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Abstract. Recent research has identified discriminatory behavior of au-
tomated prediction algorithms towards groups identified on specific pro-
tected attributes (e.g., gender, ethnicity, age group, etc.). When deployed
in real-world scenarios, such techniques may demonstrate biased predic-
tions resulting in unfair outcomes. Recent literature has witnessed al-
gorithms for mitigating such biased behavior mostly by adding convex
surrogates of fairness metrics such as demographic parity or equalized
odds in the loss function, which are often not easy to estimate. This
research proposes a novel in-processing based GroupMixNorm layer for
mitigating bias from deep learning models. The GroupMixNorm layer
probabilistically mixes group-level feature statistics of samples across
different groups based on the protected attribute. The proposed method
improves upon several fairness metrics with minimal impact on overall
accuracy. Analysis on benchmark tabular and image datasets demon-
strates the efficacy of the proposed method in achieving state-of-the-art
performance. Further, the experimental analysis also suggests the robust-
ness of the GroupMixNorm layer against new protected attributes during
inference and its utility in eliminating bias from a pre-trained network.

Keywords: Deep Learning · Ethics and fairness · Bias Mitigation

1 Introduction

Most AI algorithms process large quantities of data to identify patterns useful
for accurate predictions. Such pipelines are mostly automated in nature without
any human intervention, along with large data processing, high efficiency, and
high accuracy. Despite the benefits of automated processing, current AI systems
are marred with the challenge of biased predictions resulting in unfavourable
outcomes. One of the most infamous examples of such behavior is that of an AI-
based recruitment tool1, which disfavoured applications from women because
it was trained on resumes from the mostly male workforce. In order to rectify
such biases and support advancement in society, we need models that generate
fair results without any discrimination towards certain individuals or groups. To
this effect, this research proposes a novel GroupMixNorm layer for learning an
unbiased model for ensuring fair outcomes across different groups.

1 https://tinyurl.com/5apv7xeu
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Fig. 1: The proposed GroupMixNorm layer projects the features of different
classes and protected attributes onto a space which minimizes the distinction
between the protected attributes, thus promoting a fairer classification model.

In the literature, research has focused on achieving fairness by introducing
techniques at the pre-processing stage (transforming the input before feeding to
the classification model) or the post-processing stage (transforming the output
produced by the classification model). It is our hypothesis that these methods
may not result in optimal accuracy, since they treat the classifier as a black
box and focus on removing bias from the input representations or the output
predictions only. Different from the above, in-processing techniques focus on
learning bias-invariant models by incorporating additional constraints during
training, thus resulting in more effective models [4]. Existing in-processing tech-
niques mostly aim to solve a constraint optimization problem to ensure fairness
[20,21,22] by introducing a penalty term in the loss function corresponding to the
convex surrogates of the fairness objective like demographic parity or equalized
odds. However, as observed in literature, it is challenging to formulate surrogates
for different fairness constraints that is a reasonable estimate of the original [16].

In this research, we formulate the problem of bias mitigation as distribution
alignment of several groups of the protected attribute (Fig. 1). The proposed
GroupMixNorm layer is applied at the in-processing stage which promotes the
model to learn unbiased features for classification. The formulation is motivated
by the observation that Deep Learning based algorithms tend to explore the
difference in the distribution among the groups of the protected attributes (e.g.,
male and female with similar features like age and education may have different
salaries, thus resulting in different distributions) to lift the overall performance.
The GroupMixNorm layer mixes the group-level feature statistics and transforms
all the features in a training batch based on the interpolated group statistics.
This enables the classifier to learn features invariant to the protected attribute.
Further, transforming the data towards the interpolated groups regularizes the
classifier and improves the generalizability at inference. Key highlights of this
research are as follows:

– This research proposes a novel GroupMixNorm layer for learning fairer clas-
sification models. The proposed layer is applied at the architectural level
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Fig. 2: The GroupMixNorm layer takes as input the previous layer’s output (Z)
along with each sample’s protected attribute. Group-level statistics are com-
puted, followed by the probabilistic mixing and projection of the mini-batch
features along the mixed statistics to obtain new features (Ẑ).

and is an in-processing technique that focuses on distribution alignment of
different groups during model training.

