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Abstract

A bit catastrophe, loosely defined, is when a change in just one character of
a string causes a significant change in the size of the compressed string. We
study this phenomenon for the Burrows-Wheeler Transform (BWT), a string
transform at the heart of several of the most popular compressors and aligners
today. The parameter determining the size of the compressed data is the number
of equal-letter runs of the BWT, commonly denoted r.
We exhibit infinite families of strings in which insertion, deletion, resp. substitu-
tion of one character increases r from constant toΘ(logn), where n is the length
of the string. These strings can be interpreted both as examples for an increase
by a multiplicative or an additive Θ(logn)-factor. As regards multiplicative fac-
tor, they attain the upper bound given by Akagi, Funakoshi, and Inenaga [Inf &
Comput. 2023] of O(log n log r), since here r = O(1).
We then give examples of strings in which insertion, deletion, resp. substitution
of a character increases r by a Θ(

√
n) additive factor. These strings significantly

improve the best known lower bound for an additive factor of Ω(log n) [Giuliani
et al., SOFSEM 2021].

Keywords: Burrows-Wheeler transform, equal-letter run, repetitiveness measure,
sensitivity.
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1 Introduction

The Burrows-Wheeler Transform (BWT) [7] is a reversible transformation of a string,
consisting of a permutation of its characters. It can be obtained by sorting all of its
rotations and then concatenating their last characters. The BWT is present in several
compressors, such as bzip [31]. It also lies at the heart of some of the most powerful
compressed indexes in terms of query time and functionality, such as the well-known
FM-index [11], and the more recent RLBWT [25] and r-index [2, 4, 5, 13, 14]. Some
of the most commonly used bioinformatics tools such as bwa [23], bowtie [22], and
SOAP2 [21] also use the BWT at their core.

Given a string w, the measure r = r(w) is defined as r(w) = runs(BWT(w)),
where runs(v) denotes the number of maximal equal-letter runs of a string v. It is
well known that r tends to be small on repetitive inputs. This is because, on texts
with many repeated substrings, the BWT tends to create long runs of equal characters
(so-called clustering effect) [29]. Due to the widespread use of runlength-compressed
BWT-based data structures, the BWT can thus be viewed as a compressor, with the
number of runs r the compression size. On the other hand, r is also increasingly being
used as a repetitiveness measure, i.e. as a parameter of the input text itself. In his
recent survey [28], Navarro explored the relationships between many repetitiveness
measures, among these r. In particular, all repetitiveness measures considered are lower
bounded by δ [19], a measure closely related to the factor complexity function [24].
It was further shown in [17] that r is within a polylog(n) factor of z, the number of
phrases of the LZ77-compressor [32].

Giuliani et al. [15] studied the ratio of the runs of the BWT of a string and of its
reverse. The authors gave an infinite families of strings for which this ratio is Θ(logn),
where n is the length of the string. This family can also serve as an example of strings
in which appending one character can cause r to increase from Θ(1) to Θ(logn). In
this paper we further explore this effect, extending it to the other edit operations of
deletion and substitution, for which we also give examples of a change from Θ(1) to
Θ(logn). Note that this attains the known upper bound of O(log r logn) [1].

Akagi et al. [1] explored the question of how changes of just one character affect
the compression ratio of known compressors; they refer to this as the compressors’
sensitivity. More precisely, the sensitivity of a compressor is the maximum multiplica-
tive factor by which a single-character edit operation can change the size of the output
of the compressor. In addition, they also study the maximum additive factor an edit
operation may cause in the output. Our second family of strings falls in this category:
these are strings with r in Θ(

√
n) on which an edit operation (insertion, deletion, or

substitution) can cause r to increase by a further additive factor of Θ(
√
n). This is a

significant improvement over the previous lower bound of Ω(log n) [15].
Lagarde and Perifel in [20] show that Lempel-Ziv 78 (LZ78) compression [33] suf-

fers from the so-called “one-bit catastrophe”: they give an infinite family of strings
for which prepending a character causes a previously compressible string to become
incompressible. They also show that this “catastrophe” is not a “tragedy”: they prove
that this can only happen when the original string was already poorly compressible.

Here we use the term “one-bit catastrophe” in a looser meaning, namely simply to
denote the effect that an edit operation may change the compression size significantly,
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i.e. increase it such that r(w′
n) = ω(r(wn)), for an infinite family (wn)n>0, where

w′
n is the word resulting from applying a single edit operation to wn. For a stricter

terminology we would need to decide for one of the different definitions of BWT-
compressibility currently in use. In particular, a string may be called compressible
with the BWT if r is in O(n/polylog(n)) [17], or if r(w)/runs(w) → 0 [12], or even
as soon as runs(w) > r(w) [26].

Some of our bit catastrophes can also be thought of as “tragedies”, since the exam-
ple families of the first group are precisely those with the best possible compression:
their BWT has 2 runs. In this sense our result on the BWT is even more surprising
than that of [20] on LZ78.

Note that, in contrast to Lempel-Ziv compression, for the BWT, appending,
prepending, and inserting are equivalent operations, since the BWT is invariant w.r.t.
conjugacy. This means that, if there exists a word w and a character c s.t. appending c
to w causes a certain change in r, then this immediately implies the existence of equiva-
lent examples for prepending and inserting character c. This is because r(wc)/r(w) = x
(appending) implies that r(cw)/r(w) = x (prepending), as well as r(ucv)/r(uv) = x,
for every conjugate uv of w = vu (insertion).

Finally, the BWT comes in two variants: in one, the transform is applied directly
on the input string: this is the preferred variant in literature on combinatorics on
words, and the one we concentrate on in most of the paper. In the other, the input
string is assumed to have an end-of-string marker, usually denoted $: this variant is
common in the string algorithms and data structures literature. We show that there
can be a multiplicative Θ(logn), or an additive Θ(

√
n) factor difference between the

two transforms. It is interesting to note that the previous remark about the equivalence
of insertion in different places in the text does not extend to the variant with the final
dollar. We show, however, that our results regarding the Θ(

√
n) additive factor apply

also to this variant, for all three edit operations, and that appending a character at
the end of the string—i.e., just before the $-character—can result in a multiplicative
Θ(logn) increase. This is in stark contrast with the known fact that prepending a
character can change the number of runs of the $-variant by at most 2 [1].

This work is an extended version of our conference article with the same title,
published in the proceedings of DLT 2023 [16].

2 Preliminaries

In this section, we give the necessary definitions and terminology used throughout the
paper.

2.1 Basics on words

Let Σ be a finite ordered alphabet, of cardinality σ. The elements of Σ are called charac-
ters or letters. A word (or string) over Σ is a finite sequence w = w[0]w[1] · · ·w[n−1] =
w[0..n − 1] of characters from Σ. We denote by |w| = n the length of w, with ǫ the
unique word of length 0. The set of words of length n is denoted Σn, and Σ∗ = ∪n≥0Σ

n

is the set of all words over Σ. Given a word w = w[0..n − 1], its reverse is the word
rev(s) = w[n−1]w[n−2] · · ·w[0]. For a non-empty word w = w[0..n−1], we denote by
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ŵ the word w[0..n− 2], i.e. w without its last character. We use the notation
∏k

i=1 vi
for the concatenation of the words v1, v2, . . . , vk. In particular, vk for k ≥ 1 stands for
the k-fold concatenation of the word v.

Let w be a word over Σ. If w = uxv for some (possibly empty) words u, x, v ∈ Σ∗,
then u is called a prefix, x a substring (or factor), and v a suffix of w. A proper prefix,
substring, or suffix of w is one that does not equal w. If x is a substring of w, then there
exist i, j such that x = w[i] · · ·w[j] = w[i..j], where w[i..j] = ǫ if i > j. If w[i..j] = x,
then i is called an occurrence of x.

Let u, v ∈ Σ∗. If w = uv and w′ = vu, then w and w′ are called conjugates or
rotations of one another. Equivalently, w′ is a conjugate of w if there is 0 ≤ i ≤ |w|
such that w′ = w[i..|w|]w[0..i − 1]. In this case, we write w′ = conji(w). A word u is
a circular factor of a word w if it is a prefix of conji(w) for some 0 ≤ i < |w|, and
i is called an occurrence of u. If a word w can be written as w = vk for some k > 1,
then w is called a power, otherwise w is called primitive. It is easy to see that w is
primitive if and only if it has |w| distinct conjugates.

Given two words v, w, the longest common prefix of v and w, denoted lcp(v, w),
is the unique word u such that u is a prefix of both v and w, and v[|u|] 6= w[|u|] if
neither of the two words is prefix of the other. The lexicographic order on Σ∗ is defined
as follows: v ≤lex w if v = lcp(v, w), or else if v[|u|] < w[|u|], where u = lcp(v, w). A
word is called a Lyndon word if it is lexicographically strictly smaller than all of its
conjugates.

Finally, an equal-letter run (or simply run) is a maximal substring consisting of
the same character, and runs(v) is the number of equal-letter runs in the word v. For
example, the word catastrophic has 12 runs, while the word mississippi has 8 runs.

2.2 The Burrows-Wheeler Transform

Let w ∈ Σ∗. The conjugate array CA = CAw of w is a permutation of {0, 1, . . . , n− 1}
defined by: CA[i] < CA[j] if (i) conji(w) <lex conjj(w), or (ii) conji(w) = conjj(w)
and i < j. So CA[k] contains the index of the kth conjugate of w in lexicographic
order. (Note that the conjugate array is the circular equivalent of the suffix array.)
For example, if w = catastrophic, then CAw = [3, 1, 0, 11, 9, 10, 7, 8, 6, 4, 2, 5].

The Burrows-Wheeler Transform (BWT) of the word w is a permutation of the
characters of w, usually denoted L = BWT(w), defined as L[i] = w[n−1] if CA[i] = 0,
and L[i] = w[CA[i]− 1] otherwise. For example, the BWT of the word catastrophic

is tcciphrotaas. It follows from the definition that w and w′ are conjugates if and
only if BWT(w) = BWT(w′).

We denote with r(w) = runs(BWT(w)) the number of runs in the BWT of the
word w. For example, r(catastrophic) = runs(tcciphrotaas) = 10.

In the context of string algorithms and data structures, it is usually assumed that
each string terminates with an end-of-string symbol (denoted by $), not occurring
elsewhere in the string; the $-symbol is smaller than all other symbols in the alphabet.
In fact, with this assumption, sorting the conjugates of w$ can be reduced to lexico-
graphically sorting its suffixes. Note that appending the character $ to the word w
changes the output of BWT. We denote by r$(w) = runs(BWT(w$)). For example,
BWT(catastrophic$) = ctci$phrotaas and r$(catastrophic) = 12.
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2.3 Standard words

Given an infinite sequence of integers (d0, d1, d2, . . .), with d0 ≥ 0, and di > 0 for all
i > 0, called a directive sequence, define a sequence of words si with i ≥ 0 of increasing

length as follows: s0 = b, s1 = a, si+1 = s
di−1

i si−1, for i ≥ 1. The words si are called
standard words. The index i is referred to as the order of si. Without loss of generality,
here we can assume that d0 > 0 (otherwise, the role of b and a is exchanged.). It is
known that for i ≥ 2, every standard word si can be written as si = xiab if i is even,
si = xiba if i is odd, where the factor xi is a palindrome [9].

Standard words are a well studied family of binary words with a lot of interesting
combinatorial properties and characterizations and appear as extreme cases in many
contexts [8, 18, 27, 30]. In particular, in [27], it was shown that the BWT of a binary
word has exactly two runs if and only if it is a conjugate of a standard word or a
conjugate of a power of a standard word.

