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Abstract

An edit distance is a metric between words that quantifies how two words differ
by counting the number of edit operations needed to transform one word into the
other one. A word f is said isometric with respect to an edit distance if, for any
pair of f -free words u and v, there exists a transformation of minimal length from
u to v via the related edit operations such that all the intermediate words are also f -
free. The adjective “isometric” comes from the fact that, if the Hamming distance
is considered (i.e., only mismatches), then isometric words are connected with
definitions of isometric subgraphs of hypercubes.

We consider the case of edit distance with swap and mismatch. We compare it
with the case of mismatch only and prove some properties of isometric words that
are related to particular features of their overlaps.

Keywords: Swap and mismatch distance, Isometric words, Overlap with errors.

1 Introduction
The edit distance is a central notion in many fields of computer science. It plays a
crucial role in defining combinatorial properties of families of strings as well as in
designing many classical string algorithms that find applications in natural language
processing, bioinformatics and, in general, in information retrieval problems. The edit
distance is a string metric that quantifies how two strings differ from each other and it
is based on counting the minimum number of edit operations required to transform one
string into the other one.

*Partially supported by INdAM-GNCS Project 2022 and 2023, FARB Project ORSA229894 of Univer-
sity of Salerno, TEAMS Project of University of Catania and by the MIUR Excellence Department Project
MatMod@TOV awarded to the Department of Mathematics, University of Rome Tor Vergata.
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Different definitions of edit distance use different sets of edit operations. The op-
erations of insertion, deletion and replacement of a character in the string characterize
the Levenshtein distance which is probably the most widely known (cf. [17]). On the
other hand, the most basic edit distance is the Hamming distance which applies only to
pair of strings of the same length and counts the positions where they have a mismatch;
this corresponds to the restriction of using only the replacement operation. For this,
the Hamming distance finds a direct application in detecting and correcting errors in
strings and it is a major actor in the algorithms for string matching with mismatches
(see [13]).

The notion of isometric word (or string) combines the edit distance with the prop-
erty that a word does not appear as factor in other words. Note that this property is
important in combinatorics as well as in the investigation on similarities, or distances,
on DNA sequences, where the avoided factor is referred to as an absent word [8, 9, 10].
Isometric words based on Hamming distance were first introduced in [15] as special
binary strings that never appear as factors in some string transformations. A string is
f -free if it does not contain f as factor. A word f is isometric if for any pair of f -free
words u and v, there exists a sequence of symbol replacement operations that transform
u in v where all the intermediate words are also f -free.

Isometric words are connected with the definition of isometric subgraphs of the
hypercubes, called generalized Fibonacci cubes. The hypercube graph Qn is a graph
whose vertices are the (binary) words of length n, and two vertices are adjacent when
the corresponding words differ in exactly one symbol. Therefore, the distance between
two vertices is the Hamming distance of the corresponding vertex-words. Let Qn(f)
be the subgraph of Qn which contains only vertices that are f -free. Then, if f is
isometric, the distances of the vertices inQn(f) are the same as calculated in the whole
Qn. Fibonacci cubes have been introduced by Hsu in [14] and correspond to the case
with f = 11. In [15, 16, 19, 20, 22] the structure of non-isometric words for alphabets
of size 2 and Hamming distance is completely characterized and related to particular
properties on their overlaps. The more general case of alphabets of size greater than
2 and Lee distance is studied in [3, 4, 5]. Using these characterizations, in [7] some
linear-time algorithms are given to check whether a binary word is Hamming isometric
and, for quaternary words, if it is Lee isometric. These algorithms were extended to
provide further information on non-isometric words, still keeping linear complexity in
[4]. Binary Hamming isometric two-dimensional words have been also studied in [6].

Many challenging problems in correcting errors in strings come from computa-
tional biology. Among the chromosomal operations on DNA sequences, in gene mu-
tations and duplication, it seems natural to consider the swap operation, consisting in
exchanging two adjacent symbols. The Damerau-Levenshtein distance adds also the
swap to all edit operations. In [18], Wagner proves that the edit distance with inser-
tion and swap is NP-hard, while each separate case can be solved in polynomial time.
Moreover, the general edit distance with insertion, deletion, replacement, and swap, is
polynomially solvable. The swap-matching problem has been considered in [1, 12],
and algorithms for computing the corresponding edit distance are given in [2, 11].

