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Abstract. We design alignment-free techniques for comparing a se-
quence or word, called a target, against a set of words, called a reference.
A target-specific factor of a target T against a reference R is a factor
w of a word in T which is not a factor of a word of R and such that
any proper factor of w is a factor of a word of R. We first address the
computation of the set of target-specific factors of a target T against
a reference R, where T and R are finite sets of sequences. The result
is the construction of an automaton accepting the set of all considered
target-specific factors. The construction algorithm runs in linear time
according to the size of T ∪R. The second result consists of the design of
an algorithm to compute all the occurrences in a single sequence T of its
target-specific factors against a reference R. The algorithm runs in real-
time on the target sequence, independently of the number of occurrences
of target-specific factors.

Keywords: Specific word · Minimal forbidden word · Suffix automaton.

1 Introduction

The goal of this article is to design an alignment-free technique for comparing a
sequence or word, called a target, against a set of words, called a reference.

The motivation comes from the analysis of genomic sequences as done for
example by Khorsand et al. in [15] in which authors introduce the notion of
sample-specific strings. To avoid alignments but to extract interesting elements
that differentiate the target from the reference, the chosen specific fragments
are minimal forbidden factors, also called minimal absent factors. Target-specific
words are factors of the target that are minimal forbidden factors of the reference.
These types of factors have already been applied to compare efficiently sequences
(see for example [8] and references therein), to build phylogenies of biological
molecular sequences using a distance based on absent words (see [7,6],...), to
discover remarkable patterns in some genomic sequences (see for example [21])
and to improve pattern matching methods (see [11]...), to quote only a few
applications. In bioinformatics target-specific words act as signatures for newly
sequenced biological molecules and help find their characteristics.

The notion of minimal absent factors was introduced by Mignosi et al. [18]
(see also [2]) in relation to combinatorial aspects of some sequences. It has then
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been extended to regular languages in [1], which obviously applies to a finite set
of (finite) sequences. The first linear-time computation is described in [12] (see
also [10]) and, due to the important role of the notion, the efficient computation
of minimal forbidden factors has attracted quite a lot of works (see for example
[20] and references therein).

In the article, we continue exploring the approach of target-specific words as
done in [15] by introducing new other algorithmic techniques to detect them.
See also the more general view on the usefulness of formal languages to analyze
several genomes using pangenomics graphs by Bonizzoni et al. in [5].

The results. First, we address the computation of the set of target-specific factors
of a target T against a reference R, where T and R are finite sets of sequences.
The result is the construction of an automaton accepting the set of all considered
target-specific factors. The construction algorithm runs in linear time according
to the size of T ∪R.

The second result consists of the design of an algorithm to compute all the
occurrences in a single sequence T of its target-specific factors against a reference
R. The algorithm runs in real-time on the target sequence, independently of the
number of occurrences of target-specific factors, after a standard processing of
the reference. This improves on the result in [15], where the running time of the
main algorithm depends on the number of occurrences of sought factors.

The design of both algorithms uses the notion of suffix links that are used
for building efficiently indexing data structures, like suffix trees (see [14]) and
DAWGs also called suffix automata (see [3,10]). The links can also be simulated
with suffix arrays [17] and their implementations, for example, the FM-index [13].
The algorithm in [15] uses the FMD index by Li [16]. All these data structures
can accommodate the sequences and their reverse complements.

Definitions. Let A be a finite alphabet and A∗ be the set of the finite words
drawn from the alphabet A, including the empty word ε. A factor of a word
u ∈ A∗ is a word v ∈ A∗ that satisfies u = wvt for some words w, t ∈ A∗. A
proper factor of a word u is a factor distinct from the whole word. If P is a set of
words, we denote by Fact(P ) the set of factors of words in P , and, if P is finite,
size(P ) denotes the sum of lengths of the words in P .

A minimal forbidden word (also called a minimal absent word) for a given
set of words L ⊆ A∗ with respect to a given alphabet B containing A is a word
of B∗ that does not belong to L but that all proper factors do.

Let R, T be two sets of finite words. A T -specific word with respect to R is
a word u for which: u is a factor of a word of T , u is not a factor of a word in
R and any proper factor of u is a factor of a word in R. The set R is called the
reference and T the target of the problem.

Note that a word is a T -specific word with respect to R if and only if it
is a minimal forbidden word of Fact(R) with respect to the alphabet of letters
occurring in R∪T and is also in Fact(T ). As a consequence, the set of T -specific
words with respect to R is both prefix-free and suffix-free.



Fast detection of specific fragments against a set of sequences 3

It follows from the definition that the set S of T -specific words with respect
to R is:

AFact(R) ∩ Fact(R)A ∩ (A∗ − Fact(R)) ∩ Fact(T ),

where A is the alphabet of letters of words R and T . It is thus a regular set when
R and T are regular, in particular when R and T are finite.