Fibonacci words are a particular case of standard words, with directive sequence
consisting of only ones. More precisely, Fibonacci words can be defined as follows:
s0 = b, s1 = a, si+1 = sisi−1, for i ≥ 1. It is easy to see that for all i ≥ 0, |si| =
Fi, where (Fi)i≥0 is the Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, 21, . . ., defined by the
recurrence F0 = F1 = 1, and Fi+1 = Fi + Fi−1 for i ≥ 1. Using the well-known fact
that the Fibonacci sequence grows exponentially in i, we have that i = Θ(log |si|).
Moreover, for all k ≥ 1, s2k = x2kab and s2k+1 = x2k+1ba, where x2k and x2k+1 are
palindromes (in particular, x2 = ǫ). These words xh, for h ≥ 2, are also referred to as
central words. The recursive structure of the words x2k and x2k+1 is also known [10]:
x2k = x2k−1bax2k−2 = x2k−2abx2k−1 and x2k+1 = x2kabx2k−1 = x2k−1bax2k.

3 Increasing r by a Θ(logn)-factor

In this section we give infinite families of words on which a single edit operation, such
as insertion, deletion or substitution of a character, can cause an increase of r from
constant to Θ(logn), where n is the length of the word. The impact of the three edit
operations on the BWT of the word is shown in Figure 1.

3.1 Inserting a character

First we recall a result from [15], namely that appending a character to the reverse of
a Fibonacci word can increase the number of runs by a logarithmic factor [15]. This
result was shown using the following proposition:

Proposition 1 ([15], Prop. 3). Let v be the reverse of a Fibonacci word s. If s is of
even order 2k, then r(vb) = 2k. If s is of odd order 2k + 1, then r(va) = 2k.

A well-known property of each standard word is that its reverse is one of its rota-
tions [9]. Since s is a Fibonacci word, and thus a standard word, its reverse v has the
same BWT as s.Since s is a standard word, r(s) = 2, and therefore, also r(v) = 2.
Using the fact that the length of the ith Fibonacci word is Fi, and that the Fibonacci
sequence (Fi)i≥0 grows exponentially in i, it follows that by appending a final b, the
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CA rotations of
abaababaabaab

0 7 aabaababaabab b

1 2 aababaabaabab b

2 10 aababaababaab b

3 5 abaabaababaab b

4 0 abaababaabaab b

5 8 abaababaababa a

6 3 ababaabaababa a

7 11 ababaababaaba a

8 6 baabaababaaba a

9 1 baababaabaaba a

10 9 baababaababaa a

11 4 babaabaababaa a

12 12 babaababaabaa a

(a) Fibonacci word of order 6

CA rotations of
abaababbaabaab

0 8 aabaababaababb b

1 11 aababaababbaab b

2 2 aababbaabaabab b

3 9 abaababaababba a

4 0 abaababbaabaab b

5 12 ababaababbaaba a

6 3 ababbaabaababa a

7 5 abbaabaababaab b

8 7 baabaababaabab b

9 10 baababaababbaa a

10 1 baababbaabaaba a

11 13 babaababbaabaa a

12 4 babbaabaababaa a

13 6 bbaabaababaaba a

(b) Insertion

CA rotations of
abaababaabaa

0 10 aaabaababaab b

1 7 aabaaabaabab b

2 11 aabaababaaba a

3 2 aababaabaaab b

4 8 abaaabaababa a

5 5 abaabaaabaab b

6 0 abaababaabaa a

7 3 ababaabaaaba a

8 9 baaabaababaa a

9 6 baabaaabaaba a

10 1 baababaabaaa a

11 4 babaabaaabaa a

(c) Deletion

CA rotations of
abaababaabaaa

0 10 aaaabaababaab b

1 11 aaabaababaaba a

2 7 aabaaaabaabab b

3 12 aabaababaabaa a

4 2 aababaabaaaab b

5 8 abaaaabaababa a

6 5 abaabaaaabaab b

7 0 abaababaabaaa a

8 3 ababaabaaaaba a

9 9 baaaabaababaa a

10 6 baabaaaabaaba a

11 1 baababaabaaaa a

12 4 babaabaaaabaa a

(d) Substitution

Fig. 1: The BWT matrix of the Fibonacci word of order 6 (a), and that of the result
for 3 bit-catastrophes: (b) inserting a character in position 6 = F6−1 − 2, (c) deleting
the last character, (d) substituting the last character.

number of runs of the BWT is increased by a logarithmic factor in n = |v|, namely
from 2 = O(1) to either i (if i = 2k, for some k) or i − 1 (if i = 2k + 1, for some k),
which are both Θ(logn).

Similarly to Prop. 1, we will prove that adding a character x greater than b and
not present in the word has the same effect as adding a further b at the end of the
reverse of a Fibonacci word of even order. Intuitively, this is because in both cases a
new factor is introduced in the word, namely bb respectively x. Both these factors are
greater than all the other factors of the word, and they are the only change in the word.
Adding a further a to the reverse of a Fibonacci word of odd order, or a character
smaller than a, have a similar effect. We formalize this in the following proposition:

Proposition 2. Let v be the reverse of the Fibonacci word s, with |v| ≥ 2.
1. If s is of even order 2k and x > b, then r(vx) = 2k + 1.

6



2. If s is of odd order 2k + 1 and x < a, then 2k + 2 ≤ r(vx) ≤ 2k + 3.

Proof. Recall that BWT(vx) = BWT(xv). For the proof we consider the conjugate xv.
Let us consider firstly the case in which the Fibonacci word s is of even order 2k.

Let us consider the word v′ obtained by prepending the character b to v, i.e. v′ = bv.
If we denote by n = |v′|, then v = v′[1..n − 1], and xv and v′ differs only for the
characters in position 0. Moreover, xv[0] = xb is the lexicographically greatest 2-length
substring of v, and v′[0..1] = bb is the lexicographically greatest 2-length substring
of v′. In particular, the relative lexicographic order of the conjugates conjh(xv) and
conjh(v

′) with 0 ≤ h ≤ n− 1 is the same. Therefore the BWT of xv and v′ differs only
by the character preceding the conjugates starting in position 1. By [15, Proposition
4], the character preceding conj1(v

′) is the last character of a run of b’s, therefore the
character x which precedes conj1(xv) adds only one run, namely the 1-length run of
x. Since the r(v′) = 2k, then BWT(xv) has the same 2k runs, plus the further run
consisting of the single x. Therefore r(vx) = r(xv) = 2k + 1.

Let us consider now the case in which s is of odd order 2k + 1. Let us consider
the word v′ = av of length n. If k = 1, it is easy to verify that r(abaa) = 2 and
r(abax) = 4, so r(vx) = 2k + 2. Let us suppose k > 1. From [15, Prop. 3], we
know that BWT(av) = bF2k−2aabF2k−4 · · ·bF2abF0aF2k−k+1. Let us consider also the
conjugate xv having the same BWT as vx. Since v = v′[1..n−1], then xv and v′ differs
only for the characters in position 0. Note that xa and aaa are the lexicographically
smallest substrings of xv and v′, respectively. It follows that the relative lexicographic
order of the conjugates conjh(xv) conjh(v

′) with 1 ≤ h ≤ n − 1 is the same. The
additional rotation xv starts with x, and it is now the smallest among all rotations,
therefore it will be at the very beginning of the matrix. Since xv ends with a and the
lexicographically following rotations end with b, it increments the number of runs by
1 with respect to the BWT of v′. On the other hand, the rotation conj0(v

′) ends with
a and follows all the rotations that start with aa and end with b, and precedes the
rotation conjn−3(v

′) that starts with abaaa and ends with a. Additionally, the rotation
ending with x contributes to r with at most 2 more runs. This is because it either falls
in between runs of two distinct characters, or within a run of a single character. In
total, BWT(xv) has at most 2k + 3 runs, and 2k + 2 ≤ r(xv) = r(vx) ≤ 2k + 3.

The following proposition can be deduced from Prop. 1 and shows that there exist
at least two positions in a Fibonacci word of even order where adding a character
causes a logarithmic increment of r. In Fig. 2 these two positions are shown.

Proposition 3. Let s be the Fibonacci word of even order 2k, and n = |s|. Let s′ be
the word resulting from inserting a b at position F2k−1 − 2, and s′′ the word resulting
from inserting an a at position F2k − 2. Then BWT(s′) and BWT(s′′) have Θ(logn)
runs.

Proof. It is known that each standard word and its reverse are conjugate. Let us
consider s = x2kab, where x2k is palindrome. Moreover, from known properties on
Fibonacci words, x2k = x2k−1bax2k−2 = x2k−2abx2k−1 with x2k−1 and x2k−2 palin-
drome, as well. Let v = bax2k be the reverse of s. From Proposition 1, we know that
r(vb) = 2k. One can verify that appending a b to v is equivalent to inserting b at
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s = ba ab

F2k−1 F2k−2

rev(s) =ba ab

brev(s) =bba ab

(a) Insert a b in position F2k−1 − 2.

F2k−1 F2k−2

s = ba ab

t = baab

rev(t) = ab ba

arev(t) =aab ba

(b) Insert an a in position F2k − 2

Fig. 2: Example of adding a b and an a within the Fibonacci word of even order at
positions F2k−1 − 2 and F2k − 2, respectively. It causes a logarithmic increment of the
number of BWT-runs.

position F2k−1 − 2 of s. On the other hand, the word t = x2kba is a conjugate of both
v and s. Moreover, by using properties of directive sequences, t is a standard word of
odd order 2k−1 [3]. It is easy to verify that rev(t) = conjF2k−2(s). By [15, Proposition
8], r(rev(t)a) = 2k− 2 = Θ(logn), and for similar considerations as above, appending
an a to rev(t) is equivalent to inserting a at position F2k − 2 in s.

An analogous result to Prop. 3 can be proved for Fibonacci words of odd order.

3.2 Deleting a character

We next show that deleting a character can result in a logarithmic increment in r. In
particular, we consider a Fibonacci word of even order and compute the form of its
BWT, as shown in the following proposition.

Proposition 4. Let s be the Fibonacci word of even order 2k > 4 and ŝ = s[0..n− 2],
where n = |s|. Then BWT(ŝ) has the following form:

BWT(ŝ) = bk−1abF2k−3−k+1abF2k−5 · · · bF5abF3abaF2k−1−k+1.

Therefore, BWT(ŝ) has 2k runs.

To give the proof, we divide the BWT matrix of the word ŝ in three parts: top,
middle and bottom part, showing the form of each part separately:

BWTtop(ŝ) =bk−1abF2k−3−k+1, consisting of 3 runs,

BWTmid(ŝ) =abF2k−5abF2k−7 · · · ab, consisting of 2(k − 2) runs,

BWTbot(ŝ) =aF2k−1−k+1, consisting of 1 run.

Altogether, we then have 3 + 2(k − 2) + 1 = 2k runs.
In order to describe the structure of the matrix, we start with the following lemma

that provides information on the structure of s.
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Lemma 5. Let s be the Fibonacci word of even order 2k > 4 and n = |s|. Then, s
can be factorized as follows:

s = x2k−1bax2k−3ba · · ·x7bax5bas4 = x2k−2abx2k−3bax2k−4ab · · ·x4abx3bas4,

where xi denotes the central word of order i, with 3 ≤ i ≤ 2k − 1 and s4 = x4ab =
abaab is the Fibonacci word of order 4.