In this paper, we study the notion of isometric word using the edit distance based on
swaps and mismatches. This distance will be referred to by using the tilde symbol that
somehow evokes the swap operation. The tilde-distance dist∼(u, v) of equal-length
words u and v is the minimum number of replacement and swap operations to trans-
form u to into v. Then, the definition of tilde-isometric word comes in a very natural
way. A word f is tilde-isometric if for any pair of equal-length words u and v that are
f -free, there is a transformation from u to v that uses exactly dist∼(u, v) replacement
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and swap operations and such that all the intermediate words still avoid f . It turns out
that adding the swap operation to the definition makes the situation more complex, but
interesting for applications. It is not a mere generalization of Hamming string isometry
since special situations arise. A swap operation in fact is equivalent to two replace-
ments, but it counts as one when computing the tilde-distance. Moreover, there could
be different ways to transform u into v since particular triples of consecutive symbols
can be managed, from left to right, either by first a swap and then a replacement or by a
replacement and then a swap. We present some examples of tilde-isometric words that
are not Hamming isometric and vice versa. By definition, in order to prove that a given
string f is not tilde-isometric one should exhibit a pair of f -free words (α̃, β̃) such
that any transformation from α̃ to β̃ of length dist∼(α̃, β̃) comes through words that
contain f . Such a pair is called pair of tilde-witnesses for f . We prove some necessary
conditions for f to be non-isometric based on the notion of error-overlap and give an
explicit construction of the tilde-witnesses in many cases.

2 Preliminaries
Let Σ be a finite alphabet. A word (or string) w of length |w| = n, is w = a1a2 · · · an,
where a1, a2, . . . , an are symbols in Σ. The set of all words over Σ is denoted Σ∗ and
the set of all words over Σ of length n is denoted Σn. Finally, ε denotes the empty
word and Σ+ = Σ∗−{ε}. For any word w = a1a2 · · · an, the reverse of w is the word
wrev = anan−1 · · · a1. If x ∈ {0, 1}, we denote by x the opposite of x, i.e x = 1 if
x = 0 and viceversa. Then we define complement of w the word w = a1a2 · · · an.

Let w[i] denote the symbol of w in position i, i.e. w[i] = ai. Then, w[i..j] =
ai · · · aj , for 1 ≤ i ≤ j ≤ n, is a factor of w. The prefix (resp. suffix) of w of length
l, with 1 ≤ l ≤ n − 1 is prel(w) = w[1..l] (resp. suf l(w) = w[n − l + 1..n]). When
prel(w) = suf l(w) = u then u is here referred to as an overlap of w of length l; it is
also called border, or bifix. A word w is said f -free if w does not contain f as a factor.

An edit operation is a function O : Σ∗ → Σ∗ that transform a word into another
one. Among the most common edit operations there are the insertion, the deletion or
the replacement of a character and the swap of two adjacent characters. LetOP be a set
of edit operations. The edit distance of two words u, v ∈ Σ∗ is the minimum number
of edit operations in OP needed to transform u into v. . In this paper, we consider the
edit distance that uses only replacements and swaps. Note that these two operations do
not change the length of the word. We give a formal definition.

Definition 1 Let Σ be a finite alphabet and w = a1a2 . . . an a word over Σ.
The replacement operation (or replacement, for short) on w at position i with x ∈ Σ,
x 6= ai, is defined by

Ri,x(a1a2 . . . ai−1aiai+1 . . . an) = a1a2 . . . ai−1xai+1 . . . an.

The swap operation (or swap, for short) on w at position i consists in exchanging
characters at positions i and i+ 1, provided that they are different, ai 6= ai+1,

Si(a1a2 . . . aiai+1 . . . an) = a1a2 . . . ai+1ai . . . an.

When the alphabet Σ = {0, 1} there is only a possible replacement at a given position
i, so we write Ri(w) instead of Ri,x(w).
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Given two equal-length words u = a1 · · · an and v = b1 · · · bn, they have a mis-
match error (or mismatch) at position i if ai 6= bi and they have a swap error (or swap)
at position i if aiai+1 = bi+1bi, with ai 6= ai+1. We say that u and v have an error at
position i if they have either a mismatch or a swap error.

Note that one swap corresponds to two adjacent mismatches.
A word f is isometric if for any pair of f -free words u and v, there exists a se-

quence of minimal length of replacement operations that transform u into v where all
the intermediate words are also f -free. In this paper we refer to this definition of iso-
metric as Ham-isometric. In [21], a word w has a 2-error overlap if there exists l such
that prel(w) and suf l(w) have two mismatch errors. Then, they prove the following
characterization.

Proposition 2 A word f is Ham-isometric if and only if f has a 2-error overlap.