A finite deterministic automaton is denoted by A = (Q,A, i, F, δ) where A
is a finite alphabet, Q is a finite set of states, i ∈ Q is the unique initial state,
F ⊆ Q is the set of final states and δ is the partial function from Q × A to Q
representing the transitions of the automaton. The partial function δ extends to
Q×A∗ and a word u is accepted by A if and only if δ(i, u) is defined and belongs
to F .

2 Background: directed acyclic word graph

In this section, we recall the definition and the construction of the directed
acyclic word graph of a finite set of words. This description already appears in
[1].

Let P = {x1, x2, . . . , xr} be a finite set of words of size r. A linear-time
construction of a deterministic finite state automaton recognizing Fact(P ) has
been obtained by Blumer et al. in [3], [4], see also [19]. Their construction is an
extension of the well-known incremental construction of the suffix automaton
of a single word (see for instance [9,10]). The words are added one by one to
the automaton. In the sequel, we call this algorithm the Dawg algorithm since
it outputs a deterministic automaton called a directed acyclic word graph. Let
us denote by DAWG(P ) = (Q,A, i,Q, δ) this automaton. Let Suff (v) denote
the set of suffixes of a word v and Suff (P ) the union of all Suff (v) for v ∈
P . The states of DAWG(P ) are the equivalence classes of the right invariant
equivalence ≡Suff (P ) defined as follows. If u, v ∈ Fact(P ),

u ≡Suff (P ) v iff ∀i1 ≤ i ≤ r and u−1Suff (xi) = v−1Suff (xi).

and there is a transition labeled by a from the class of a word u to the class
of ua. The automaton DAWG(P ) has a unique initial state, which is the class of
the empty word, and all its states are final. Note that the syntactic congruence
∼ defining the minimal automaton of the language is

u ∼ v iff

r
⋃

i=1

u−1Suff (xi) =

r
⋃

i=1

v−1Suff (xi)

and is not the same as the above equivalence. In other words, DAWG(P ) is not
always a minimal automaton.

The construction of DAWG(P ) is performed in time O(size(P ) × log |A|).
A time complexity of O(size(P )) can be obtained with an implementation of
automata with sparse matrices (see [10]).



4 Marie-Pierre Béal et al.

Example 1. The deterministic acyclic word graph obtained with the Dawg al-
gorithm from P = {abbab, abaab} is displayed in Figure 1 where dashed edges
represent the suffix links. Note that this deterministic automaton is not minimal
since states 3 and 7, 5 and 9, and 6 and 10 can be merged pairwise.

0 1 2 3 5 6

4 8

7 9 10

a b b a b

b b

a

a

a

b

b

a

a

ar, t r, t r, t r

r, t

r r

t

r, t

t t

Fig. 1. Automaton DAWG(P ) for P = {abbab, abaab}. Marks r, t above states are
defined in Section 3

We let s denote the suffix link function associated with DAWG(P ). We first
define the function s′ from Fact(P )\{ε} to Fact(P ) as follows: for v ∈ Fact(P )\
{ε}, s′(v) is the longest word u ∈ Fact(P ) that is a suffix of v and for which
u 6≡Suff (P ) v. Then, if p = δ(i, v), s(p) is the state δ(i, s′(v)).

3 Computing the set of T-specific words

In this section, we assume that the reference R and the target T are two finite
sets of words and our goal is to compute the set of T-specific factors of T against
R. To do so, We first compute the directed acyclic word graph DAWG(R∪T ) =
(Q,A, i,Q, δ) of R ∪ T . Further, we compute a table mark indexed by the set of
states Q that satisfies: for each state p in Q, mark[p] is one of the three values
r, t or both r, t according to the fact that each word labeling a path from i to
q is a factor of some word in R and not of a word in T , or is a factor of a word
in T and not of a word in R, or is a factor of a word in R and of a word in T .
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This information can be obtained during the construction of the directed acyclic
word graph without increasing the time and space complexity.

The following algorithm outputs a trie (digital tree) of the set of T -specific
words with respect to T and R.

Specific-trie((Q,A, i,Q, δ) DAWG of (R ∪ T ), s its suffix link)

1 for each p ∈ Q with mark[p] = r, t in width-first search from i

and for each a ∈ A do

2 if (δ(p, a) defined and mark[δ(p, a)] = t) and ((p = i) or

(δ(s(p), a) defined and mark[δ(s(p), a)] = r or r, t)) then

3 δ′(p, a)← new sink

4 else if (δ(p, a) = q with mark[q] = r, t)

and (q not already reached) then

5 δ′(p, a)← q

6 return A, the automaton (Q,A, i, {sinks}, δ′)

Example 2. The automaton DAWG(R ∪ T ) with the input R = {abbab}, T =
{abaab} is shown in Figure 1. The output of algorithm Specific-trie on DAWG

(R ∪ T ) is shown in Figure 2 where the squares are final or sink states of the
trie. The set of T -specific words with respect to R is {aa, aba}.