Proof. It follows by using the induction on k and the fact that s = s2k−1s2k−2 and
s = x2kab, where x2k = x2k−1bax2k−2 = x2k−2abx2k−1 and x2k−1 = x2k−3bax2k−2 =
x2k−2abx2k−3. In fact, the equality s6 = x5bax4ab holds since s4 = x4ab. On the other
hand, s6 = x4abx5ab = x4abx3bax4ab. Since s2k+2 = s2k+1s2k and s2k+1 = x2k+1ba,
we have that s2k+2 = x2k+1bax2k−1bax2k−3ba · · ·x7bax5bas4b. On the other hand,
s2k+2 = s2k+1x2k−2abx2k−3bax2k−4ab · · ·x4abx3bas4. The thesis follows from the fact
that s2k+1 = x2k+1ba = x2kabx2k−1ba.

We identify the following 3 conjugates of the word ŝ = s[0..n− 2] of length n− 1
that delimit the 3 parts of the BWT matrix of the word:

conjn−3(ŝ) =aax2k−1bax2k−3ba · · ·x5baab,

conjn−5(ŝ) =x4ax2k−1 · · ·x5ba

conj0(ŝ) =x2ka

The structure of these 3 conjugates follows from Lemma 5. It is easy to see that
conjn−3(ŝ) < conjn−5(ŝ) < conj0(ŝ). The rotation conjn−3(ŝ) , starting with aax2k−1

is the smallest rotation in the matrix due to the unique aaa prefix. The rotation
conjn−5(ŝ), starting with x4 = aba indicates the beginning of the middle part, and it
is the smallest rotation starting with ab. Finally, the word itself ŝ = x2ka determines
the beginning of the bottom part, namely the last long run of a’s in the BWT.

The top part of the matrix consists of all rotations of the word starting with aa.
We give first the following lemma characterizing all occurrences of the factor aa in ŝ.

Lemma 6. Let ŝ = s[0..n − 2], where s is the Fibonacci word of order 2k > 4 and
n = |s|. Every occurrence of the circular factor aa in ŝ is an occurrence of ax2h for
some 2 ≤ h ≤ k. For every 2 ≤ h ≤ k − 1 there is exactly one occurrence of ax2h

followed by aa.

Proof. By using Lemma 5. we have that ŝ = x2k−1bax2k−3ba · · ·x7bax5bax4a. It fol-
lows from the recursive construction of s that occurrences of aa are generated whenever
we create s2h = s2h−1s2h−2 = x2h−1bax2h−2ab. This is because each central word xi

starts with ab and ends with ba. Therefore, it follows from the structure of ŝ that we
can partition all its occurrences of aa into four disjoint sets: the occurrence of ax2k,
the occurrences of ax2h followed by ab, the ones followed by ba, the ones followed by
aa, with 4 ≤ h ≤ k − 1. Since x2h ends with a and the factor aaa occurs only at
position n − 3 in ŝ, we can state that the last set of occurrences corresponds to the
occurrences of ax2haa (with h = 2, . . . , k − 1). We have only one occurrence for each
of these factors. In fact, ax4aa occurs at position n−6. Moreover, for h = 3, . . . , k−1,

9



every ax2h−1 in the previous factorization of ŝ is an occurrence of a”s2h, then it is an
occurrence of the circular factor ax2haa.

We are now going to show that only one of the rotations of ŝ starting with aa ends
with an a, and we show where the a in the BWT of the top part breaks the run of b’s.

Lemma 7 (Top part). Given ŝ = s[0..n−2], where s is the Fibonacci word of order 2k
and n = |s|, then the first k rotations in the BWT matrix are aaa · · ·b < ax4aa · · ·b <
ax6aa · · ·b < . . . < ax2k−2aa · · ·b < ax2k. All other F2k−3 − k + 1 rotations starting
with aa end with a b.

Proof. There are F2k−3 + 1 occurrences of aa. In fact, ŝ has F2k−1 occurrences of a’s
and F2k−2−1 occurrences of b’s. Since bb does not occur in ŝ, it follows that F2k−2−1
a’s are followed by a b. Therefore there are F2k−1−F2k−2+1 = F2k−3+1 occurrences
of a followed by an a.

Among all rotations starting by aa the k smallest ones are those starting with
axhaa for each even h in increasing order of h. This is because of the single occurrence
of aaa, consisting in the rightmost occurrence of x4 followed by aa. Finally, only ax2k
is preceded by an a, therefore the k smallest rotations of ŝ are all preceded by a b

except for the largest of them which is preceded by an a. This shows that the k smallest
rotations in the BWT matrix form two runs: bk−1a. All the remaining F2k−3 − k + 1
rotations starting with aa correspond to some occurrence of ax2h for some 2 ≤ h < k,
by using Lemma 6. By using the properties of central words, each of these occurrences
is followed by ba. Then the correspondent rotation is lexicographically greater than
ax2k, which is prefixed by ax2hab. Since there is a unique occurrence of aaa, all these
rotations starting with aa are preceded by b by construction. Therefore, we have
bk−1abF2k−3−k+1 in the top part of the BWT matrix of ŝ.

Fig. 3 displays the structure of the middle part of the BWT of ŝ. To determine
the number of runs in this middle part of the matrix, it is crucial first to consider
that all the rotations starting with xh, with h = 4, . . . , 2k − 1, are grouped together
in the BWT matrix. Specifically, these occur in blocks where rotations starting with
xha, h odd, are immediately preceded by the unique rotation starting with xh−1aa,
and immediately followed by the rotation starting with xh+1aa, as illustrated in Fig.
3. This is proved in the following lemma.

Lemma 8. For 4 ≤ h ≤ 2k − 1, rotations starting with some xhaa are smaller then
rotations starting with xh+1a. In particular, the word ŝ = x2ka is greater than any of
the aforementioned rotations. Moreover, if h is odd, rotations starting with some xha

are smaller then rotations starting with xh+1.

Proof. Every xh is a prefix of xh+1. Since there is exactly one circular occurrence
of aaa in ŝ, then xh+1a is either prefixed by xhab or by xhba, i.e. the aaa factor
occurs earlier in xhaa. In both cases, the first claim holds. Finally, the thesis follows
by observing that if h is odd, xhba is a prefix of xh+1.
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Fig. 3: The middle part BWTmid(ŝ) of the BWT matrix for the deletion of the last
character of a Fibonacci word of even order 2k is shown.

Lemma 9. There are F2h − 1 occurrences of bx2(k−h)a and F2h+1 occurrences of
bx2(k−h)−1a as circular factors in ŝ = x2ka.

Proof. The claim can be proved by induction. For h = 0, the statement follows from
the fact that there is one occurrence of bx2ka in the Fibonacci word of order 2k,
therefore there are F0 − 1 = 0 occurrences in ŝ because of the missing b at the end.
There are F1 = 1 occurrences of bx2k−1a in both words. Note that the occurrence of
any bx2ha in position F2k − 1 of the Fibonacci word of order 2k is missing in ŝ due to
the missing b at the end of the word.

Let us suppose the statement holds for all i ≤ h. The factor bx2(k−h)−2a appears
as a prefix of bx2(k−h)−1a and as a prefix of bx2(k−h)a. Moreover, the mentioned
occurrences are distinct because bx2(k−h)−1a is not a prefix of bx2(k−h)a. Therefore,
by induction, the number of occurrences of bx2(k−h)a is equal to the sum of the
number of occurrences of bx2(k−h)−2a and those of bx2(k−h)−1a: F2h − 1 + F2h+1 =
F2h+2−1. On the other, bx2(k−h)−3a appears as a suffix of bx2(k−h)−2a and as a suffix
of bx2(k−h)−1a. Moreover, the mentioned occurrences are distinct because bx2(k−h)−2a

is not a suffix of bx2(k−h)−1a. Finally, bx2(k−h)−3a appears once also as suffix of
ax2(k−h)−2a, starting in position F2k − 2 of ŝ. Therefore, by induction, the number
of occurrences of bx2(k−h)−3a is equal to the sum of the number of occurrences of
bx2(k−h)−2a and those of bx2(k−h)−1a plus one: F2h+2 − 1 + F2h+1 + 1 = F2h+3.

Lemma 10 (Middle part). The middle part contributes to r(v) with 2(k− 2) runs in
the following form: abF2k−5abF2k−7 · · · abF3ab.
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Proof. By construction, all the rotations starting with ab are prefixed by a central
word xh, for some h < 2k. For all conji(ŝ) such that lcp(ŝ, conji(ŝ)) = xh for some odd
h, conji(ŝ) is prefixed by xha since ŝ is prefixed by xhb, then conji(ŝ) is in the middle
part (i.e. smaller than ŝ by Lemma 8) since the word ŝ separates the middle and the
bottom part. For all conji(ŝ) such that lcp(ŝ, conji(ŝ)) = xh for some even h, conji(ŝ)
is prefixed by xhb since ŝ is prefixed by xha, then conji(ŝ) is in the bottom part (i.e.
greater than ŝ by Lemma 8) By using Lemma 5, it follows that the shortest non-
empty central word starting with ab that appears in ŝ as a circular factor is x4. One
can prove that, among rotations starting with the same xh, h ≥ 4 even, the smallest
one is preceded by a. In fact, it starts with x4aa. All the following F2k−h−1 rotations
starting with xh+1a are preceded by b (Lemma 9). The fact that there exist exactly
k − 2 such xh proves the claim.

The rotations that divide the middle part from the bottom part are the two rota-
tions prefixed by the two occurrences of x2k−1. By properties of Fibonacci words, one
rotation is prefixed by x2k−1a (end middle part) and the other by x2k−1b (beginning
bottom part). The latter follows the first in lexicographic order. Note that the rotation
starting with x2k−1b is ŝ, namely x2k−1bax2k−2a.

Lemma 11 (Bottom part). All rotations greater than v = x2k−1bax2k−2a end with a.

Proof. From Lemma 7 we have that k−1+F2k−3−k+1 rotations ending with b have
already appeared in the matrix, and from Lemma 10 F2k−5 + . . .+ F3 + F1 rotations
ending with b have already appeared in the matrix. Summing the number of b’s we
have k−1+F2k−3−k+1+F2k−5+ . . .+F3+F1 = F2k−3+F2k−5+ . . .+F3+F1. We
can decompose each odd Fibonacci number F2x+1 in the sum F2x +F2x−1. Therefore,
the previous sum becomes F2k−4+F2k−5+F2k−6+F2k−7 . . .+F2+F1+F1. For every
Fibonacci number Fx, it holds that Fx = Fx−2 + Fx−3 + Fx−4 + . . . + F2 + F1 + 2.
Therefore, F2k−4 + F2k−5 + F2k−6 + F2k−7 . . . + F2 + F1 + F1 = F2k−2 − 1, which is
exactly the number of b’s in ŝ. Therefore all the remaining rotations end with a.

In the context of repetitiveness measures of words, a measure λ is called monotone
if, for each word v ∈ Σ∗ and for each letter x ∈ Σ, it holds that λ(v) ≤ λ(vx). Since we
have shown that appending or deleting a single character can substantially increase
the parameter r, the following known result on the monotonicity of r can be derived:

Corollary 12. The measure r is not monotone.

3.3 Substituting a character

In this subsection, we show how to increment r by a logarithmic factor by substituting
a character. Consider a Fibonacci word s of even order in which we replace the last
b by an a. Denoting this word by s′, we will prove that BWT(s′) has Θ(logn) runs,
where n is the length of the word. We start with the following lemma in which we
assess how the number of BWT-runs changes when we append or prepend to a Lyndon
word a character that is smaller than or equal to the smallest character appearing in
the word itself.
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Lemma 13. Let v ∈ Σ∗ be a Lyndon word containing at least two distinct letters and
let x ∈ Σ be smaller than or equal to the smallest character occurring in v. Then,
r(v) ≤ r(xv) = r(vx) ≤ r(v) + 2.