3 Tilde-distance and tilde-isometric words
In this section we consider the edit distance based on swap and replacement operations
that we call tilde-distance and we denote dist∼. First, we give some definitions and
notations, together with some examples and the proofs of some preliminary properties.

Definition 3 Let u, v ∈ Σ∗ be words of equal length. The tilde-distance dist∼(u, v)
between u and v is the minimum number of replacements and swaps needed to trans-
form u into v.

Definition 4 Let u, v ∈ Σ∗ be words of equal length. A tilde-transformation τ of length
h from u to v is a sequence of words (w0, w1, . . . , wh) such that w0 = u, wh = v, and
for any k = 0, 1, . . . , h − 1, dist∼(wk, wk+1) = 1. Moreover, τ is f -free if for any
i = 0, 1, . . . , h, the word wi is f -free.

A tilde-transformation (w0, w1, . . . , wh) from u to v is associated to a sequence of h
operations (Oi1 , Oi2 , . . . Oih) such that, for any k = 1, . . . , h, Oik ∈ {Rik,x, Sik} and
wk = Oik(wk−1); it can be represented as follows:

u = w0

Oi1−−→ w1

Oi2−−→ · · ·
Oih−−→ wh = v.

With a little abuse of notation, in the sequel we will refer to a tilde-transformation both
as a sequence of words and as a sequence of operations. We give some examples.

Example 5 Let u = 1011, v = 0110. Below we show two different tilde-transformations
from u to v. Note that the length of τ1 corresponds to dist∼(u, v) = 2.

τ1 : 1011
S1−→ 0111

R4−−→ 0110 τ2 : 1011
R1−−→ 0011

R2−−→ 0111
R4−−→ 0110

Furthermore, consider the following tilde-transformations of u′ = 100 into v′ = 001:

τ ′1 : 100
S1−→ 010

S2−→ 001 τ ′2 : 100
R1−−→ 000

R2−−→ 001

Note that both τ ′1 and τ ′2 have the same length equal to dist∼(u′, v′) = 2. Interestingly,
in τ ′1 the symbol in position 2 is changed twice.
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The next lemma shows that, in the case of a two letters alphabet, we can restrict to
tilde-transformations where each character is changed at most once.

Lemma 6 Let u, v ∈ {0, 1}m with m ≥ 1. Then, there exists a tilde-transformation
of u into v of length dist∼(u, v) such that for any i = 1, 2, . . . ,m, the character in
position i is changed at most once.

Proof: Let u = a1 · · · am and v = b1 · · · bm and let τ be a tilde-transformation of u
into v of length d = dist∼(u, v). Suppose that, for some i, the character in position i is
changed more than once by τ and let Ot and Os be the first and the second operation,
respectively, that modify the character in position i. Observe that the character in
position i can be changed by the operations Ri, Si−1 or Si.
Suppose that Ot = Si and Os = Ri. Then, the symbol ai is changed twice and two
operations Si and Ri could be replaced by a single Ri+1. This would yield a tilde-
transformation of u into v of length strictly less than d; this is a contradiction to the
definition of tilde-distance. Similarly for the cases where Ot = Ri and Os = Si,
Ot = Si−1 and Os = Ri, Ot = Ri and Os = Si−1.
Finally, ifOt = Si−1 andOs = Si then the three characters in positions i−1, i and i+1
are changed, but the one in position i is changed twice. Hence, the two swap operations
Si−1 and Si can be replaced by Ri−1 and Ri+1 yielding a tilde-transformation of u
into v of same length d which instead involves positions i − 1 and i just once (see τ ′2
in Example 5). 2

Remark 7 Lemma 6 only applies to a binary alphabet. Indeed, if Σ = {0, 1, 2}, and
take u = 012 and v = 120, then dist∼(012, 120) = 2 because there is the tilde-

transformation 012
S1−→ 102

S2−→ 120. Instead, in order to change each character at
most once, three replacement operations are needed.

Definition 8 Let Σ be a finite alphabet and u, v ∈ Σ+. A tilde-transformation from u
to v is minimal if its length is equal to dist∼(u, v) and characters in each position are
modified at most once.

Lemma 6 guarantees that, in the binary case, a minimal tilde-transformation always
exists. In the sequel, this will be the most investigated case. Let us now define isometric
words based on the swap and mismatch distance.

Definition 9 Let f ∈ Σn, with n ≥ 1, f is tilde-isometric if for any pair of f -free
words u and v of length m > n, there exists a minimal tilde-transformation from u to
v that is f -free. It is tilde-non-isometric if it is not tilde-isometric.