0 1 2

4 8

a b

a
b

r, t r, t r, t

r, t r, t

a a

Fig. 2. The trie of T -specific words with respect to R.

Proposition 1. Let DAWG(R ∪ T ) be the output of algorithm Dawg on the

finite set of words R ∪ T , let s be its suffix function, and let mark be the table

defined as above. Algorithm Specific-trie builds the trie recognizing the set of

T -specific words with respect to R.

Proof. Let S be the set of of T -specific words with respect to R.
Consider a word ua (a ∈ A) accepted by A. Note that A accepts only

nonempty words. Let p = δ′(i, u). Since the DAWG automaton is processed
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with a width-first search, u is the shortest word for which δ(i, u) = p. Therefore,
if u = bv with b ∈ A, we have δ(i, v) = s(p) by definition of the suffix function s.
When the test “(δ(p, a) defined and mark[δ(p, a)] = t) and (δ(s(p), a) defined and
mark[δ(s(p), a)] = r or r, t)” is satisfied, this implies that va ∈ Fact(R). Thus,
bva /∈ Fact(R), while bv, va ∈ Fact(R) and bva ∈ Fact(T ). So, ua is a T -specific
word with respect to R. If u is the empty word, then p = i. The transition
from i to the sink labeled by a is created under the condition “δ(p, a) defined
and mark[δ(p, a)] = t”, which means that a ∈ Fact(T ). The word a is again a
T -specific word with respect to R. Thus the words accepted by A are T -specific
words with respect to R.

Conversely, let ua ∈ S. If u is the empty word, this means that a does not
occur in Fact(R) and occurs in Fact(T ) therefore there is a transition labeled by
a from i in DAWG(R ∪ T ) to a state marked t. Thus a transition from i to a
sink state in A created Line 3 and a is accepted by A. Now assume that u = bv.
The word u is in Fact(R). So let p = δ(i, u). Note that u is the shortest word for
which p = δ(i, u), because all such words are suffixes of each other in the DAWG

automaton. The word ua is not in Fact(R) and is in Fact(T ), so the condition
“δ(p, a) defined and mark[p, a] = t” is satisfied. Let q = s(p). We have q = δ(i, v)
because of the minimality of the length of u and the definition of s. Since va is
in Fact(R), the condition “δ(s(p), a) defined and mark[δ(s(p), a)] = r or r, t” at
Line 2 is satisfied which yields the creation of a transition at Line 3 to make A
accept ua as wanted.

A main point in algorithm Specific-trie is that it uses the function s de-
fined on states of the input DAWG. It is not possible to proceed similarly when
considering the minimal factor automaton of Fact(R∪T ) because there is no ana-
logue function s. However, it is possible to reduce the automaton DAWG(R∪T )
by merging states having the same future (right context) and the same image
by s. For example, on the DAWG of Figure 1, states 6 and 10 can be merged
because s(6) = s(10) = 2. States 3 and 7, nor states 5 and 9 cannot be merged
with the same argument.

Proposition 2. Algorithms Dawg and Specific-trie together run in time

O(size(R ∪ T ) × |A|) with input two finite sets of words R, T , if the transition

functions are implemented by transition matrices.

If P is a set of words, we denote by AP the set of letters occurring in P .

Proposition 3. Let R, T be two finite sets of words. The number of T -specific

words with respect to R is no more than (2 size(R)− 2)(|AR| − 1)+ |AT \AR| −
|AR|+m, if size(R) > 1, where m the number of words in R. The bound becomes

|AT \AR| when size(R) ≤ 1.

Proof. We let S denote the set of T -specific words with respect to R. Since S is
included in the set of minimal forbidden words of Fact(R) with respect to the
alphabet A = AR ∪ AT , the bound comes from [1, Corollary 4.1].
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4 Computing occurrences of target-specific factors: the

T-specific table

In this section, we consider that R and T are just words. The goal of the section
is to design an algorithm that computes all the occurrences of T -specific words
in T . To do so, we define the T -specific table associated with the pair R, T of
words of the problem.

A letter of T at position k is denoted by T [k] and T [i . . j] denotes the
factor T [i]T [i + 1] · · ·T [j] of T . Then, the T-specific table Ts is defined, for
i = 0, . . . , |T | − 1, by

Ts [i] =

{

j, if T [i . . j] is T -specific, i ≤ j,
−1, else.