Proof. We can obtain the lexicographic order of the rotations of xv, or equivalently
vx, from the order of the rotations of v. To do so, we show that given two rotations
conji(v) < conjj(v), with i 6= j, if conji(v) < conjj(v) then v[i..|v| − 1]xv[0..i− 1] <
v[j..|v| − 1]xv[0..j − 1].

Note that v is the smallest rotation in its BWT matrix. Let us denote by conjh(v),
for some h, the second rotation in the BWT matrix. Since v is primitive, there exist
a unique circular factor u smaller than all the other circular factors having the same
length. In fact, if t = |lcp(v, conjh(v))|, then u = v[0..t]. Moreover, for all ℓ < |u|,
u[0..ℓ − 1] is the smallest circular factor of length ℓ occurring in v. We can then
distinguish two cases.

The first case is when |lcp(conji(v), conjj(v))| < min{|v|− i+1, |v|− j+1}. Under
this condition, it follows that the insertion of the x does not affect the relative order
between v[i..|v| − 1]xv[0..i− 1] and v[j..|v| − 1]xv[0..j − 1].

Otherwise, if |lcp(conji(v), conjj(v))| ≥ min{|v| − i + 1, |v| − j + 1}, note that
i > j, i.e. |v[i..|v| − 1]| < |v[j..|v| − 1]|. This follows by observing that both v[i..|v| − 1]
and v[j..|v| − 1] are (circularly) followed by u that is unique, and by contradiction
if i < j then u would circularly occur before in conjj(v) with respect to conji(v),
which contradicts conji(v) < conjj(v). We can now further distinguish between two
subcases: when either (i) u is a prefix of v[0..i− 1] or (ii) v[0..i− 1] is a proper prefix
of u.

For the subcase (i), as |lcp(conji(v), conjj(v))| ≥ |v[i..|v| − 1]|, and the factor u is
a prefix of v[0..i − 1], the first distinct character between conji(v) and conjj(v) lies
within the unique occurrence of u in conji(v). After the letter x is inserted, conji(v)
becomes v[i..|v|−1]xv[0..i−1], yielding a factor xu occurring at position |v|−i+1 that
is also unique and smallest among all the factors of length |xu| in xv.Whatever factor
appears in v[j..|v| − 1]xu at position |v| − i + 1, has to be greater than xu, and the
order is preserved. For the subcase (ii), recall that since v[0..i − 1] is a proper prefix
of u, v[0..i − 1] is also the smallest i-length circular factor in lexicographical order
occurring in v, but differently from u the circular factor v[0..i−1] is repeated (otherwise
|u| ≤ |v[0..i−1]|, contradiction). By primitivity of v, the first distinct character between
conji(v) and conjj(v) lies within v[0..i − 1], i.e., within conji(v)[|v| − i + 1..|v| − 1].
After the insertion of the symbol x the analogous behavior of subcase (i) is observed.

We conclude the proof by observing that, with respect to the original BWT, we
have one extra rotation, and one rotation for which the letter in the BWT has changed,
which are xv and vx respectively. Observe that by construction, xv is now the smallest
among all of its rotation, which ends with the last letter of v. On the other hand, vx is
now the second smallest rotation and it ends with x. Hence, BWT(xv) = BWT(v)[0] ·
x · BWT(v)[1..|v| − 1], and the thesis follows.
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Proposition 14. Let s be the Fibonacci word of even order 2k > 4, and n = |s|.
Let s′ be the word resulting from substituting a b by an a at position F2k − 1. Then
BWT(s′) has 2k + 2 runs.

Proof. Observe that s′ = ŝa. By Proposition 4, it holds r(ŝ) = 2k. By Lemma 7,
we know that conjn−3(ŝ) is the smallest rotation of ŝ. By Lemma 5, conjn−3(ŝ) =
aax2k−1 · · · x̂4. By Lemma 13, it holds 2k ≤ r(aconjn−3(ŝ)) ≤ 2k + 2. More precisely,
it is 2k+2 since aconjn−3(ŝ) is the smallest rotation of its BWT matrix, conjn−3(ŝ)ais
the second smallest rotation, and the relative order among the rotations of aconjn−3(ŝ)
coincide with that of the rotations of ŝ, using the same argument from the proof of
Lemma 13. This means that to obtain BWT (s′), it is enough to insert an a between
the first two b’s in BWT (ŝ). As r(aconjn−3(ŝ)) = r(aŝ) = r(ŝa), the thesis follows.

4 Additive Θ(
√

n) factor

In the previous section we proved that a single edit operation can cause a multiplicative
increase by a logarithmic factor in the number of runs. In this section, we will exhibit
an infinite family of words on which a single edit operation can cause an additive
increment of r by Θ(

√
n) (see Def. 16 below).

As we saw in the previous section, there exist infinite families of words such that
r = Θ(logn), where n is the length of the word. Other families with logarithmic
number of runs of the BWT are also known from the literature, e.g. the Thue-Morse
words [6]. Moreover, there exist words such that r is maximal, i.e., r(w) = |w|. For
instance, if w = aaaabbababbbbaabab, then r(w) = 18 = |w| [26]. Next we show that
there is no gap between these two scenarios, i.e., it is possible to construct infinite
families of words w such that r(w) = Θ(n1/k), for any k > 1.

Proposition 15. Let k be a positive integer. There exists an infinite family Tk of
binary words such that r(w) = Θ(n1/k), for any w ∈ Tk.

Proof. We can define the set Tk = {wi,k =
∏i

j=1 ab
jk | i ≥ 1}. We can state that

|wi,k| = Θ(ik+1). Moreover, r(wi,k) = Θ(i) In fact, each a in BWT(wi,k) corresponds

to the last letter of one of the rotations having prefix bj
k

a, for some 1 ≤ j ≤ i. On
the other hand, all the rotations with prefix ab, as well as the remaining rotations
with prefix bℓa for all 1 ≤ ℓ ≤ ik, end with b. It follows then that whenever k ≥ 2, all
the a’s in BWT(wi,k) are separated by an equal-letter run of b′s, leading to r(wi,k) =
2i = Θ(i). However, note that for a fixed ℓ, the rotations starting with bℓa are sorted
according to the length of the maximal run of b’s following the common prefix. Thus,
even for k = 1, there is only one run of consecutive a’s in BWT(wi,k), while the
remaining are separated. More in detail, BWT(wi,1) = bbiabi−1a · · ·ab3ab2aa. Hence,
r(wi,1) = 2i − 2 = Θ(i). The claim follows by observing that for the family of words

wi,k it holds that r(wi,k) = Θ(i) = Θ(n
1

k+1 ), where n = |wi,k|.

We will show that the following family of words satisfies that a single edit operation
can cause an additive increment of r by Θ(

√
n).
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Definition 16. For any k > 5, let si = abiaa and ei = abiabai−2 for all 2 ≤ i ≤ k−1,
and qk = abka. Then,

wk = (

k−1∏

i=2

siei)qk = (

k−1∏

i=2

ab
i
aaab

i
aba

i−2)abka.

The length of these words can be easily deduced from their definition.

Observation 17. Let n = |wk| for some k > 5. It holds that n =
∑k−1

i=2 (3i + 4) +
(k + 2) = (3k2 + 7k − 18)/2. Moreover, it holds that k = Θ(

√
n).

The following lemma will be used to show how the rotations of wk can be sorted
according to the factorization s2e2 · · · sk−1ek−1qk.

Lemma 18. Let k > 5 be an integer. Then, s2 < e2 < s3 < e3 < . . . < sk−1 < ek−1 <

qk. Moreover the set U =
⋃k−1

i=2 {si, ei} ∪ {qk} is prefix-free.

Proof. For the first claim, note from the definition of the words ei, si and qk that
for i ∈ [2, k − 1] it holds si < ei, for i ∈ [2, k − 2] it holds ei < si+1, and it holds
ek−1 < qk. For the second claim, observe that for any two distinct strings x and y
in the set U starting with abja and abj

′

a respectively, there are two possible cases.
If j = j′ then x and y are si and ei respectively, and none of them is a prefix of the
other. Otherwise, w.l.o.g. j < j′, so x = abjax′ and y = abjby′ for some x′ and y′.
Hence x[j + 2] 6= y[j + 2] and none of them is a prefix of the other. Thus, the set U is
prefix-free.

4.1 Characterizing the BWT of wk

In order to characterize the BWT of the word

wk = (

k−1∏

i=2

siei)qk = (

k−1∏

i=2

ab
i
aa · abiabai−2) · abka,

we divide its BWT matrix into disjoint ranges of consecutive rotations sharing the
same (specific) prefixes, and characterize the substring of BWT(wk) corresponding to
each one of these prefixes.

Definition 19. Given x,w ∈ Σ∗, we denote by β(x,w) the substring of BWT(w)
corresponding to the range of contiguous rotations prefixed by x. We omit the second
parameter of β(x,w) when it is clear from the context.

The structure of the whole BWT matrix of wk is summarized in Table 1. The
following series of lemmas characterize the substring of BWT(wk) corresponding to
each range to be considered.
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Lemma 20 (β(ak−2b)). Given the word wk = (
∏k−1

i=2 siei)qk for some k > 5, the first
rotation in the BWT matrix is ak−3qk · · · b.
Proof. The first rotation in lexicographic order must start with the longest run of a’s.
By definition of wk, the longest run of a’s has length k − 2, and it is obtained by
concatenating the suffix ak−3 of ek−1 with qk, which is preceded by a b (otherwise we
could extend the run of a’s).

Lemma 21 (β(aib) for 4 ≤ i ≤ k − 3). Given the word wk = (
∏k−1

i=2 siei)qk for some
k > 5, and an integer 4 ≤ i ≤ k − 3, the rotations in the BWT matrix starting with
aib are ai−1si+2 · · ·b < ai−1si+3 · · · a < . . . < ai−1sk−1 · · ·a < ai−1qk · · · a.
Proof. One can notice that, for all 4 ≤ i ≤ k− 3, the (circular) factor aib can only be
obtained, for all i+ 2 ≤ j ≤ k, from the concatenation of the suffix ai−1 of ej−1, with
either the prefix ab of sj , if i+2 ≤ j ≤ k−1, or the prefix ab of qk, if j = k. By Lemma

18, we can sort these rotations according to the lexicographic order of
⋃k−1

j=i {sj}∪{qk}.
Note that all these rotations end with an a, with the exception of the rotation starting
with ai−1si+2, since it is where the only occurrence of baib can be found.

Lemma 22 (β(aaab)). Given the word wk = (
∏k−1

i=2 siei)qk for some k > 5, the
first five rotations in the BWT matrix starting with aaab are aae2 · · · b < aae3 · · ·b <
aae4 · · · b < aas5 · · ·b < aae5 · · ·b, while the remaining are aas6 · · · a < aae6 · · · b <
. . . < aask−1 · · ·a < aaek−1 · · · b < aaqk · · · a.
Proof. Analogously to the proof of Lemma 21, some of the rotations starting with
aaab can be obtained, for all 5 ≤ j ≤ k, from the concatenation of the suffix aa

of ej−1, with either the prefix ab of sj , if 5 ≤ j ≤ k − 1, or the prefix ab of qk, if
j = k. However, in this case we have more rotations starting with aaab, that are those
rotations starting with the suffix aa of sj′ concatenated with the prefix ab of ej′ , for
all 2 ≤ j′ ≤ k − 1. Thus, all the rotations starting with aaab are sorted according
to the lexicographic order of the words in

⋃k−1
j=5{sj} ∪

⋃k−1
j′=2{ej′} ∪ {qk}. Note that

all the rotations starting either with aasj , for all 6 ≤ j ≤ k − 1, or with aaqk, end
with a. On the other hand, the rotations starting either with aas5 or with aaej, for
all 2 ≤ j ≤ k − 1, end with a b.