In order to prove that a word is tilde-non-isometric it is sufficient to exhibit a pair
(u, v) of words contradicting the Definition 9. Such a pair will be referred to as tilde-
witnesses for f . Some examples follow.

Definition 10 A pair (u, v) of words in Σm is a pair of tilde-witnesses for f if:
1. u and v are f -free
2. dist∼(u, v) ≥ 2
3. there exists no minimal tilde-transformation from u to v that is f -free.
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Example 11 The word f = 1010 is tilde-non-isometric because u = 11000 and v =
10110 are tilde-witnesses for f . In fact, the only possible minimal tilde-transformations
from u to v are 11000

S2−→ 10100
R4−−→ 10110 and 11000

R4−−→ 11010
S2−→ 10110 and in

both cases 1010 appears as factor after the first step.

Remark 12 When a transformation contains a swap and a replacement that are adja-
cent, there could exist many distinct minimal tilde-transformations that involve different
sets of operations. For instance, the pair (u, v), with u = 010 and v = 101, has the
following minimal tilde-transformations:

010
S1−→ 100

R3−−→ 101 010
S2−→ 001

R1−−→ 101

This fact cannot happen when only replacements are allowed. For this reason studying
tilde-isometric words is more complicated than the Hamming case.

Example 11 shows a tilde-non-isometric word. Proving that a given word is tilde-
isometric is much harder since it requires to give evidence that no tilde-witnesses exist.
We will now prove that word 111000 is isometric with ad-hoc technique.

Example 13 The word f = 111000 is tilde-isometric. Suppose by the contrary that f
is tilde-non-isometric and let (u, v) be a pair of tilde-witnesses for f of minimal tilde-
distance. If u and v have only mismatch errors, this is the case of the Hamming distance
and results from this theory [4, 19] show that u = 1110011000 and v = 1110101000;
these are not tilde-witnesses since dist∼(u, v) = 1.
Therefore, u and v have a swap error in some position i; suppose u[i..i + 1] = 01.
The minimality of dist∼(u, v) implies that Si(u) is not f -free. Then, a factor 111000
appears in Si(u) from position i− 2, and u[i− 2..i+ 3] = 110100. Since v is f -free,
then there is another error in u involving some positions in [i− 2..i+ 3]. It cannot be
neither a swap (since there are no adjacent different symbols that are not changed yet),
nor a mismatch in positions i − 1, i + 2 (since the corresponding replacement cannot
let f occur). Then, it is a mismatch in position i − 2 or i + 3. Consider the case of a
mismatch in position i+3 (the other case is analogous). Then, u[i+3..i+8] = 011000
and there is another error in [i+4..i+8], in fact, in position i+6 or i+8. Continuing
with similar reasoning, one falls back to the previous situation. This is a contradiction
because the length of u is finite.

From now on, we consider only the binary alphabet Σ = {0, 1} and we study
isometric binary words beginning by 1, in view of the following lemma whose proof
can be easily inferred by combining the definitions.

Lemma 14 Let f ∈ {0, 1}n. The following statements are equivalent:

1. f is tilde-isometric

2. frev is tilde-isometric

3. f is tilde-isometric.

Let us conclude the section by comparing tilde-isometric with Ham-isometric words.
Although the tilde-distance is more general than the Hamming distance, they are in-
comparable, as stated in the following proposition.
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Proposition 15 There exists a word which is tilde-isometric but Ham-non-isometric,
and a word which is tilde-non-isometric, but Ham-isometric.

Proof: The word f = 111000 is tilde-isometric (see Example 13), but f is Ham-non-
isometric by Proposition 2.
Conversely, f ′ = 1010 is tilde-non-isometric (see Example 11), but Ham-isometric by
Proposition 2.

2

4 Tilde-isometric words and tilde-error overlaps
In this section we focus on the word property of being tilde-non-isometric and connect
it to the number of errors in its overlaps. The idea reminds the characterization for
Ham-isometric words recalled in Proposition 2 but the swap operation changes all the
perspectives as pointed also in Proposition 15.

Definition 16 Let f ∈ {0, 1}n. Then, f has a q-tilde-error overlap of length l, with
1 ≤ l ≤ n− 1 and 0 ≤ q ≤ l, if dist∼(prel(f), suf l(f)) = q.

In other words, if f has a q-tilde-error overlap of length l then there exists a minimal
tilde-transformation τ from prel(f) to suf l(f) of length q. In the sequel, when q = 2,
in order to specify the kind of errors, a 2-tilde-error overlap is referred to be of type RR
if τ consists of two replacements, of type SS in case of two swaps, of type RS in case
of replacement and swap, and of type SR in case of swap and replacement. If the two
errors are in positions i and j, with i < j and we say that f has a 2-tilde-error overlap in
i and j or, equivalently, that i and j are the error positions of the 2-tilde-error overlap.

