 1 that given an automaton A, the language J∃�(A) con-
tains the words that have a k-window permutation that is accepted in A for
some k, i.e., J∃�(A) =

⋃
k∈N Jk�(A). We briefly establish some expressiveness

properties of J∃�(A).
Perhaps surprisingly, we show that ∃� languages are strictly more expressive

than Jumping languages. We start by showing that every jumping language can
be defined as the ∃� language of some automaton.

Theorem 10. Let A be an automaton, then there exists an automaton B such
that J∃�(B) = J(A).

Proof. Intuitively, we modify the construction of the jumping automaton in Lemma 3
so that it produces an automaton for which the ∃� language coincides with the
given semilinear set.

16 S. Almagor and O. Yizhaq

Consider an automaton A. By Lemmas 1 and 2, we can write Ψ(J(A)) =⋃
m∈ Sm + m in canonical oblivious form. Similarly to Lemma 3, consider a

specific linear set L = Lin(b, P ∪Em) in the union above, and consider the words
wb ∈ Σ∗ and wp ∈ Σ∗ for p ∈ P as in Lemma 3. Let N ′ be a nondetermin-
istic automaton such that Lfin(N ′) = wb · (wp1 + . . . + wpn)

∗. We now obtain
an automaton N by connecting every accepting state of N ′ to a new nonde-
terministic automaton Nm which, as a Büchi automaton, accepts the language
Lm = {w ∈ m|ω∞ | every σ ∈ m|ω∞occurs infinitely often in w}. The accepting
states of N are those of Nm.

Observe that Lm is permutation invariant, and in particular J∃�(Nm) = Lm.
Indeed, trivially we have Lm = L(Nm) ⊆ J∃�(Nm), and for the other direction –
if w ∈ J∃�(Nm), then w ∼k� w′ for some w′ ∈ L(Nm) = Lm and some k ∈ N, but
since Lm is permutation invariant, and since we have in particular that w ∼ w′,
then w ∈ Lm.

Furthermore, Ψ(L(N)) = Lin(b, P ∪Em) +m. We construct B by taking the
union over m in the masked semilinear set.

We claim that J∃�(B) = J(A). For the “easy” direction, let w ∈ J∃�(B), then
in particular Ψ(w) ∈ Ψ(L(N)) = Lin(b, P ∪ Em) ⊆ S = Ψ(J(A)) (for some set
in the union), so w ∈ J(A) (as J(A) is permutation invariant).

For the “hard” direction, assume w ∈ J(A), then Ψ(w) ∈ Lin(b, P ∪Em) +m
for some set in the union. We construct a word w′ ∼k� w for some k ∈ N such
that w′ ∈ L(B), thus showing w ∈ J∃�(B). Let k ∈ N be large enough so that
w = u · z with z ∈ m|ω∞ and |u| ≤ k. There exists such k since w contains
only finitely many letters outside m|∞. Recall that we assumed our sets are
m oblivious, and therefore Ψ(u) ∈ Lin(b, P ∪ Em). Moreover, Ψ(z) = m, since
z ∈ Lm. In particular, we can find a permutation u′ of u such that u′ ∈ L(N).
Denote w′ = u′z, then w′ satisfies the conditions above, so w ∈ J∃�(B) and we
are done. ut

Next, we show that jumping languages are strictly less expressive that ∃�
languages.

Example 2. Consider the automaton A in Fig. 3. We claim that J∃�(A) is not
the jumping language of any automaton. Indeed, it suffices to show that J∃�(A)
is not permutation invariant. Trivially, (ab)ω ∈ J∃�(A). However, note that
(ab)ω ∼ (anbn)∞n=1 (i.e., the word aba2b2a3b3 · · ·), since their Parikh images
are both (∞,∞). The latter, however, is not in J∃�(A), since any k-window
permutation of (anbn)∞n=1 will eventually reach windows of the form ak (inside
a long enough sequence an), so any permutation of it will cause A to reject. ut

We finally show that ω-regular languages are incomparable with ∃� lan-
guages:

Example 3. Recall the automaton A in Fig. 4, with L(A) = (ab)∗ · cω. Observe
that J∃�(A) = J(A) = {u · cω | u ∈ {a, b, c}∗ ∧ #a[u] = #b[u]}. Indeed, if
w = u · cω as described, then w ∈ J|u|�(A) by rearranging the equal number of
a’s and b’s to (ab)∗ · cω. Conversely, if w ∈ J∃�(A) then in particular w ∈ J(A)

Jumping Automata over Infinite Words 17

(indeed, every ∃�-permutation is also a permutation). Thus, J∃�(A) is not ω-
regular.