– GroupMixNorm operates at the feature level, thus making it flexible to be
placed across various layers of a neural network-based model and fits well into
the mini-batch gradient-based training. Experimental analysis suggests that
with limited data, GroupMixNorm can be applied to mitigate the existing
bias in classifiers as well, thus avoiding the need for re-training from scratch.

– The GroupMixNorm layer produces fairer results when evaluated for new
groups at test time as well. We believe that the GroupMixNorm layer makes
the model robust against distribution changes across sensitive groups, thus
being able to generalize well for unseen groups at test time.

– The efficacy of the proposed approach has been demonstrated on different
datasets (structured and unstructured), where it achieves improved perfor-
mance while achieving multiple fairness constraints such as demographic
parity, equal opportunity, and equalized odds simultaneously. For example,
on the UCI Adult Income dataset [9], GroupMixNorm achieves an average
precision of 0.77, while maintaining different fairness metrics below 0.03.

2 Related Work

Group fairness can be ensured in a machine learning system via pre-processing,
in-processing, and post-processing. Pre-processing and post-processing methods
consider the classifier as a black-box model, and try to mitigate bias from the in-
put features or the classifier’s prediction. On the other hand, in-processing based
bias mitigation techniques solve the constraint optimization problem for different
fairness objectives. To ensure independence between the predictions and sensi-
tive attributes, Woodworth et al. [20] regularize the covariance between them.
Zafar et al. [21] minimize the disparity between the sensitive groups by regulariz-
ing the decision boundary of the classifier. Game theory based approaches [1,7]
provide analytical solutions and theoretical guarantees for generalizability in
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fair classifier but are limited by the scalability factor. Recent techniques [13,22]
introduce an adversary network additional to the predictor network that pre-
dicts the sensitive label based on the classifier’s output, while other algorithms
[2,3,17,24] learn unbiased representations through invariant risk minimization
and attention-based feature learning. Research has also focused on eliminating
superficial correlations and paying more attention on task related causal fea-
tures [12,14]. Recently, Cheng et al. [5] utilize contrastive learning to minimize
the correlation between sentence representations and biasing words, while mixup
[19,23] techniques have proved to be effective in bias mitigation. For example,
Chuang et al. [6] utilize mixup as a data augmentation strategy to improve the
generalizability of the model while optimizing the fairness constraints, and Du et
al. [8] utilize mixup for feature neutralization to remove the correlation between
the sensitive information and class labels from the encoder feature.

Instead of focusing on optimizing surrogates of the fairness metrics, this re-
search proposes a novel GroupMixNorm layer which operates at the architectural
level of the classifier. GroupMixNorm focuses on learning unbiased representa-
tions which results in satisfying several fairness constraints across groups.

3 Proposed GroupMixNorm Layer

As discussed before, recent research has observed that deep learning models
often tend to learn group-specific characteristics, making it easier to obtain a
higher performance on the underlying classification task. As an ancillary effect,
the learned group-specific features often also result in discriminative behavior
towards specific groups based on the protected attribute. For example, a recruit-
ment tool may learn features based on the gender of the applicant, resulting in
unintended discrimination towards applicants from the under-represented group.
In order to address the above limitation, the GroupMixNorm layer focuses on
eliminating the difference between the group statistics during training.

As part of the GroupMixNorm layer, we normalize each group of a protected
attribute in a batch separately to collect group specific statistics (i.e. for the
gender attribute, normalize all male samples and female samples in a batch
separately) and further take a probabilistic convex combination between the
group-level statistics and apply across all the samples in a batch. This process
ensures that any protected group related diversity is removed from the internal
representation of a neural network and doesn’t allow the network to explore
this information to lift the overall performance. The introduction of additional
inductive bias in the network structure enforces it to learn invariant features
pertaining to the protected attributes while training the network.