Lemma 23 (β(aab)). Given the word wk = (
∏k−1

i=2 siei)qk for some k > 5, the
first five rotations in the BWT matrix starting with aab are as2 · · ·b < ae2 · · · a <
ae3 · · ·a < as4 · · ·b < ae4 · · · a, while the remaining are as5 · · · a < ae5 · · ·a < . . . <
ask−1 · · · a < aek−1 · · · a < aqk · · ·a.
Proof. Each of the rotations starting with aaab from Lemma 22 induces a rotation
starting with aab, obtained by shifting on the left one character a. It follows that
all of these rotations end with an a. The other rotations starting with aab are the
one obtained by concatenating the suffix a of e3 and the prefix ab of s4, and the one
obtained by concatenating the suffix a of qk and the prefix ab of s2. Moreover, both
the rotations end with a b. The thesis follows by sorting the rotations according to
the lexicographic order of the words in {s2} ∪

⋃k−1
j=4{sj} ∪

⋃k−1
j′=2{ej′} ∪ {qk}.
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Lemma 24 (β(ab)). Given the word wk = (
∏k−1

i=2 siei)qk for some k > 5, the first k−2
rotations in the BWT matrix starting with ab are abak−3qk · · · b < abak−4sk−1 · · · b <
. . . < abs3 · · · b, the following four rotations are s2 · · ·a < e2 · · · a < s3 · · · b < e3 · · ·a,
and the remaining are s4 · · ·a < e4 · · · a < . . . < sk−1 · · · a < ek−1 · · ·a < qk · · · a.
Proof. For any two distinct integers i, i′ ≥ 0, we have that abaib < abai

′

b if and only
if i > i′. Thus, the first rotation in lexicographic order starting with ab is the one
which is followed by the longest run of a’s. The smallest of these rotations can be
found by concatenating the suffix abak−3 of ek−1 with the prefix ab of qk, followed by
the suffix abai−2 of ei−1 concatenated with the prefix ab of si, for all 3 ≤ i ≤ k − 1
taken in decreasing order. By construction of ei, for all 3 ≤ i ≤ k − 1, these rotations
must end with a b.

The remaining rotations starting with ab are exactly those rotations having as
prefix either si or ei, for all 2 ≤ i ≤ k − 1, or qk. Note that all of these rotations are
obtained by shifting on the left one character a from the rotations starting with aab

from Lemma 23, with the exception of the one starting with s3. It follows that the
latter ends with a b, while all the other rotations with an a.

Lemma 25 (β(ba)). Given the word wk = (
∏k−1

i=2 siei)qk for some k > 5, the first k−5
rotations in the BWT matrix starting with ba are bak−3qk · · · a < bak−4sk−1 · · ·a <
. . . < ba3s6 · · · a, followed by baae2 · · ·b < baae3 · · · b < baae4 · · · b < baas5 · · · a <
baae5 · · · b, then by baae6 · · · b < baae7 · · · b < . . . < baaek−1 · · ·b < bas2 · · · b <
bas4 · · · a, and finally by babak−3qk · · ·b < babak−4sk−1 · · · b < . . . < babs3 · · ·b <
bs3 · · ·a.
Proof. One can notice that we have as many circular occurrences of ba as the number
of maximal (circular) runs of b’s in wk. Then, for all 2 ≤ i ≤ k − 1, we have (i) one
run of b’s in si, and (ii) two runs in ei, and (iii) one run in qk.

For the case (i), we have one rotation starting with baaei, for each 2 ≤ i ≤ k − 1.

Since each run of b’s within each word from
⋃k−1

i=2 {si} is of length at least 2, all
rotations in (i) end with a b.

For the case (ii), for all 2 ≤ i ≤ k − 1, we can distinguish between two sub-cases,
based on where ba starts: if either (ii.a) from the first run of b’s in ei, or (ii.b) from
the second one. For the case (ii.a), we can see that these rotations are of the type
babai−2si+1, if 2 ≤ i < k − 2, and babak−3qk. Analogously to the case (i), each
rotations for case (ii.a) end with a b. Each rotation in (ii.b) is obtained by shifting
two characters on the right each rotation in (ii.a). Therefore, all of these rotations end
with an a and have prefixes of the type bai−2si+1, if 2 ≤ i < k − 2, or bak−3qk.

For the case (iii), the rotation starting with ba in qk has bas2 as prefix, and it is
preceded by a b.

Observe that only for (ii.b) we have rotations starting with baaaa. Hence, the first
rotation in lexicographic order is the one starting with bak−3qk, followed by those
starting with bak−4sk−1 < bak−5sk−2 < . . . < baaas6.

Among the remaining rotations, those having prefix baaa either start with baas5
from (ii.b), or baaei from (i), for all 2 ≤ i ≤ k−1. Thus, by Lemma 18, we can sort them

according to the order of the words in {s5}∪
⋃k−1

i=2 {ei}. Then, the remaining rotations
with prefix baa are those starting with bas2 from (iii), and bas4 from (ii.b). Finally,
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let us focus on the rotations from case (ii.a). These rotations are sorted according to
the length of the run of a’s following the common prefix bab, similarly to the sorting
of the rotations from the case (ii.b). The last rotation left is the one starting with bs3
from case (ii.b). Since this rotation is greater than each word from case (ii.a), this is
the greatest rotation of wk starting with ba and the thesis follows.

Lemma 26 (β(bja) for all 2 ≤ j ≤ k − 1). Given the word wk = (
∏k−1

i=2 siei)qk for
some k > 5, and an integer 2 ≤ i ≤ k− 2, the first k− i rotations in the BWT matrix
starting with bia are biaaei · · · a < biaaei+1 · · ·b < . . . < biaaek−1 · · · b < bias2 · · · b,
followed by biabak−3qk · · · b < biabak−4sk−1 · · · b < . . . < biabai−1si+2 · · ·b <
biabai−2si+1 · · · a.
Proof. All runs of b’s of length at least 2 ≤ i ≤ k − 2, either appear in (i) sj or (ii)
ej , for all i ≤ j ≤ k − 1, or in (iii) qk. Let us consider the three cases separately.
For all i ≤ j ≤ k − 1, the rotation starting within sj (i) has as prefix biaaej. For all
i ≤ j ≤ k − 2, the rotation starting within ej (ii) has as prefix biabaj−2sj+1, and for
j = k − 1 we have the rotation with prefix biabak−3qk. Finally, the rotation starting
within qk (iii) has as prefix bias2.

By construction, we can see that first we have all the rotations from case (i) sorted

according to the lexicographic order of the words in
⋃k−1

j=i {ei} (Lemma 18), then we
have the rotation from case (iii), and finally the rotation from case (ii), sorted according
to the decreasing length of the run of a’s following the common prefix biab.

Moreover, note that only when the run of b’s is of length exactly i the rotation
end with an a. Thus, the only for the rotations ending with an a are those starting
within si and ei, i.e. those with prefix biaei and biabai−2si+1.

Lemma 27 (β(bka)). Given the word wk = (
∏k−1

i=2 siei)qk for some k > 5, the
last four rotations of the BWT matrix are bk−1aaek−1 · · · a < bk−1as2 · · · b <
bk−1abak−3qk · · · a < bkas2 · · · a.
Proof. Observe that the only rotations with prefix bk−1a either start within sk−1,
or qk, or ek−1. These rotations have prefix respectively bk−1aaek−1, b

k−1as2, and
bk−1abak−3qk. One can see that these rotations taken in this order are already sorted,
and only the rotation starting within qk ends with a b, while the other two with an a.
Finally, the only occurrence of bk is within qk. Hence, the last rotation in lexicographic
order starts with bkas2, and since the run of b’s is maximal it ends with an a, and the
thesis follows.

The following proposition puts together the BWT computations carried out for all
blocks of consecutive rows, highlighting which prefixes are shared.

Proposition 28. Given an integer k > 5, let wk = (
∏k−1

i=2 siei)qk. Then,

β(aib) = bak−i−2 for all 4 ≤ i ≤ k − 2,

β(a3b) = b5(ab)k−6a,

β(a2b) = baaba2k−8,

β(ab) = b
k−2

aaba
2k−6,

18



Block
prefix

Ordering
factor

BWT

a
k−2

b b
k−1

a b

a
k−3

b
b
k−2

aa b

b
k−1

a a

...
...

...

a
4
b

b
5
aa b

b
6
aa a

...
...

b
k−1

a a

aaab

bab b

bbaba b

bbbabaa b

bbbbaa b

bbbbabaaa b

bbbbbaa a

bbbbbabaaaa b

...
...

b
k−2

aa a

b
k−2

aba
k−3

b

b
k−1

a a

Block
prefix

Ordering
factor

BWT

aab

baa b

bab a

bbaba a

bbbaa b

bbbabaa b

bbbbaa a

bbbbabaaa a

...
...

b
k−2

aa a

b
k−2

aba
k−3

a

b
k−1

a a

ab

a
k−3qk b

a
k−4sk−1 b

...
...

s3 b

baa a

bab b

bbaa b

bbaba a

bbbaa a

bbbabaa a

...
...

b
k−1

a a

Block
prefix

Ordering
factor

BWT

ba

a
k−4qk a

a
k−5sk−1 a

...
...

a
2s6 a

ae2 b

ae3 b

ae4 a

as5 a

ae5 b

ae6 b

...
...

aek−1 b

s2 b

s4 a

ba
k−3qk b

ba
k−4sk−1 b

...
...

bs3 b

bbbaa a

Block
prefix

Ordering
factor

BWT

bba

ae2 a

ae3 b

...
...

aek−1 b

s2 b

ba
k−3qk b

ba
k−4sk−1 b

...
...

bas4 b

bas3 a

...
...

...

b
k−1

a

aek−1 a

s2 b

ba
k−3qk a

b
k
a s2 a

Table 1: Scheme of the BWT-matrix of a word wk with k > 5. The block prefix
column shows the common prefix shared by all the rotations in a block. The ordering
factor column shows the factor following the block prefix of a rotation, which decides
its relative order inside its block. The BWT column shows the last character of each
rotation. The dashed lines divide sub-ranges of rotations for which the BWT follows
distinct patterns.

β(ba) = ak−5bbbabk−4abk−2a,

β(bja) = ab2k−2j−1a for all 2 ≤ j ≤ k − 1, and

β(bka) = a.

Hence, the BWT of the wk is BWT(wk) =
∏k−1

i=2 β(ak−ib) · ∏k
i=1 β(b

ia). Moreover,
r(wk) = 6k − 12.

Proof. The words β(ak−2b), β(aib) for all 4 ≤ i ≤ k−2, β(a3b), β(a2b), β(ab), β(ba),
β(bja) for all 2 ≤ j ≤ k−1, and β(bka), are the concatenations of the last characters of
the rotations from Lemma 20, Lemma 21, Lemma 22, Lemma 23, Lemma 24, Lemma
25, Lemma 26, and Lemma 27 respectively. Moreover, every rotation used to build
β(aib) is smaller than each rotation used to build β(ai

′

b), for every 1 ≤ i′ < i ≤ k−2.
Symmetrically, every rotation used to build β(bja) is greater than each rotation used to
build β(bj

′

a), for every 1 ≤ j′ < j ≤ k. Since we have considered all the disjoint ranges

of rotations of wk based on their common prefix, the word
∏k−1

i=2 β(ak−ib)·∏k
i=1 β(b

ia)
is the BWT of wk.