Let f ∈ {0, 1}n have a 2-tilde-error overlap in positions i and j with i < j, of
shift r and length l = n − r. The following situations can occur (see Fig.1), for some
w1, w2, w3, w4 ∈ {0, 1}∗ and |w1| = r.

RR: f = w2f [i]wf [j]w3w4 = w1w2f [i]wf [j]w3

SR: f = w2f [i]f [i+ 1]wf [j]w3w4 = w1w2f [i+ 1]f [i]wf [j]w3

RS: f = w2f [i]wf [j]f [j + 1]w3w4 = w1w2f [i]wf [j + 1]f [j]w3

SS: f = w2f [i]f [i+1]wf [j]f [j+1]w3w4 = w1w2f [i+1]f [i]wf [j+1]f [j]w3

1

f :

i j

w2 w w3 w4

f :
r+i r+j

w1 w2 w w3

r l = n � r r

1

f :

i i+1 j

w2 w w3 w4

f :
r+i r+i+1 r+j

w1 w2 w w3

r l = n− r r

Figure 1: A word f and its 2-tilde-error overlap of type RR (a) and SR (b)
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If w = ε we say that the two errors are adjacent. In particular, in the case of a 2-tilde-
error overlap in positions i and j, of type RR and RS, the two errors are adjacent if
j = i + 1. Note that in case of adjacent errors of type RR with f [i] 6= f [i + 1], we
have a 1-tilde-error overlap that is a swap and that we call of type S. For 2-tilde error
overlap of type SR and SS in positions i and j, the two errors are adjacent if j = i+ 2.

Remark 17 Let f ∈ {0, 1}n be a tilde-non-isometric word and (u, v), with u, v ∈ Σm,
be a pair of tilde-witnesses for f , with minimal d = dist∼(u, v) among all pairs of
tilde-witnesses of length m.

Let {Oi1 , Oi2 , . . . , Oid} be the set of operations of a minimal tilde-transformation
from u to v, 1 ≤ i1 < i2 < · · · < id ≤ m. Then, for any j = 1, 2, . . . , d − 1,
Oij (u) has an occurrence of f in the interval [kj ..(kj + n − 1)], which contains at
least one position modified by Oij . In fact, if Oij is a swap operation then it changes
two positions at once, positions ij and ij + 1, and the interval [kj ..(kj + n− 1)] may
contain both positions or just one. Note that when only one position is contained in
the interval, such position is at the boundary of the interval. This means that, although
an error in a position at the boundary of a given interval may appear as caused by a
replacement, this can be actually caused by a hidden swap involving positions over the
boundary.

Proposition 18 If f ∈ {0, 1}n is tilde-non-isometric then

1. either f has a 1-tilde-error overlap of type S

2. or f has a 2-tilde-error overlap.

Proof: Let f be a tilde-non-isometric word, (u, v) be a pair of tilde-witnesses for f ,
and {Oi1 , Oi2 , . . . , Oid} as in Remark 17. Then, for any j = 1, 2, . . . , d − 1, Oij (u)
has an occurrence of f in the interval [kj ..kj + n − 1], which contains at least one
position modified by Oij . Note that, this occurrence of f must disappear in a tilde-
transformation from u to v, because v is f -free. Hence, the interval [kj ..kj + n − 1]
contains a position modified by another operation in {Oi1 , Oi2 , . . . , Oid}. By the pi-
geonhole principle, there exist s, t ∈ {i1, i2, . . . id}, such thatOs(u) has an occurrence
of f in [ks..ks+n−1] that contains at least one position modified byOt andOt(u) has
an occurrence of f in [kt..kt+n−1] that contains at least one position modified byOs.
Without loss of generality, suppose that ks < kt. The intersection of [ks..ks + n − 1]
and [kt..kt + n − 1] intercepts a prefix of f in Ot(u) and a suffix of f in Os(u) of
some length l. Such an intersection can contain either two, or three, or four among the
positions modified by Os and Ot, of which at least one is modified by Os and at least
one by Ot.

Consider the case that the intersection of [ks..ks + n − 1] and [kt..kt + n − 1]
contains two among the positions modified by Os and Ot, and denote them i and j,
with 1 ≤ i < j ≤ l. If the positions are not adjacent, then f has a 2-tilde-error overlap
(of type RR). Otherwise, if f [i] 6= f [i+ 1] then f has a 1-tilde-error overlap of type S.
If f [i] = f [i+ 1] then f has a 2-tilde-error overlap (of type RR).