For the converse (i.e., an ω-regular language that is not ∃�), we argue that
every J∃�(A) is k-window invariant for every k, and since e.g., {(ab)ω} is not
2-window invariant, then it is not recognizable as an ∃� language.

Indeed, consider w ∈ J∃�(A), and let w1 ∼k� w for some k. Then there
exists w2 ∼k� w such that w2 ∈ L(A) and k′ ∈ N. But then w2 ∼k� w and
w1 ∼k� w, so by transitivity w1 ∼k� w2, and so w2 ∈ J∃�(A). Thus, J∃�(A) is
k-window invariant. ut

Remark 4 (Alternative Semantics). Note that instead of the ∃� semantics, we
could require that there exists a partition of w into windows of size at most k
for some k ∈ N. All our proofs carry out under this definition as well.

6 Future Research

We have introduced three semantics for jumping automata over infinite words.
For the existing definitions, the class of ∃� semantics is yet to be explored for
closure properties and decision problems.

In a broader view, it would be interesting to consider quantitative semantics
for jumping – instead of the coarse separation between letters that occur finitely
and infinitely often, one could envision a semantics that takes into account e.g.,
the frequency with which letters occur. Alternatively, one could return to the
view of a “jumping reading head”, and place constraints over the strategy used
by the automaton to move the head (e.g., restrict to strategies implemented by
one-counter machines).

References

1. Abu Nassar, A., Almagor, S.: Simulation by rounds of letter-to-letter transducers.
In: 30th EACSL Annual Conference on Computer Science Logic (2022)

2. Almagor, S.: Process symmetry in probabilistic transducers. In: 40th IARCS An-
nual Conference on Foundations of Software Technology and Theoretical Computer
Science (2020)

3. Beier, S., Holzer, M., Kutrib, M.: On the descriptional complexity of operations
on semilinear sets. EPTCS 252 p. 41 (2017)

4. Büchi, J.R.: Symposium on decision problems: On a decision method in restricted
second order arithmetic. In: Studies in Logic and the Foundations of Mathematics,
vol. 44, pp. 1–11. Elsevier (1966)

5. Cadilhac, M., Finkel, A., McKenzie, P.: Affine parikh automata. RAIRO-
Theoretical Informatics and Applications 46(4), 511–545 (2012)

6. Cadilhac, M., Finkel, A., McKenzie, P.: Bounded parikh automata. International
Journal of Foundations of Computer Science 23(08), 1691–1709 (2012)

7. Chistikov, D., Haase, C.: The taming of the semi-linear set. In: 43rd International
Colloquium on Automata, Languages, and Programming (ICALP 2016). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)

18 S. Almagor and O. Yizhaq

8. Emerson, E.A., Lei, C.L.: Modalities for model checking (extended abstract)
branching time strikes back. In: Proceedings of the 12th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages. pp. 84–96 (1985)

9. Fazekas, S.Z., Hoshi, K., Yamamura, A.: Two-way deterministic automata with
jumping mode. Theoretical Computer Science 864, 92–102 (2021)

10. Fernau, H., Paramasivan, M., Schmid, M.L.: Jumping finite automata: charac-
terizations and complexity. In: International Conference on Implementation and
Application of Automata. pp. 89–101. Springer (2015)

11. Fernau, H., Paramasivan, M., Schmid, M.L., Vorel, V.: Characterization and com-
plexity results on jumping finite automata. Theoretical Computer Science 679,
31–52 (2017)

12. Guha, S., Jecker, I., Lehtinen, K., Zimmermann, M.: Parikh automata over infinite
words. In: 42nd IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science (2022)

13. Klaedtke, F., Rueß, H.: Monadic second-order logics with cardinalities. In: Au-
tomata, Languages and Programming: 30th International Colloquium, ICALP 2003
Eindhoven, The Netherlands, June 30–July 4, 2003 Proceedings 30. pp. 681–696.
Springer (2003)

14. Kopczynski, E.: Complexity of problems of commutative grammars. Logical Meth-
ods in Computer Science 11 (2015)

15. Kopczynski, E., To, A.W.: Parikh images of grammars: Complexity and applica-
tions. In: 2010 25th Annual IEEE Symposium on Logic in Computer Science. pp.
80–89. IEEE (2010)

16. Kupferman, O.: Automata theory and model checking. Handbook of model check-
ing pp. 107–151 (2018)

17. Landweber, L.H.: Decision problems for w-automata. Tech. rep., University of
Wisconsin-Madison Department of Computer Sciences (1968)

18. Lavado, G.J., Pighizzini, G., Seki, S.: Operational state complexity under parikh
equivalence. In: Descriptional Complexity of Formal Systems: 16th International
Workshop, DCFS 2014, Turku, Finland, August 5-8, 2014. Proceedings 16. pp.
294–305. Springer (2014)