The GroupMixNorm layer is implemented as a plug-and-play module. It can
be inserted between the fully connected layers of a neural network-based classifier
during training (Algorithm 1). LetX,Y , and S be the input features, class labels,
and protected attribute labels in a training batch, respectively. As illustrated in
Fig. 2, let Z be an n dimensional representation obtained from the previous layer
and Ai represent the feature along dimension i. We identify the groups Gj in a
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Algorithm 1 GroupMixNorm Layer

Input: Z: Learned representation of the input batch obtained from the previous layer
α, β: Hyper-parameters for the Beta distribution (default: 0.1)
Output: Ẑ: Transformed samples after the GroupMixNorm layer

1: if not in training mode then
2: return Z
3: end if
4: Compute µGj and σGj for a group Gj in a protected attribute
5: Sample mixing coefficient λ ∼ Beta(α, α)
6: Compute γmix and βmix as shown in Eq. 2
7: Normalize and transform all samples in a batch to compute ẐGj as shown in Eq.

3
8: Ẑ = {ẐGj}Kj=1, where K is the number of groups identified in a protected attribute

9: return Ẑ

batch based on the protected attribute labels S, and calculate their respective
mean (µGj ,i) and variance (σGj ,i) along each dimension (step-1 of Fig. 2). Next
we calculate the weighted average of mean γmix,i and variance βmix,i along each
dimension (Eq. 1), followed by concatenation to create a single vector (Eq. 2). As
we mix statistics of two groups at a time, the mixing coefficient λ is sampled from
a symmetric Beta distribution Beta(α, α), for α ∈ (0,∞). The hyper-parameters
α controls the strength of interpolation.

Finally, we normalize all the samples by applying the calculated γmix and
βmix to each sample as shown in Eq. 3. For the ease of notation, we have consid-
ered two groups i.e. binary protected attributes. However, the proposed solution
can easily be applied to non-binary protected attributes as well.

γmix,i = λσG1,i + (1− λ)σG2,i; βmix,i = λµG1,i + (1− λ)µG2,i; (1)

γmix = [γmix,1, ...γmix,n]; βmix = [βmix,1, ...βmix,n] (2)

ẐGj = γmix

(ZGj
− µGj

)

σGj

+ βmix (3)

The updated features Ẑ = [ẐG1
, ẐG2

] are then provided as input to the
following layer of the neural network for further processing. The process of mixing
group level statistics in a GroupMixNorm layer occurs in the feature space and
has no learnable parameters. The GroupMixNorm layer is easy to implement and
fits perfectly into mini-batch training. Further, it is turned off during inference,
thus eliminating the need for protected attributes during inference. The training
procedure of GroupMixNorm layer is shown in Algorithm 1.

4 Datasets and Experimental Details

The GroupMixNorm layer has been evaluated on two datasets with different fair-
ness evaluation metrics and compared with state-of-the-art techniques. Details
regarding the dataset protocols are as follows:
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– UCI Adult Dataset [9] contains 50,000 samples with 14 attributes to
describe each data point (individual) (e.g., gender, education level, age, etc.)
from the 1994 US Census. The classification task is to predict the income
of an individual. It’s a binary classification task, where class 1 represents
salary ≥ 50K and class 0 represents salary < 50K. We select gender as the
protected attribute for the fairness evaluation. The dataset is imbalanced
such that only 24% of the samples belong to class 1, with only 15.13% female
samples.

– CelebA Dataset [15] contains 200,000 celebrity faces with 40 binary at-
tributes associated with each image. Following the literature [6,8], we select
gender as the protected attribute and wavy hair attribute for the binary
classification task. The dataset has 18.36% male samples as compared to
female samples in the positive class.