With the structure of BWT(wk), we can easily derive its number of runs.

The word
∏k−4

i=2 (β(a
k−ib)) has exactly 2(k − 6) runs: we start with 2 runs from

β(ak−2b)β(ak−3b) = bba, and then, concatenating each other β(aib) up to β(a4b)
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adds 2 new runs each. It is easy to see that β(aaab), β(aab), and β(ab), have 2(k−5), 4,
and 4 runs, respectively. Moreover, the boundaries between these words do not merge,
nor with β(a4b) in the case of β(aaab). The word β(ba) has exactly 7 runs but it
merges with β(ab) and β(bba), hence we only charge 5 runs to this word. The remain-

ing part of the BWT, i.e.,
∏k

i=2(β(b
ia)), has 2(k−2)+1 runs: we start with 3 runs from

β(bba), and then, concatenating each other β(bia) up to β(bk−1a) adds 2 new runs
each. The word β(bka) does not add new runs, as it consists only of an a that merges
with the previous one. Overall, we have 2(k− 6)+2(k− 5)+4+4+5+2(k− 2)+1 =
6k − 12, and the claim holds.

4.2 BWT of wk after an edit operation

The following lemmas describe the BWT of wk after some specific edit operations are
applied. Instead of proving the whole structure of the BWT from the beginning, we
compare how the edit operation changes either the relative order or the last character
of the rotations of wk. To do so, in this part we use the notation β(v) and β⋆(v) to
denote the BWT in correspondence of the rotations with prefix v ∈ Σ∗ of wk and w′

k

respectively, where w′
k is obtained after applying to wk an specific edit operation. The

number of runs in the BWT of w′
k can easily be derived by comparing its BWT to

the BWT of wk, for which we explicitly counted the number of runs, so we omit that
part of the proofs. All the edit operations on wk we show in this subsection increase
the number r(wk) by a Θ(k) additive factor. To give an intuition, this increment
comes mainly from the β⋆(bja) ranges for 2 ≤ j ≤ k − 2, because for each one of
the corresponding ranges β(bja) = ab2k−2j−1a in BWT(wk), one of the b’s is either
moved to the top or the bottom of the range, in a consistent manner for each j (it
depends on the edit operation if the b goes to the top or the bottom of the range, but
it is the same behavior for all the ranges considered). Then, two ranges that originally
agreed on their last and first character in wk are now separated by a b, adding this
way 2 new runs for each j.

Lemma 29 (BWT of wka). Given an integer k > 5, for wka it holds that

β⋆(aib) = bak−i−2 for all 4 ≤ i ≤ k − 2,

β⋆(a3b) = bb
5(ab)k−6

a,

β⋆(a2b) = aaaba
2k−8,

β⋆(ab) = bk−2aaba2k−6,

β⋆(ba) = ak−5bbbbabk−5abk−2a,

β⋆(bja) = bab2k−2j−2a for all 2 ≤ j ≤ k − 1 and

β⋆(bka) = a.

Hence, BWT(wka) =
∏k−1

i=2 β⋆(ak−ib)·∏k
i=1 β

⋆(bia). Moreover, it holds that r(wka) =
8k − 20.
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Proof. By Lemmas 20 and 21, we can see that appending an a after qk does not affect
the BWT in the range of rotations having aib as prefix, for all 4 ≤ i ≤ k − 2. Thus,
β⋆(aib) = β(aib) for all 4 ≤ i ≤ k − 2.

The rotation starting with aas2, which is not a circular factor of wk, ends with a b.
By Lemma 22, we can see that such a rotation is the smallest one with prefix aaab in
lexicographic order, while the other rotations maintain their relative order. Therefore,
β⋆(aaab) = b · β(aaab).

By Lemma 23, the rotation with prefix as2 is still the smallest rotation starting
with aab, with the difference that in this case, it ends with the last a of qk. It follows
that β⋆(aab) is obtained by replacing the first b of β(aab) with an a.

Both the order and the last symbol of all the rotations having as prefix ab described
in Lemma 24 is not affected from the insertion of the a, and therefore β⋆(ab) = β(ab).

Let us now consider all the rotations of wk with prefix bjas2, for all 1 ≤ j ≤ k. One
can notice that wka does not have any rotation starting with bjas2, for all 1 ≤ j ≤ k,
but instead it has rotations starting with bjaas2. Thus, for all 1 ≤ j ≤ k − 1, to
obtain β⋆(bja) from β(bja) we have to remove the b in correspondence of the rotations
starting with bjas2, and add a b in correspondence of the rotations bjaas2. By Lemmas
25, 26, and 27, such rotations are placed right before the rotation starting with bjaae2.

Finally, the last rotation has still the same prefix bka and ends with an a, and the
thesis follows.

Lemma 30 (BWT of ŵk). Given an integer k > 5, for ŵk it holds that

β⋆(aib) = bak−i−2 for all 4 ≤ i ≤ k − 2,

β⋆(a3b) = b5(ab)k−6a,

β⋆(a2b) = aaba2k−8,

β⋆(ab) = bk−2baba2k−6,

β⋆(ba) = a
k−5

bbbab
k−5

ab
k−2

ba,

β⋆(bja) = ab2k−2j−2ab for all 2 ≤ j ≤ k − 1 and

β⋆(bka) = a.

Hence, BWT(ŵk) =
∏k−1

i=2 β⋆(ak−ib) ·
∏k

i=1 β
⋆(bia). Moreover, it holds that

r(ŵk) = 8k − 20.

Proof. Analogously to the previous Lemma, if we look in Lemmas 20, 21, and 22, at
the structure of the BWT in correspondence of the rotations starting with aib, for all
3 ≤ i ≤ k−2, we can notice that the order or the symbols in the BWT is not affected.
Thus, for all 3 ≤ i ≤ k − 2, we have β⋆(aib) = β(aib).

Since the last a of qk is omitted, the circular factor as2 does not appear anymore
in ŵ. Thus, β⋆(aab) is obtained by removing the first b from β(aab), since by Lemma
23 it is in correspondence of the rotation with prefix as2.

On the other hand we can observe from Lemma 24 that the rotation with prefix s2
maintains its relative order also in ŵk, but its last symbol is now a b instead of an a.
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For each 1 ≤ j ≤ k, the rotation starting with bjas2 of wk does not appear in ŵk,
but in fact it is replaced by one having bjs2 as prefix and ending in the same way.
When j = 1, by Lemma 25 such a rotation is located between the last two rotations
with the prefix ba, which start by babs3 and bs3 respectively. When 2 ≤ j ≤ k − 1,
by Lemmas 26 and 27, the rotation starting with bjs2 is greater than all the other
rotations with prefix bja. Thus, for all 1 ≤ j ≤ k − 1, we obtain β⋆(bja) by moving
the b in correspondence of the rotation starting with bas2 from β(bja) and placing it
in correspondence of bjs2. Finally, the last rotation has still the same prefix bka and
ends with an a, and the thesis follows.

Lemma 31 (BWT of ŵkb). Given an integer k > 5, for ŵkb it holds that

β⋆(aib) = ba
k−i−2 for all 4 ≤ i ≤ k − 2,

β⋆(a3b) = b5(ab)k−6a,

β⋆(a2b) = aaba2k−8,

β⋆(ab) = bk−2baba2k−6,

β⋆(ba) = ak−5bbbabk−5abk−2ba,

β⋆(bja) = ab
2k−2j−2

ab for all 2 ≤ j ≤ k − 1,

β⋆(bka) = b and

β⋆(bk+1a) = a.

Hence, BWT(ŵkb) =
∏k−1

i=2 β⋆(ak−ib) · ∏k+1
i=1 β⋆(bia). Moreover, it holds that

r(ŵkb) = 8k − 20.

Proof. For the rotations in correspondence of the rotations starting with an a, notice
that replacing the last a of wk for a b or removing the last a affects the BWT in the
same way. Therefore, β⋆(aib) is the same as Lemma 30 for all 1 ≤ i ≤ k − 2.

The same behaviour can be noticed on the rotations with prefix bja, for all 1 ≤
j ≤ k − 1, while the rotation starting with bka is now preceded by a b.

With respect to the other edit operations, we have the range of rotations starting
with bk+1a, which consists solely in bk+1s2 · · ·a.

The structure of the BWT of wk and other words obtained by applying one or
more edit operations on wk are summed up in Table 2.

For a given word w 6= ǫ, let wins, wdel, and wsub be the words obtained by applying
on w an insertion, a deletion, and a substitution of a character respectively.

We compare the number of runs of wk and its variations and notice that the
difference after applying one of the edit operations is Θ(k) in the three cases.

Proposition 32. There exists an infinite family of words w such that: (i) r(wins)−
r(w) = Θ(

√
n); (ii) r(wdel)− r(w) = Θ(

√
n); (iii) r(wsub)− r(w) = Θ(

√
n).

Proof. The family is composed of the words wk with k > 5. Let n = |wk|. If
wins

k = wka, w
del
k = ŵk, and wsub

k = ŵkb, from Proposition 28, Lemma 29, Lemma
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Word β ($) β (a$) β (aa$) β (aib) β (a3b) β (a2b) β (ab)

wk ǫ ǫ ǫ ba
k−i−2

b
5(ab)k−6

a baaba
2k−8

b
k−2

aaba
2k−6

wka ǫ ǫ ǫ ba
k−i−2

bb
5(ab)k−6

a aaaba
2k−8

b
k−2

aaba
2k−6

”wk ǫ ǫ ǫ ba
k−i−2

b
5(ab)k−6

a aaba
2k−8

b
k−2

baba
2k−6

”wkb ǫ ǫ ǫ ba
k−i−2

b
5(ab)k−6

a aaba
2k−8

b
k−2

baba
2k−6

wk$ a b ǫ ba
k−i−2

b
5(ab)k−6

a aaba
2k−8

b
k−2$aba2k−6

wkb$ b ǫ ǫ ba
k−i−2

b
5(ab)k−6

a aaba
2k−8

bb
k−2$aba2k−6

wkbb$ b ǫ ǫ ba
k−i−2

b
5(ab)k−6

a aaba
2k−8

bb
k−2$aba2k−6

wka$ a a b ba
k−i−2

b
5(ab)k−6

a aaba
2k−8

b
k−2$aba2k−6

Word β (b$) β (ba) β (bb$) β (bja) β (bka) β (bk+1) r(·)

wk ǫ a
k−5

bbbab
k−4

ab
k−2

a ǫ ab
2k−2j−1

a a ǫ 6k − 12

wka ǫ a
k−5

bbbbab
k−5

ab
k−2

a ǫ bab
2k−2j−2

a a ǫ 8k − 20

”wk ǫ a
k−5

bbbab
k−5

ab
k−2

ba ǫ ab
2k−2j−2

ab a ǫ 8k − 20

”wkb ǫ a
k−5

bbbab
k−5

ab
k−2

ba ǫ ab
2k−2j−2

ab b a 8k − 20

wk$ ǫ ba
k−5

bbbab
k−5

ab
k−2

a ǫ bab
2k−2j−2

a a ǫ 8k − 16

wkb$ a a
k−5

bbbab
k−5

abb
k−2

a ǫ ab
2k−2j−1

a a ǫ 6k − 13

wkbb$ b a
k−5

bbbab
k−5

abb
k−2

a a ab
2k−2j−2

ab a ǫ 8k − 17

wka$ ǫ ba
k−5

bbbab
k−5

ab
k−2

a ǫ bab
2k−2j−2

a a ǫ 8k − 16

Table 2: BWTs of the word wk and its variants after different edit operations. The
word in the intersection of the column β(x) with the row w is the range of BWT(w)
corresponding to all the rotations that have x as a prefix. The columns β(aib) and
β(bja) represent ranges of columns from i ∈ [k−2, 4] (in that order) and j ∈ [2, k−1],
respectively. Note that the prefixes in the columns are disjoint, and cover all the possi-
ble ranges for the set of words considered. The BWT of each word is the concatenation
of all the words in its row from left to right. In the last column appears the number
of BWT runs of each of these words.