Suppose that the intersection of [ks..ks + n − 1] and [kt..kt + n − 1] contains
three among the positions modified by Os and Ot. In this case, at least one of the
two operations must be a swap; suppose Os is a swap. Then, Ot could be either a
replacement on the third position, or a swap if the third position is at the boundary of
[kt..kt + n− 1]. In any case, f has a 2-tilde-error overlap (of type SR or SS).
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Suppose now that the intersection of [ks..ks + n− 1] and [kt..kt + n− 1] contains
four among the positions modified by Os and Ot. In this case, each of Os and Ot

involves two positions, and f has a 2-tilde-error overlap of type SS.
2

5 Construction of tilde-witnesses
As already discussed in Section 4, in order to prove that a word is tilde-non-isometric
it is sufficient to exhibit a pair of tilde-witnesses. Proposition 18 states that if a word is
tilde-non-isometric then it has either a 1-tilde-error overlap of type swap or a 2-tilde-
error overlap. In this section we show the construction of tilde-witnesses for a word,
starting from its error overlaps. Let us start with the case of a 1-tilde-error overlap.

Proposition 19 If f has a 1-tilde-error overlap of type S, then it is tilde-non-isometric.

Proof: Let f have a 1-tilde-error overlap in position i of type S with shift r. The pair
(u, v) with:

u = prer(f)Ri(f) v = prer(f)Ri+1(f)

is a pair of tilde-witnesses for f . In fact, one can prove that they satisfy the conditions
in Definition10.

2

Example 20 The word f = 101 has a 1-tilde-error overlap of type S in position 1
therefore it is tilde-non-isometric. In fact, following the proof of previous proposition,
the pair (u, v) with u = 1001 and v = 1111 is a pair of tilde-witnesses.

Let us now introduce some special words which often will serve as tilde-witnesses.
Let f ∈ {0, 1}n have a 2-tilde-error overlap of shift r in positions i and j, then

α̃r = prer(f)Oi(f) and β̃r = prer(f)Oj(f) (1)

As an example, using the previous notations for errors of type SR we have that

α̃r(f) = w1w2f [i+1]f [i]wf [j]w3w4 and β̃r(f) = w1w2f [i]f [i+1]wf [j]w3w4 (2)

Lemma 21 Let f ∈{0, 1}n have a 2-tilde-error overlap of shift r, then α̃r(f) is f -free.

Proof: Suppose that f ∈ {0, 1}n has a 2-tilde-error overlap. If it is of type RR then
α̃r(f) is f -free by Claim 1 of Lemma 2.2 in [19], also in the case of adjacent errors.
If it is of type SR, of shift r in positions i and j, with i < j, then, by Equation (1), we
have α̃r(f) = w1Si(f) then α̃r[r + k] = f [k], for any 1 ≤ k ≤ n, with k 6= i and
k 6= i+ 1. If f occurs in α̃r in position r1 + 1 we have that 1 < r1 < r (if r1 = 1 then
f [i] = f [i + 1] and there is no swap error at position i) and α̃r[r1 + 1 . . . r1 + n] =
f [1 . . . n]. Finally, by Equation (2), we have that α̃r[k] = f [k], for k 6= r + j. In
conclusion, we have that f [i] = α̃r[r1 + i] = f [r1 + i] (trivially, r1 + i 6= r + j).
Furthermore f [r1 + i] = α̃r[r+ r1 + i] (r1 + i 6= i and r1 + i 6= i+ 1 because r1 > 1).
But α̃r[r + r1 + i] = f [r + i] then we have the contradiction that f [i] = f [r + i]. If
the 2-tilde-error is of type RS, SS the proof is similar. For clarity, note that, also in the
case of adjacent errors, supposing that f occurs in α̃r leads to a contradiction in f [i]
that is not influenced by j.
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2

Note that while α̃r is always f -free, β̃r is not. Indeed, the property β̃r not f -free is
related to a condition on the overlap of f . We give the following definition.

Definition 22 Let f ∈ {0, 1}n and consider a 2-tilde-error overlap of f , with shift r
and error positions i, j, with 1 ≤ i < j ≤ n − r. The 2-tilde-error overlap satisfies
Condition∼ if it is of type RR or SS and: r is even

j − i = r/2
f [i..(i+ r/2− 1)] = f [j..(j + r/2− 1)]

( Condition∼ )

Lemma 23 Let f ∈ {0, 1}n have a 2-tilde-error overlap of shift r, then β̃r(f) is not
f -free iff the 2-tilde-error overlap satisfies Condition∼.