4.1 Fairness Evaluation Metrics

The most widely used fairness metrics [18] are: Demographic Parity, Equal Op-
portunity, and Equalized Odds [10]. The metrics are elaborated in detail below,

where Y (Ŷ ) is actual (predicted) class label and S is protected attribute:

– Demographic Parity Difference (DP) suggests that the probability of
favourable outcomes should be same for all the subgroups:

DPD = |P [Ŷ = 1|S = 1]− P [Ŷ = 1|S ̸= 1]| (4)

– Equality of Opportunity Difference (EOP) emphasises that there should
be equal opportunities for all the subgroups having positive outcomes to have
positive prediction i.e. true positive rates for all the groups should be same:

EOP = |P [Ŷ = 1|S = 1, Y = 1]− P [Ŷ = 1|S ̸= 1, Y = 1]| (5)

– Equalized Odds Difference (EOD) focuses on equalizing false positive
rates along with the same true positive rates for all the subgroups:

EOD = |P [Ŷ = 1|S = 1, Y = 1]− P [Ŷ = 1|S ̸= 1, Y = 1]|+

|P [Ŷ = 1|S = 1, Y = 0]− P [Ŷ = 1|S ̸= 1, Y = 0])|
(6)

For a fair algorithm, DP, EO and EOD values must be closer to 0.

4.2 Implementation Details

The GroupMixNorm layer has been implemented in the PyTorch framework on
Ubuntu 16.04.7 OS with the Nvidia GeForce GTX 1080Ti GPU. For a fair com-
parison with existing literature, we have followed the same dataset pre-processing
and protocols as the fair mixup approach [6]. For the Adult dataset, we use four
fully connected layers with hidden dimension 50. Each layer except the last out-
put layer is followed by SiLU activation and the proposed GroupMixNorm layer.
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(a) Demographic Parity (b) Equal Opportunity (c) Equalized Odds

Fig. 3: Fairness-AP trade-off curves on the Adult dataset, where Group-
MixNorm demonstrates improved performance. Results are obtained by varying
the trade-off parameter as suggested in their respective publications: Adversarial
Debiasing: [0.01 ∼ 1.0], Fair Mixup DP: [0.1 ∼ 0.7], Fair Mixup EO: [0.5 ∼ 5.0],
and RNF: [0.05, 0.015, 0.025, 0.035]. For a fair algorithm, it is desirable to have
the AP closer to 1, and the fairness metrics (DP, EO, EOD) closer to 0.

(a) Demographic Parity (b) Equal Opportunity (c) Equalized Odds

Fig. 4: Fairness-AP trade-off curves of GroupMixNorm layer and other com-
parative algorithms on the CelebA dataset, where the proposed approach
achieves state-of-the-art performance. Results are obtained by varying the trade-
off parameter as suggested in their respective publications: Fair M Mixup DP:
[25, 50], Fair M Mixup EO: [1, 10, 50], RNF: [0.1, 0.5, 1, 5, 10].

The model is trained for 10 epochs with a 1000 batch size. For each epoch,
the dataset is randomly split into 60-20-20 split of train, val, and test set, re-
spectively. We select the best-performing model on the validation set across 10
independent runs and report the mean Average Precision and fairness metrics
defined above. For the CelebA dataset, we use the ResNet-18 [11] model for
feature extraction followed by two fully connected layers for the classification
task. We apply SiLU activation and GroupMixNorm layer between the two FC
layers. We use the original split of the dataset and train the model for 100 epochs
with 128 batch size. Both the models are trained with the Adam optimizer with
learning rate 1e − 4. In all experiments, mixing coefficient λ (Eqs. 1 and 2) is
randomly sampled from Beta(α, α). The value of α is empirically set to 0.1.
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5 Results and Analysis

Figures 3–6 and Table 1 present the results and analysis of the GroupMixNorm
layer and comparison with the state-of-the-art in-processing bias mitigation tech-
niques. Detailed analysis is given in the following subsections:

5.1 Comparison with State-of-the-art Algorithms

Since the GroupMixNorm layer focuses on mitigating bias during the training
process, comparison has been performed with algorithms that optimize fairness
constraints during training: (i) Adversarial Debiasing [22], (ii) Fair Mixup: Fair-
ness via Interpolation (Fair Mixup) [6], (iii) Fairness via Representation Neu-
tralization (RNF) [8], and (iv) plain classifier. Fair Mixup uses two separate reg-
ularizing terms for optimizing the fairness metrics of Demographic Parity (DP)
and Equal Opportunity (EO), and thus can solve for either DP or EO at a time.
In this paper, we refer to these two variants of Fair Mixup as Fair Mixup DP and
Fair Mixup EO. To calculate the DP, Chuang et al. [6] have computed the dif-
ference between the predicted probability across the protected groups. Similarly,
for EO, Chuang et al. [6] compute class-wise difference between the predicted
probability across protected groups. As part of this research, we have used the
actual definitions of EO and DP for computing the fairness metrics (Eqs. 4–5).
Parallely, the Representation Neutralization (RNF) technique [8] has shown the
bias mitigation performance via two variants: (i) in model-1, proxy labels are
generated for the protected attribute, while (ii) in model-2, ground-truth pro-
tected attribute labels are used. As part of this research, we have compared our
results with their second variant (model-2), referred to as RNF.

For a fair comparison, we evaluate all the models under the same setting.
Techniques such as Adversarial Debiasing, Fair Mixup, and RNF introduce a
regularization term in the loss function to improve fairness via a hyper-parameter
α that controls the trade-off between the average precision (AP) and fairness
metrics (DP, EO, and EOD). We have reported the results on varying values of
α as suggested in their respective papers. In our case, the GroupMixNorm layer
is proposed towards architecture design and not the loss function, thus there is
no such trade-off. Performance analysis on different datasets is as follows:
(a) Comparison on the UCI Adult Income Dataset: Fig. 3 shows the
performance comparison on the UCI Adult dataset, where the GroupMixNorm
layer produces fairer results as compared to other techniques across all fairness
metrics (DP, EO, EOD) with minimal impact on average precision. Since Fair
Mixup solves separate constraint optimizations to achieve lower DP and EO, it
minimizes either DP or EO at a time. In terms of the fairness metrics, RNF pro-
duces fair results, however the average precision is relatively lower, thus making
it unsuitable for the classification task.
(b) Comparison on the CelebA Dataset (Fig. 4): Consistent with the
published manuscript [6], for Fair Mixup, comparison has been performed with
the combination of manifold mixup [19] (Fair M Mixup DP and Fair M Mixup
EO). Similar to the previous experiments, it is observed that either Fair M
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(a) Without GroupMixNorm Layer (b) With GroupMixNorm Layer

Fig. 5: PCA visualizations of the features for the MLP classifiers trained without
and with GroupMixNorm. The left plots show the class distribution, and the
right plots show the gender distribution (protected attribute). The model trained
with GroupMixNorm demonstrates minimal distinction on the gender attribute.

Table 1: Cosine similarity between the learned weight parameters of Csens and
Ccls linear classifiers (the former is trained for predicting the sensitive attribute,
while the later is trained for class label prediction). A lower score represents less
biased models since lesser similarity is observed between the weight parameters.

Method Cosine Similarity

Plain Classifier 0.205

RNF 0.075-0.2

GroupMixNorm 0.06

Mixup DP or Fair M Mixup EO achieves optimal performance at a time. Further,
the RNF model produces fair results across fairness metrics, however achieves
lower average precision. GroupMixNorm achieves comparable performance to the
best performing model across all the metrics, while maintaining a high average
precision, thus suggesting high utility for real-world applications.

5.2 Learned Representation Analysis

Experiments have been performed for (a) feature visualization and (b) auxiliary
prediction task for understanding feature quality. The key findings are as follows:
(a) Feature Visualization: Fig. 5 presents the 2D projections obtained by
using the sigmoid kernel Principal Component Analysis (PCA). Fig. 5a presents
the features learned by a biased MLP classifier (trained without GroupMixNorm
layer), where the features appear both class and gender (protected attribute) dis-
criminative. There is an overlap of male samples with the positive class samples,
both lying majorly in the lower left side of the distribution. On the other hand,
Fig. 5b shows features learned with the GroupMixNorm layer appear to be class
discriminative, while not being gender discriminative. Further, both male and
female samples are evenly distributed, thus preventing the model to get biased
against a particular sensitive group.
(b) Auxiliary Prediction Task: Similar to Du et al. [8], we use an auxiliary
prediction task to analyze the quality of the learned features. The objective is to
analyze how well the model can reduce the correlation between the class labels
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(a) New Protected Attributes (b) De-biasing Pre-trained Classifier