30, and Lemma 31, we have that r(wka) = r(ŵk) = r(ŵkb) = r(wk) + (2k − 8). From
Observation 17, we have that 2k − 8 = Θ(

√
n).

5 Bit catastrophes for r$

In this section, we discuss bit catastrophes when the parameter r$ is considered. Recall
that for a word v, r$(v) = runs(BWT(v$)).

5.1 When there is no bit catastrophe for r$

First let us consider the case where a symbol c ∈ Σ is prepended to a word v. As
recently noted in [1], it is well known that in this case the value r$ can only vary by
a constant value. For the sake of completeness, we include a proof.

Proposition 33. For any x ∈ Σ, we have r$(v)− 1 ≤ r$(xv) ≤ r$(v) + 2.

Proof. Let us consider the list of lexicographically sorted cyclic rotations or, equiva-
lently, the list of lexicographically sorted suffixes of xv$. (The equivalence follows from
the fact that $ is smaller than all other characters.) This list can be obtained from the
list of suffixes of v$, to which the suffix xv$ is added. Note that the relative order of
all suffixes other than xv$ remains the same. Moreover, the corresponding symbols in
the BWT also remain the same, except that the character x takes the place of $. This
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replacement decreases the number of BWT-runs by 0, 1, or 2, depending on whether
this position in the BWT is preceded by a run of x, followed by a run of x, or both.
The symbol corresponding to the new suffix xv$ (which produces the insertion of $ in
the corresponding position in the BWT) increases the number of BWT-runs by 1 (if
it is inserted between two existing runs), or by 2 (if it breaks a run).

The following proposition shows that there are some cases in which r$ is not affected
by any bit catastrophe.

Proposition 34. Let x be smaller than or equal to the smallest character in a word
v, then r$(v) ≤ r$(vx) ≤ r$(v) + 1.

Proof. The rotations of vx$ can be viewed as the rotation $vx, plus the rotations of v$,
where the occurrence of $ has been replaced by x$. The smallest of these is of course
$vx, since it starts with $, while all others appear in the same order as before. This
is because x is smaller or equal the smallest character of v and greater than $, and
therefore, replacing $ by x$ does not change the lexicograhic order of these rotations.
This implies BWT(vx$) = x · BWT(v$), and thus, r$(v) ≤ r$(vx) ≤ r$(v) + 1.

5.2 Multiplicative bit catastrophes for r$

We can derive from our results in Sec. 3 that there exist families of strings on which
an edit operation can result in an increase of r$ by a multiplicative factor of logn.

Proposition 35. Let v be the Lyndon rotation of the Fibonacci word s of even order
2k > 4, and n = |v|. Let v′ be the word resulting by appending a b to v. Then
r$(v

′) = Θ(logn).

Proof. Let s = x2kab = x2k−1bax2k−2ab be the Fibonacci word of order 2k. One can
see that v = ax2kb = ax2k−2abx2k−1b [3]. Since v is a rotation of s, it holds that
r(v) = 2. By using Lemma 13, r$(v) = Θ(1) since v is a Lyndon word. When we append
b to v, we obtain v′ = ax2k−2abx2k−1bb. One can note that v′ = ax2k−2abx2k−1bb is
also a Lyndon word. Moreover, appending b to v is equivalent to inserting b in s at
position F2k−1−2, implying that v′ is a rotation of s′, where s′ is s with a b inserted in
position F2k−1−2. By using Proposition 3, we thus have that r(v′) = r(s′) = Θ(logn).
Since v′ is also a Lyndon word, therefore r$(v

′) = Θ(logn), using Lemma 13 again.

5.3 Additive bit catastrophes for r$

In general, appending, deleting, or substituting with a symbol that is not the smallest
of the alphabet can increase the number of runs of a word by an additive factor of
Θ(

√
n).

Lemma 36 (BWT of wk$). Given an integer k > 5, for wk$ it holds that

β⋆($) = a

β⋆(a$) = b
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β⋆(aib) = bak−i−2 for all 4 ≤ i ≤ k − 2,

β⋆(a3b) = b5(ab)k−6a,

β⋆(a2b) = aaba2k−8,

β⋆(ab) = b
k−2$aba2k−6,

β⋆(ba) = ba
k−5

bbbab
k−5

ab
k−2

a,

β⋆(bja) = bab2k−2j−2a for all 2 ≤ j ≤ k − 1 and

β⋆(bka) = a.

Hence, BWT(wk$) = β⋆($) · β⋆(a$) ·∏k−1
i=2 β⋆(ak−ib) ·∏k

i=1 β
⋆(bia). Moreover, it

holds that r(wk$) = 8k − 16.

Proof. The first rotation of BWT(wk$) is $wk and ends with an a because wk ends
with an a. Hence, β⋆($) = a. There is also a rotation a$ŵk, which ends with a b

because ŵk ends with a b. Hence, β⋆(a$) = b. It lefts to compare the remaining ranges
β⋆(v) with respect to β(v).

It is easy to see from Lemma 20, Lemma 21, and Lemma 22 that β⋆(aib) = β(aib)
for all 3 ≤ i ≤ k − 2.

The rotation starting with as2 in wk does not exist anymore when $ is appended to
wk. By Lemma 23 the remaining rotations keep their last symbols and relative order.
Therefore, β⋆(aab) is the same as β(aab) but with the first character removed, i.e.,
β⋆(aab) = aaba2k−8 .

For the rotations starting with ab, it happens that the rotation that originally
started with s2 in wk, now ends with a $. By Lemma 24, the remaining rotations do
not change their last symbol. Also, all the rotations keep their relative order. Hence,
β⋆(ab) = bk−2$aba2k−6.

In the case of the rotations starting with ba, the rotation that originally started
with bas2 now starts with ba$s2 and is the smallest of its range. From Lemma 25
the remaining rotations keep their last symbols and relative order. Hence, β⋆(ba) =
bak−5bbbabk−5abk−2a.

For the rotations starting with bja for 2 ≤ j ≤ k − 1, one can notice that after
appending $ to wk, the rotation that previously started with bjas2 and ended with a
b, now starts with bja$s2 and still ends with a b. Moreover, this rotation is smaller
than the rotation starting with bjaaej. From Lemma 26 and Lemma 27 we can see
that all the other rotations keep their relative order and last symbols. The rotation
starting with bjaaej still ends with an a, but now is the second smallest of its range.
Hence, β⋆(bja) = bab2k−2j−2a for all 2 ≤ j ≤ k − 1.

Finally, it is clear that β⋆(bka) = a, as there is only one maximal run of k symbol
b’s, and it is not preceded by $.

Lemma 37 (BWT of wkb$). Given an integer k > 5, for wkb$ it holds that

β⋆($) = b

β⋆(aib) = ba
k−i−2 for all 4 ≤ i ≤ k − 2,
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β⋆(a3b) = b5(ab)k−6a,

β⋆(a2b) = aaba2k−8,

β⋆(ab) = bbk−2$aba2k−6,

β⋆(b$) = a,

β⋆(ba) = a
k−5

bbbab
k−5

abb
k−2

a,

β⋆(bja) = ab2k−2j−1a for all 2 ≤ j ≤ k − 1 and

β⋆(bka) = a.

Hence, BWT(wkb$) = β⋆($)·(
∏k−1

i=2 β⋆(ak−ib))·β⋆(b$)·(
∏k

i=1 β
⋆(bia)). Moreover,

it holds that r(wkb$) = 6k − 13.

Proof. The first rotation of BWT(wkb$) is $wkb. Hence, β
⋆($) = b. There is also a

rotation b$wk, which ends with an a because wk ends with an a. Hence, β⋆(b$) = a.
It lefts to compare the remaining ranges β⋆(v) with respect to β(v).

It is easy to see from Lemma 20, Lemma 21, and Lemma 22 that β⋆(aib) = β(aib)
for all 3 ≤ i ≤ k − 2.

The rotation starting with as2 in wk does not exist anymore when b$ is appended
to wk. By Lemma 23 the remaining rotations keep their last symbols and relative
order. Therefore, β⋆(aab) is the same as β(aab) but with the first character removed,
i.e., β⋆(aab) = aaba2k−8 .

For the rotations starting with ab, it happens that the rotation that originally
started with s2 in wk, now ends with a $ when b$ is appended. Also, there is a new
rotation starting with ab$ that ends with b, and is clearly the smallest of the range.
By Lemma 24, the remaining rotations do not change their last symbol. Also, all the
rotations that come from wk keep their relative order. Hence, β⋆(ab) = bbk−2$aba2k−6.

In the case of the rotations starting with ba, the rotation that originally started
with bas2 now starts with bab$s2 and can be found just before the rotation starting
with babak−2. From Lemma 25 the remaining rotations keep their last symbols and
relative order. Hence, β⋆(ba) = ak−5bbbabk−5abbk−2a.

For the rotations starting with bja for 2 ≤ j ≤ k − 1, one can notice that after
appending b$ to wk, the rotation that previously started with bjas2 and ended with
a b, now starts with bjab$s2 and still ends with a b. Moreover, this rotation is still
strictly in between the rotations starting with bjaaej and bjabaj−2sj+1 (qk instead
of sj+1 if j = k − 1). From Lemma 26 and Lemma 27, we can see that the latter
two rotations are still the smallest and greatest of the range, and both end with an a.
Also, all the other rotations keep their last symbols. Hence, β⋆(bja) = β(bja) for all
2 ≤ j ≤ k − 1.

Finally, it is clear that β⋆(bka) = a, as there is only one maximal run of k symbol
b’s, and it is not preceded by $.

Lemma 38 (BWT of wkbb$). Given an integer k > 5, for wkbb$ it holds that

β⋆($) = b
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β⋆(aib) = bak−i−2 for all 4 ≤ i ≤ k − 2,

β⋆(a3b) = b5(ab)k−6a,

β⋆(a2b) = aaba2k−8,

β⋆(ab) = bb
k−2$aba2k−6,

β⋆(b$) = b,

β⋆(ba) = ak−5bbbabk−5abbk−2a,

β⋆(bb$) = a,

β⋆(bja) = ab2k−2j−2ab for all 2 ≤ j ≤ k − 1 and

β⋆(bka) = a.

Hence, BWT(wkbb$) = β⋆($) · (∏k−1
i=2 β⋆(ak−ib)) · β⋆(b$) · β⋆(ba) · β⋆(bb$) ·

(
∏k

i=2 β
⋆(bia)). Moreover, it holds that r(wkb$) = 8k − 17.

Proof. The first rotation of BWT(wkbb$) is $wkbb. Hence, β
⋆($) = b. There is another

new rotation b$wkb. Hence, β
⋆(b$) = b. There is also a rotation bb$wk that ends

with an a because wk ends with an a. Hence, β⋆(bb$) = a. It lefts to compare the
remaining ranges β⋆(v) with respect to β(v).

It is easy to see from Lemma 20, Lemma 21, and Lemma 22 that β⋆(aib) = β(aib)
for all 3 ≤ i ≤ k − 2.

The rotation starting with as2 in wk does not exist anymore when bb$ is appended
to wk. By Lemma 23 the remaining rotations keep their last symbols and relative
order. Therefore, β⋆(aab) is the same as β(aab) but with the first character removed,
i.e., β⋆(aab) = aaba2k−8 .