Proof: Suppose that f ∈ {0, 1}n has a 2-tilde-error overlap that satisfies Condition∼.
Note that a 2-tilde-error overlap of type RS or SR cannot satisfy Condition∼. Now,
if the 2-tilde-error overlap is of type RR, then the fact that β̃r(f) is not f -free can be
shown as in the proof of Claim 2 of Lemma 2.2 in [19]. If the 2-tilde-error overlap
is of type SS, then that proof must be suitably modified. More precisely, let i, j, with
1 ≤ i < j ≤ n − r, be the error positions of the 2-tilde-error overlap of shift r that
satisfies Condition∼.

Let f [i] = f [j] = x, f [i + r] = f [j + r] = x, f [i + 1] = f [j + 1] = x and
f [i+ 1 + r] = f [j + 1 + r] = x.

It is possible to show that, for some k1, k2 ≥ 0, we can write

f = ρ(uw)k1uwuwuwu(wu)k2σ

where u = xx, w = f [i + 2..j − 1] (w is empty, if j = i + 2) and ρ and σ are,
respectively, a suffix and a prefix of w. Now , we have

β̃r(f) = ρ(uw)k1+1uwuwuwu(wu)k2+1σ

and, hence, β̃r(f) is not f -free.
Assume now that β̃r(f) is not f -free and suppose that a copy of f occurs in β̃r(f)

at position r1+1. A reasoning similar to the one used in the proof of Lemma 21, shows
that, if i and j are the error positions, then j−i = r1 and j−i = r−r1. Hence r = 2r1
is even and j − i = r/2. Therefore, f [i+ t] = f b[i+ t] = f [i+ t+ r/2] = f [j + t],
for 0 ≤ t ≤ r/2, i.e. f [i..(i + r/2 − 1)] = f [j..(j + r/2 − 1) and the 2-tilde-error
overlap satisfies Condition∼.

2

In the rest of the section we deal with the construction of tilde-witnesses in the case
of 2-tilde-error overlaps. We distinguish the cases of non-adjacent and adjacent errors.
Non-adjacent errors can be dealt with standard techniques, while the case of adjacent
ones may show new issues. For example, when f has a 2-error-overlap of type SR with
error block 101 (aligned with 010) then it can be also considered of type RS.

Moreover, note that all the adjacent pairs of errors can be listed as follows, up to
complement and reverse. A 2-error overlap of type SS may have (error) block 1010 or
1001; of type SR or RS may have block 100, 101 or 110; of type RR block 11 (block
10 aligned with 01 corresponds to one swap). Note that, for some error types, we need
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also to distinguish sub-cases related to the different characters adjacent to those error
blocks. We collect all the cases in the following proposition. For lack of space, the
proof is detailed only in the case 2. In the remaining cases, the proofs are sketched by
exhibiting a pair of words that can be shown to be a pair of tilde-witnesses.

Theorem 24 Let f ∈ {0, 1}n. Any of the following conditions, up to complement and
reverse, is sufficient for f being tilde-non-isometric.

1. f has a 2-tilde-error overlap with not adjacent error positions

2. f has a 2-tilde-error overlap of type SS with adjacent error positions

3. f has a 2-tilde-error overlap with block 101 (of type SR or RS)

4. f has a 2-tilde-error overlap with block 100 (of type SR or RS) in the particular
case that f = x1001z = yx011, for some x, y, z ∈ {0, 1}∗

5. f has a 2-tilde-error overlap RR in the particular case that f starts with 110
and ends with 100.