Fig. 6: Average precision and fairness metrics obtained by different techniques
(a) when evaluated on new protected attributes and (b) for de-biasing a pre-
trained classifier with limited training data. Experiments have been performed
on the Adult Income dataset with race and gender as the protected attribute,
respectively. GroupMixNorm presents improved performance across metrics.

and the sensitive attributes. To this effect, we train two linear classifiers Csens

and Ccls that take the representation vector as input and predicts class labels and
sensitive attributes, respectively. Next, we compare the learned weight matrix of
Csens and Ccls using cosine similarity. A higher similarity would signify similar
weights and thus higher correlation between the two tasks. Table 1 shows that
our model has the least cosine similarity indicating that the classifier focuses
more on task relevant information than sensitive information. It is important
to note that the cosine similarity for the RNF model varies from 0.2 to 0.075,
based on the fairness-accuracy trade-off parameter, while the GroupMixNorm
layer based model achieves a cosine similarity of 0.06 only.

5.3 Generalizability to New Protected Groups

With time, as the data evolves, new sensitive groups often get introduced. For
example, gender attribute values may change from binary to non-binary. A ro-
bust classification model must remain unbiased even with the introduction of
additional sensitive groups during inference. In order to simulate this setup,
the proposed solution was evaluated for new groups at test time without any
re-training. Experiments were performed on the Adult Income dataset where
data pertaining to two races (White and Black) was used for training, while the
data from White, Black, and Others (Asian-Pac-Islander, Amer-Indian-Eskimo,
Other) racial groups were used for testing. Fig. 6a presents the performance
of the GroupMixNorm layer along with other comparative techniques, where
GroupMixNorm is able to generalize well to unseen groups during inference by
obtaining lower fairness metrics and a higher average precision.
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5.4 Debias Pre-trained Model with Limited Data

Experiments have also been performed to analyze the effectiveness of the pro-
posed GroupMixNorm layer to mitigate bias from a pre-trained biased classifier.
We train an MLP classifier on the training partition of the Adult Income dataset,
without the GroupMixNorm layer, and later fine-tune the model after plugging
the proposed layer on the validation set. The validation set consists of only 20%
samples of the entire dataset. For other techniques, we fine-tune the pre-trained
biased classifier on the validation set with the respective methods. We evaluate
the model for fairness on the Adult dataset with gender as the protected at-
tribute. Fig. 6b presents the results obtained by the proposed GroupMixNorm
layer as well as other comparative techniques. It can be observed that the pro-
posed solution produces fairer results as compared to other algorithms across
the different fairness metrics, while achieving the highest average precision. The
experiment suggests that even with a small training set, the proposed Group-
MixNorm can aid in eliminating bias from a pre-trained network.

6 Conclusion and Future Work

Learning bias-invariant models are the need of the hour for the research com-
munity. While existing research has focused on proposing novel solutions for
learning unbiased classifiers, most of the techniques incorporate an additional
term in the loss function for modeling the model fairness. We believe that it
is often difficult to extrapolate the learnings of such an optimization function
to the test set, especially under the challenging scenario of new protected at-
tributes during evaluation. To this effect, this research proposes a novel Group-
MixNorm layer, which promotes learning fairer models at the architectural level.
GroupMixNorm is a distribution alignment strategy operating across the dif-
ferent protected groups, enabling attribute-invariant feature learning. Across
multiple experiments, GroupMixNorm demonstrates improved fairness metrics
while maintaining higher average precision levels, as compared to the state-of-
the-art algorithms. Further analysis suggests high model generalizability to new
protected attributes during evaluation, possibly due to the transformation of
samples to interpolated groups resulting in model regularization during train-
ing. As an extension of this research, future research directions include studying
the impact of GroupMixNorm on different convolution layers and extending the
scope to evaluation on NLP datasets and tasks.
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