For the rotations starting with ab, it happens that the rotation that originally
started with s2 in wk, now ends with a $ when bb$ is appended. Also, there is a
new rotation starting with abb$ that ends with b, and can be found just before the
rotation starting with s2. By Lemma 24, the remaining rotations do not change their
last symbol. Also, all the rotations that come from wk keep their relative order. Hence,
β⋆(ab) = bk−2b$aba2k−6.

In the case of the rotations starting with ba, the rotation that originally started
with bas2 now starts with babb$s2 and can be found just before the rotation start-
ing with bs3 (the greatest on the range). From Lemma 25 we can see that the
remaining rotations keep their last symbols and relative order. Hence, β⋆(ba) =
ak−5bbbabk−5abk−2ba.

For the rotations starting with bja for 2 ≤ j ≤ k − 1, one can notice that after
appending bb$ to wk, the rotation that previously started with bjas2 and ended with
a b, now starts with bjabb$s2 and still ends with a b. Moreover, this rotation is greater
than the rotation starting with bjabaj−2sj+1 (qk instead of sj+1 if j = k − 1). From
Lemma 26 and Lemma 27 we can see that all the other rotations keep their relative
order an last symbols. The rotation starting with bjabaj−2sj+1 (qk instead of sj+1 if
j = k − 1) still ends with an a, but now is the second greatest of its range. Hence,
β⋆(bja) = ab2k−2j−2ab for all 2 ≤ j ≤ k − 1.
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Finally, it is clear that β⋆(bka) = a, as there is only one maximal run of k symbol
b’s, and it is not preceded by $.

Lemma 39 (BWT of wka$). Given an integer k > 5, for wka$ it holds that

β⋆($) = a

β⋆(a$) = a

β⋆(aa$) = b

β⋆(aib) = bak−i−2 for all 4 ≤ i ≤ k − 2,

β⋆(a3b) = b
5(ab)k−6

a,

β⋆(a2b) = aaba
2k−8,

β⋆(ab) = bk−2$aba2k−6,

β⋆(ba) = bak−5bbbabk−5abk−2a,

β⋆(bja) = bab2k−2j−2a for all 2 ≤ j ≤ k − 1 and

β⋆(bka) = a.

Hence, BWT(wka$) = β⋆($)·(∏k−1
i=2 β⋆(ak−ib))·β⋆(b$)·(∏k

i=1 β
⋆(bia)). Moreover,

it holds that r(wka$) = 8k − 16.

Proof. We obtain BWT(wka$) = aBWT(wk$) by applying Proposition 34 to the
words wka$ and wk$, and we already know the structure of BWT(wk$) by Lemma
36.

Proposition 40. There exists an infinite family of words such that: (i) r$(wb) −
r$(w) = Θ(

√
n); (ii) r$(ŵ)− r$(w) = Θ(

√
n); (iii) r$(ŵa)− r$(w) = Θ(

√
n).

Proof. Such a family is composed of the words wkb with k > 5. The proof follows
from Lemma 36, Lemma 37, Lemma 38, Lemma 39, and Observation 17.

5.4 The relationship between r and r$

Now we address the differences between the measures r and r$. In fact, not only are
the measures r and r$ not equal over the same input, but they may differ by a Θ(logn)
multiplicative factor, or by a Θ(

√
n) additive factor.

Proposition 41. There exists an infinite family of words v such that r$(v)/r(v) =
Θ(logn), where n = |v|.
Proof. The family consists of the reverse of the Fibonacci words of odd order. Let
v = rev(s), with s a Fibonacci word of odd order 2k + 1. Since s is a standard
word, r(s) = 2. Moreover, its reverse v is a conjugate and thus BWT(v) = BWT(s),
implying that also r(v) = 2. Let v′ = v$. Since $ < a, by Proposition 2 it follows that
r(v′) ∈ {2k + 2, 2k + 3}. Altogether, r$(v)/r(v) ≤ 2k+3

2 = Θ(k) = Θ(logn).
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Proposition 42. There exists an infinite family of words w such that r$(w)− r(w) =
Θ(

√
n), where n = |w|.

Proof. The family consists of the words wk for all k > 5, defined in Section 4. From
Proposition 28 and Lemma 36, it holds r$(wk)− r(wk) = 2k − 4. By Observation 17,
it holds r$(wk)− r(wk) = Θ(

√
n).

6 Conclusion

In this paper, we studied how a single edit operation on a word (insertion, deletion or
substitution of a character) can affect the number of runs r of the BWT of the word.
Our contribution is threefold. First, we prove that Ω(logn) is a lower bound for all three
edit operations, by exhibiting infinite families of words for which each edit operation
can increase the number of runs by a multiplicative Θ(logn) factor. Since for all of
these families, r = O(1), this also proves that the upper bound O(logn log r) given
in [1] is tight in the case of r = O(1), for each of the three edit operations. Secondly, we
improved the best known lower bound of Ω(logn) for the additive sensitivity of r [1,
15], by giving an infinite family of words on which insertion, deletion, and substitution
of a character can increase r by a Θ(

√
n) additive factor. Finally, we put in relation

the two common variants of the number of runs of the BWT, which we denote as r
resp. r$. The latter, r$, is the variant used in articles on string data structures and
compression, which assumes that each word is terminated by an end-of-string symbol;
for the variant r commonly used in the literature on combinatorics on words, no such
assumption is made.

Our work opens several roads of investigation. First, we ask whether there exist
families of words with r = ω(1) for which edit operations can cause a multiplicative
increase of Ω(logn). In other words, is the bit catastrophe effect restricted to words
on which the compression power of r is maximal?

Another interesting question is whether the upper bound O(r log r logn) from [1]
for the additive sensitivity of r is tight. A weaker question, an answer to which would
make a step in this direction, is whether there exists an infinite family with r = ω(1)
on which one edit operation can cause an additive increase of ω(r) in the number of
runs of the BWT.

Funding

CU is funded by scholarship ANID-Subdirección de Capital Humano/Doctorado
Nacional/2021-21210580, ANID, Chile. ZsL, GR, and MS are partially funded
by the MUR PRIN Project “PINC, Pangenome INformatiCs: from Theory to
Applications” (Grant No. 2022YRB97K), and by the INdAM - GNCS Project
CUP E53C23001670001. SI is partially funded by JSPS KAKENHI grant numbers
JP20H05964, JP23K24808, and JP23K18466.

Authors contributions

All authors contributed equally to the paper.

29



References

[1] Akagi, T., M. Funakoshi, and S. Inenaga. 2023. Sensitivity of string compressors
and repetitiveness measures. Information and Computation 291: 104999 .

[2] Bannai, H., T. Gagie, and T. I. 2020. Refining the r -index. Theor. Comput.
Sci. 812: 96–108 .

[3] Berstel, J. and A. de Luca. 1997. Sturmian words, Lyndon words and trees.
Theoretical Computer Science 178 (1-2): 171–203 .

[4] Boucher, C., D. Cenzato, Zs. Lipták, M. Rossi, and M. Sciortino 2021. r-indexing
the eBWT. In T. Lecroq and H. Touzet (Eds.), Proc. of 28th International Sympo-
sium on String Processing and Information Retrieval (SPIRE 2021), Volume 12944
of Lecture Notes in Computer Science, pp. 3–12. Springer.

[5] Boucher, C., D. Cenzato, Zs. Lipták, M. Rossi, and M. Sciortino. 2024. r-indexing
the eBWT. Information and Computation 298: 105155. https://doi.org/10.1016/j.
ic.2024.105155 .

[6] Brlek, S., A. Frosini, I. Mancini, E. Pergola, and S. Rinaldi 2019. Burrows-Wheeler
Transform of Words Defined by Morphisms. In IWOCA, Volume 11638 of Lect.
Notes Comput. Sci., pp. 393–404. Springer.

[7] Burrows, M. and D.J. Wheeler 1994. A block-sorting lossless data compression
algorithm. Technical report, DIGITAL System Research Center.

[8] Castiglione, G., A. Restivo, and M. Sciortino. 2010. On extremal cases of Hopcroft’s
algorithm. Theoret. Comput. Sci. 411 (38-39): 3414–3422 .

[9] de Luca, A. 1997. Sturmian words: Structure, combinatorics, and their arithmetics.
Theor. Comput. Sci. 183 (1): 45–82 .

[10] de Luca, A. and F. Mignosi. 1994. Some Combinatorial Properties of Sturmian
Words. Theor. Comput. Sci. 136 (2): 361–285 .

[11] Ferragina, P. and G. Manzini 2000. Opportunistic data structures with applica-
tions. In FOCS, pp. 390–398. IEEE Computer Society.

[12] Frosini, A., I. Mancini, S. Rinaldi, G. Romana, and M. Sciortino 2022. Logarith-
mic equal-letter runs for BWT of purely morphic words. In DLT, Volume 13257 of
Lect. Notes Comput. Sci., pp. 139–151. Springer.

[13] Gagie, T., G. Navarro, and N. Prezza 2018. Optimal-time text indexing in BWT-
runs bounded space. In A. Czumaj (Ed.), SODA, pp. 1459–1477. SIAM.

[14] Gagie, T., G. Navarro, and N. Prezza. 2020. Fully functional suffix trees and
optimal text searching in BWT-runs bounded space. J. ACM 67 (1): 2:1–2:54 .

30

https://doi.org/10.1016/j.ic.2024.105155
https://doi.org/10.1016/j.ic.2024.105155


[15] Giuliani, S., S. Inenaga, Zs. Lipták, N. Prezza, M. Sciortino, and A. Toffanello
2021. Novel results on the number of runs of the Burrows-Wheeler-Transform. In
SOFSEM, Volume 12607 of LNCS, pp. 249–262. Springer.

[16] Giuliani, S., S. Inenaga, Zs. Lipták, G. Romana, M. Sciortino, and C. Urbina 2023.
Bit catastrophes for the Burrows-Wheeler Transform. In F. Drewes and M. Volkov
(Eds.), Developments in Language Theory (DLT 2021), Cham, pp. 86–99. Springer
Nature Switzerland.

[17] Kempa, D. and T. Kociumaka. 2022. Resolution of the Burrows-Wheeler
Transform conjecture. Commun. ACM 65 (6): 91–98 .

[18] Knuth, D.E., J.H. Morris, and V.R. Pratt. 1977. Fast pattern matching in strings.
SIAM J. Comput. 6 (2): 323–350 .

[19] Kociumaka, T., G. Navarro, and N. Prezza 2020. Towards a definitive measure of
repetitiveness. In LATIN, Volume 12118 of Lect. Notes Comput. Sci., pp. 207–219.
Springer.

[20] Lagarde, G. and S. Perifel 2018. Lempel-Ziv: a “one-bit catastrophe” but not a
tragedy. In SODA, pp. 1478–1495. SIAM.

[21] Lam, T.W., R. Li, A. Tam, S. Wong, E. Wu, and S.M. Yiu 2009. High Through-
put Short Read Alignment via Bi-directional BWT. In BIBM, pp. 31–36. IEEE
Computer Society.

[22] Langmead, B., C. Trapnell, M. Pop, and S.L. Salzberg. 2009. Ultrafast and
memory-efficient alignment of short DNA sequences to the human genome. Genome
Biology 10 (3): R25 .

[23] Li, H. and R. Durbin. 2010. Fast and accurate long-read alignment with
Burrows–Wheeler transform. Bioinformatics 26 (5): 589–595 .

[24] Lothaire, M. 2002. Algebraic Combinatorics on Words. Cambridge Univ. Press.
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