19. McNaughton, R.: Testing and generating infinite sequences by a finite automaton.
Information and control 9(5), 521–530 (1966)

20. Meduna, A., Zemek, P.: Jumping finite automata. International Journal of Foun-
dations of Computer Science 23(07), 1555–1578 (2012)

21. Parikh, R.J.: On context-free languages. Journal of the ACM (JACM) 13(4), 570–
581 (1966)

22. Safra, S.: On the complexity of ω-automata. In: Proc. 29th IEEE Symp. Found. of
Comp. Sci. pp. 319–327 (1988)

23. To, A.W.: Parikh images of regular languages: Complexity and applications. arXiv
preprint arXiv:1002.1464 (2010)

24. Vorel, V.: On basic properties of jumping finite automata. International Journal
of Foundations of Computer Science 29(01), 1–15 (2018)

A Proofs

A.1 ω-regular languages as union

The following claim is a folklore simple exercise, and we bring it for completeness.

Jumping Automata over Infinite Words 19

Claim. Consider an automaton A = 〈Q,Σ, δ, q0, α〉, then we can write L(A) =⋃k
i=1 Si · Tωi where the Si and Ti are regular languages.

Proof. For states p, q ∈ Q, denote Aqp the automaton A with initial state p and
accepting states {q}. Observe that A accepts a word if there is a run of A that
starts in q0, and visits some state q ∈ α infinitely often (indeed, since Q is finite,
then if α is visited infinitely often, so is some state in α).

We thus have L(A) =
⋃
q∈α Lfin(Aqq0) · Lfin(Aqq)ω. ut

A.2 Proof of Theorem 8

Proof. Intuitively, we construct Bk so that it stores in a state the Parikh image
of k letters, then nondeterministically simulates A on all words with the stored
Parikh image, while noting when an accepting state may have been traversed.
We illustrate the construction for k = 2 in Fig. 5.

We now formalize this intuition.
Let A = 〈Q,Σ, δ, q0, α〉. We construct Bk = 〈Q′, Σ, δ′, q′0, α′〉 as follows.

– Let Qα = {qα |q ∈ Q} be a copy of Q, and P = {Ψ(x)|x ∈ Σ<k} ⊆
{0, . . . , k− 1}|Σ| be the set of Parikh images of all words of length < k (note
that P is finite), then the states of Bk are Q′ = (Q× P) ∪Qα.

– The initial state is q′0 = (q0,0) (Note that Ψ(ε) = 0).
– α′ = Qα.
– The transition function is defined as follows. For a state (q,v) and letter
σ ∈ Σ let u = v + Ψ(σ). If

∑
σ∈Σ u(σ) < k we define δ((q,v), σ) = (q,u).

If
∑
σ∈Σ u(σ) = k, define δ∗(q,u) to be the set of states reachable from q

upon reading a word x with Ψ(x) = u, and define δ∗α(q,u) to be the states
reachable from q upon reading a word x with Ψ(x) = u via a run that visits
α. We then have

δ′((q,v), σ) = {(p,0) | p ∈ δ∗(q,v)} ∪ {pα | p ∈ δ∗α(q,v)}

Finally, for every q ∈ Qα we define δ′(q, σ) = δ′((q,0), σ) (that is, the Qα
copy behaves identically to the 0 copy of Q).

We now claim that Jk�(A) = L(Bk): Let w ∈ Jk�(A) and write w =
x1x2x3... where |xi| = k for all i. Then, there is w′ = y1y2y3... ∼k� w (with
all |yi| = k) such that A has an accepting run ρ on w′. Denote by q0, q1, . . . the
states where for i ≥ 1 we have qi = ρik. That is, the states that ρ visits after
reading each yi. Observe that for all i we have that qk(i+1) ∈ δ∗(qik, ψ(yi+1)) =
δ∗(qik, ψ(xi+1)). Thus, there is a run of B that upon reading xi+1 reaches the
state (q(i+1)k,0) if ρ does not go through an accepting state on yi+1 or (q(i+1)k)α
if it does. Since ρ traverses infinitely many accepting states, so does the run of
Bk on w, and thus w ∈ L(Bk).

Conversely, assume w ∈ L(Bk) and again write w = x1x2x3... with |xi| = k.
Then there is an accepting run of Bk on w. By viewing the run in consecutive
k-windows, we can construct words y1, y2, . . . such that yi ∼ xi for all i and such
that A accepts w′ = y1 · y2 · · · . Indeed, in every k-window, B simulates the run
of A on some permutation of the read word. We conclude that w ∈ Jk�(A). ut

	Jumping Automata over Infinite Words