Proof: We provide, for each case in the list, a pair of tilde-witnesses for f .
Case 1. If the 2-tilde-error overlap does not satisfy Condition∼, following Definition
10, one can prove that the pair (α̃r, β̃r) as in Equation (1) is a pair of tilde-witnesses
for f . Otherwise, one can prove that (η̃r, γ̃r) with η̃r = prer(f)Oi(f)sufr/2(f) and
γ̃r = prer(f)Oj(Ot(f))sufr/2(f) is a pair of tilde-witnesses for f .
Case 2. Proved in Lemma 25.
Case 3. We have f = w2101w3w4 = w1w2010w3, for some w1, w2, w3, w4 ∈
{0, 1}∗. The pair (α̃r, β̃r), with α̃r = w1w2011w3w4 and β̃r = w1w2100w3w4, is a
pair of tilde-witnesses, following Definition 10.
Case 4. We have f = w21001w3 = w1w2011, for some w1, w2, w3 ∈ {0, 1}∗. In
this case we need a different technique to construct the pair of tilde-witnesses (α̃r, δ̃r).
We set α̃r = w1w20101w3 and δ̃r = w1w21010w3. Here we prove that δ̃r is f-
free. Indeed, suppose that a copy of f occurs in δ̃r starting from position r1. Some
considerations, related to the definition of δ̃r and to the structure of f , show that either
r1 = 2 or r1 = 3, and one can prove that this leads to a contradiction.
Case 5. We have f = 110w1 = w2100, for some w1, w2 ∈ {0, 1}∗. By following
Definition 10, one can prove that the pair (α̃r, δ̃r), with α̃r = w21010w1 and δ̃r =
w20101w1 is a pair of tilde-witnesses. Remark that, in such a case, the pair (α̃r, β̃r)
of Equation 1 is not a pair of tilde-witnesses because dist∼(α̃r, β̃r) = 1.

2

Let us prove in details that Case 2. of previous theorem holds.

Lemma 25 If f has a 2-tilde-error overlap of type SS, where the errors are adjacent,
then f is tilde-non-isometric.

Proof: Let f ∈ {0, 1}n have a 2-tilde-error overlap of shift r and type SS, where the
errors are adjacent. Then, two cases can occur (up to complement):
Case 1: f = w21010w3w4 = w1w20101w3, |w1| = r
If the 2-tilde-error overlap does not satisfy Condition∼, then (α̃r, β̃r), with α̃r =
w1w20110w3w4 and β̃r = w1w21001w3w4, is a pair of tilde-witnesses, following
Definition 10. In fact:

11



1. α̃r is f -free thanks to Lemma 21 and β̃r is f -free, by Lemma 23.

2. dist∼(α̃r, β̃r) = 2, straightforward.

3. a minimal tilde-transformation from α̃r to β̃r consists of two swaps Si and Sj

with i = |w1w2| + 1 and j = i + 2. If Si is applied to α̃r as first operation,
then f appears as a suffix, whereas if Sj is applied first to α̃r, then f appears as
a prefix.

If the 2-tilde-error overlap satisfies Condition∼, then w3 = 10w′3 and, following Defi-
nition 10, (η̃r, γ̃r) is a pair of tilde-witnesses, where η̃r = w1w2011010w

′
3w4w5 and

γ̃r = w1w2100101w
′
3w4w5, with w5 = sufr/2(f).

1. One can prove that η̃r and γ̃r are f -free.

2. dist∼(η̃, γ̃) = 3.

3. a minimal tilde-transformation from η̃r to γ̃r consists of three swap operations
Si, Sj and St with i = |w1w2|+ 1, j = i+ 2, t = j + 2.
If Si is applied to η̃r as first operation, then f occurs at position |w1| + 1, if Sj

is applied first then f appears as a prefix, whereas if St is applied first then f
appears as a suffix.

Case 2: f = w21001w3w4 = w1w20110w3, |w1| = r
The pair (α̃r, β̃r), with α̃r = w1w20101w3w4 and β̃r = w1w21010w3w4, is a pair
of tilde-witnesses, following Definition 10. In such a case, by Lemma 23, β̃r is f -free.
In fact, the Condition∼ never holds, since f [i] is different from f [j].

2

The following example uses Lemma 25.

Example 26 The word f = 10010110 = 10010110 has a 2-tilde-error overlap of
type SS and shift r = 4 in positions 1, 3. By Lemma 25, the pair (α̃4, β̃4) with α̃4 =
100101010110 and β̃4 = 100110010110 is a pair of tilde-witnesses. Then f is tilde-
non-isometric. Note that f is Ham-isometric.

Theorem 24 lists the conditions for a word f being tilde non-isometric and the
proof provides all the corresponding pairs of witnesses. The construction of (α̃r, β̃r)
and (η̃r, γ̃r), used so far, is inspired by an analogous construction for the Hamming
distance (cf. [19]) and it is here adapted to the tilde-distance. On the contrary, in the
cases 4 and 5 a new construction is needed because the usual pair of witnesses does not
satisfy any more Definition 10. The construction of δ̃r is peculiar of the tilde-distance.
It solves the situation expressed in Remark 17 when a mismatch error may appear as
caused by a replacement, but it is actually caused by a hidden swap involving adjacent
positions.

In conclusions, the swap and mismatch distance we adopted in this paper opens
up new scenarios and presents interesting new situations that surely deserve further
investigation.
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