Note 1. Since the set of T -specific factors is both prefix-free and suffix-free, for
each position k on T there is at most one T -specific factor of T starting at k and
for each position j on T there is at most one T -specific factor of T ending at j.

Note 2. Instead of computing the T-specific table Ts , in a straightforward way,
the algorithm below can be transformed to compute the list of pairs (i, j) of
positions on T for which Ts [i] = j and j 6= −1.

To compute the table we use R, the suffix automaton of R, with its transition
function δ and equipped with both the suffix link s (used here as a failure link)
and the length function ℓ defined on states by: ℓ[p] = max{z ∈ A∗ | δ(i, z) =
p}. Functions s and ℓ transform the automaton into a search machine, see [10,
Section 6.6].

T

0 k j − ℓ[q]− 1 j |T | − 1
u b

i q

✲✛

L[q]

a v

T

0 k j |T | − 1
u

i q

Fig. 3. A T -specific word found: when u ∈ Fact(R) and ub 6∈ Fact(R), either avb or b

is a T -specific factor with respect to R (a, b are letters).

Figure 3 illustrates the principle of Algorithm TsTable. Let us assume the
factor u = T [k . . j − 1] is a factor of R but ub is not for some letter b. Then,
let v be the longest suffix of u for which vb is a factor of R. If it exists, then
clearly avb, with a letter preceding v, is T -specific. Indeed, av, vb ∈ Fact(R) and
avb 6∈ Fact(R), which means that avb is a minimal forbidden word of R while
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occurring in T . Therefore, setting q = δ(i, u), Ts [j− ℓ[q]− 1] = j since ℓ[q] = |v|
due to a property of the DAWG of R. If there is no suffix of u satisfying the
condition, the letter b alone is T -specific and Ts [j] = j.

TsTable(T target word,R DAWG(R), i initial(R))

1 (q, j)← (i, 0)

2 while j < |T | do

3 Ts [j]← −1

4 if δ(q, T [j]) undefined then

5 while q 6= i and δ(q, T [j]) undefined do

6 q ← s[q]

7 if δ(q, T [j]) undefined then ⊲ q = i

8 Ts [j]← j

9 j ← j + 1

10 else Ts [j − ℓ[q]− 1]← j

11 (q, j)← (δ(q, T [j]), j + 1)

12 else (q, j)← (δ(q, T [j]), j + 1)

13 return Ts

Theorem 1. The DAWG of the reference set R of words being preprocessed, ap-

plied to a word T , Algorithm TsTable computes its T -specific table with respect

to R and runs in linear time, i.e. O(|T |) on a fixed-size alphabet.

Proof. The algorithm implements the ideas detailed above. A more formal proof
relies on the invariant of the while loop: q = δ(i, u), where i is the initial state
of the suffix automaton of R and u = T [k . . j] for a position k ≤ j. Since
k = j−|u|, it is left implicit in the algorithm. The length |u| could be computed
and then incremented when j is. It is made explicit only at line 10 as L[q] + 1
after computing the suffix v of u.

For example, when v exists, u is changed to vb and j is incremented, which
maintains the equality.

As for the running time, note that instructions at lines 1 and 7-12 execute in
constant time for each value of j. All the executions of the instruction at line 6
execute in time O(|T |) because the link s reduces strictly the potential length
of the T -specific word ending at j, that is, it virtually increments the starting
position of v in the picture.

Thus the whole execution is done in time O(|T |).

Algorithm TsTable can be improved to run in real-time on a fixed-size
alphabet. This is done by optimizing the suffix link s defined on the automaton
R. To do so, let us define, for each state q of R,

Out(q) = {a | δ(q, a) defined for letter a}.
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Then, the optimised suffix link G is defined by G[initial(R)] = nil and, for any
other state q of R, by

G[q] =

{

s[q], if Out(q) ⊂ Out(s[q]),
G[s[q]], else.

Note that, since we always have Out(q) ⊆ Out(s[q]), the definition of G can be
reformulated as

G[q] =

{

s[q], if deg(q) < deg(s[q]),
G[s[q]], else,

where deg is the outgoing degree of a state. Therefore, its computation can
be realized in linear time with respect to the number of states of R. After
substituting G for s in Algorithm TsTable, when the alphabet is of size α
the instruction at line 6 executes no more than α times for each value of q. So
the time to process a given state q is constant. This is summarized in the next
corollary.

Corollary 1. When using the optimized suffix link, Algorithm TsTable runs

in real-time on a fixed-size alphabet.

On a more general alphabet of size α, the processing of a given state of the
automaton can be done in time logα.
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